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Addressing Cost-Space Chasms in Manipulation Planning

Dmitry Berenson!

Abstract— Finding paths in high-dimensional spaces becomes
difficult when we wish to optimize the cost of a path in addition
to obeying feasibility constraints. Recently the T-RRT algorithm
was presented as a method to plan in high-dimensional cost-
spaces and it was shown to perform well across a variety of
problems. However, since the T-RRT relies solely on sampling to
explore the space, it has difficulty navigating cost-space chasms—
narrow low-cost regions surrounded by increasing cost. Such
chasms are particularly common in planning for manipulators
because many useful cost functions induce narrow or lower-
dimensional low-cost areas. This paper presents the GradienT-
RRT algorithm, which combines the T-RRT with a local
gradient method to bias the search toward lower-cost regions.
GradienT-RRT is effective at navigating chasms because it
explores low-cost regions that are too narrow to explore by
sampling alone. We compare the performance of T-RRT and
GradienT-RRT on planning problems involving cost functions
defined in workspace, task space, and C-space. We find that
GradienT-RRT outperforms T-RRT in terms of the cost of the
final path while maintaining better or comparable computation
time. We also find that the cost of paths generated by GradienT-
RRT is far less sensitive to changes in a key parameter,
making it easier to tune the algorithm. Finally, we conclude
with a demonstration of GradienT-RRT on a planning-with-
uncertainty task on the physical HERB robot.

I. INTRODUCTION

Planning paths for manipulators becomes more difficult
when we wish to optimize the cost of the path in addition to
satisfying feasibility constraints. The high dimensionality of
the problem precludes the exhaustive computation necessary
to find the optimal path.

Recently the Transition-based RRT (T-RRT) [1] was pre-
sented as a method to manage the growth of a search tree
in a high-dimensional cost-space. This algorithm uses a
process similar to stochastic optimization methods, where
a temperature parameter decides whether to accept a certain
transition. When the T-RRT is stuck in a local minimum
(i.e. many extensions are being rejected), the temperature
is increased to allow more exploration. When the algorithm
accepts a higher-cost extension, the temperature is decreased
so the tree does not over-explore high-cost regions. In this
way, T-RRT is biased to explore lower-cost regions before
allowing higher-cost extensions which may be necessary to
find a feasible path.

The T-RRT was shown to be very successful on many
problems and consistently outperforms the standard RRT
[2] and the heuristically-guided RRT [3]. However, we have
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(a) T-RRT Start (b) T-RRT Final

(c) GradienT-RRT Start (d) GradienT-RRT Final

Fig. 1. Illustration of the two algorithms’ performance in a cost-space
chasm. The left image of each pair shows the state of the tree before a
temperature increase and the right image shows the tree after the increase.
The T-RRT is unable to sample the bottom of the chasm and increases
temperature while GradienT-RRT uses gradient-descent (red arrows) to make
progress before increasing temperature. GradienT-RRT generates a higher-
quality path because it is able to generate nodes at the bottom of the chasm.

found that the T-RRT does not perform well for cost func-
tions that induce cost-space chasms—narrow or even lower-
dimensional low-cost passages around which cost increases.
Such cost functions are especially relevant in manipula-
tion planning where we may seek to penalize deviation
from a lower-dimensional constraint on end-effector pose
or navigate a narrow low-cost region in a manipulator’s
workspace. The T-RRT struggles in the cost-space chasms
created by such cost functions because it relies on the
sampling strategy of the RRT, which makes sampling in
such lower-dimensional or narrow regions impossible or
extremely unlikely. Thus almost every extension becomes
a cost increase if the starting configuration is at the bottom
of the chasm. As a result, the T-RRT explores the chasm
slowly and the path generated lies on the higher-cost sides
of the chasm, not on the lower-cost bottom (see Figure 1).
Cost-space chasms thus significantly hinder the performance
of the T-RRT for many types of cost functions relevant to
manipulation planning.

To address this problem we present the GradienT-RRT
algorithm, which combines the strengths of the T-RRT with
local gradient-descent. The algorithm works by the same
principles as the T-RRT, except that a gradient step is in-
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cluded during the extension. The gradient of the cost function
allows this algorithm to explore spaces that are too narrow
or lower-dimensional to explore by sampling alone. A key
issue with incorporating the gradient is to avoid trapping the
tree in local minima and to retain the beneficial exploration
properties of the T-RRT.

In the follow sections we describe the T-RRT, formally
define cost-space chasms, and show why they hinder the
performance of the T-RRT. We then introduce the GradienT-
RRT and discuss the trade-offs inherent in using the gradient.
To show the versatility and practicality of our approach
we also present general cost functions in workspace, task
space, and C-space, and show how to compute their gradients
efficiently. We then compare the performance of GradienT-
RRT and T-RRT on three example problems where these cost
functions induce cost-space chasms. Finally, we demonstrate
a real-world implementation of GradienT-RRT, where it is
used to plan a path amongst uncertain workspace occupancy
for the HERB robot.

II. RELATED WORK

The GradienT-RRT algorithm builds on both the T-RRT [1]
and gradient methods often used in control. These methods
seek to minimize a given function in the neighborhood of
the robot’s current configuration through gradient-descent.
For instance, controllers have been developed for balancing
legged robots [4], placing the end-effector somewhere in task
space [5], and collision-avoidance [6].

Related planners that plan in the C-space while opti-
mizing cost are the heuristically-guided RRT [3] and the
Anytime RRT [7]. Though they perform well in mobile-
robotics domains, these planners have difficulty in high-
dimensional manipulation problems with continuous cost
functions because an adequate heuristic is not readily avail-
able. Other planners that consider the obstacleness of a
configuration [8] have difficulty with arbitrary cost functions
because the cost threshold growth rate parameter is highly
problem-dependent. Another related planner is Conforma-
tional Roadmaps [9], which uses a transition test similar to
the T-RRT to explore molecular energy landscapes.

A common approach in motion planning is to attempt
optimization only after a feasible path has been found.
Methods like shortcut smoothing [10] or partial-shortcut
[11] can be used to optimize the length and distance from
obstacles of a feasible path. However, such methods only
improve a given path locally. In many problems (like the
ones presented in Section VII), shortcutting will not produce
an adequately low-cost path from an arbitrary path because
it is unlikely to find a cost-space chasm.

The problem of navigating cost-space chasms is related
to that of exploring narrow passages in sampling-based
planning. The integration of a gradient method and sampling-
based planner in the GradienT-RRT is related to retraction-
based methods [12][13] designed to explore narrow pas-
sages. Other methods of addressing narrow passages, such
as bridge-sampling [14], diffusion control [15], and dilation-
based approaches [16] are also widely studied in motion

planning. Our problem domain differs because we consider
continuous-valued cost functions, which are not narrow pas-
sages in terms of feasibility. It is unclear how to generalize
the methods cited above to this cost-space domain. To our
knowledge this is the first paper to address the cost-space
chasm problem in the context of sampling-based planning.

III. T-RRT

The purpose of the T-RRT is to find feasible low-cost
paths through high-dimensional cost spaces. The algorithm
manages the trade-off between optimality and exploration
by using a transition test similar to stochastic optimization
methods. T-RRT maintains a temperature value temp which
determines the probability of allowing a higher-cost node to
be added to the tree. temp is automatically tuned by the
algorithm and its behavior is controlled through several pa-
rameters, the most important being nFail Max. nFailMaz
determines how many higher-cost nodes are rejected before
increasing temperature.

We show a bi-directional implementation of the T-RRT
in Algorithms 1 and 2. The algorithm is identical to the
Bidirectional RRT except for the call to the ConsiderCost
function (Algorithm 3 with GradienTRRT = False) in the
extension. This function checks if a new configuration ¢, has
cost less than or equal to the cost of its parent. If it does,
qs 1s added to the search tree and the extension continues. If
not, the cost difference is put through a temperature check.
If it passes, the configuration is added to the tree, temp is
decreased by a factor of «, and nFail is set to 0. If not,
nFail is incremented and the extension terminates. If nFail
reaches nF'ailMazx, temp is increased by a factor of o and
nFazil is set to 0.

Thus the T-RRT tries growing lower-cost nodes
nFailMax number of times before allowing a higher
probability of accepting a higher-cost node. Such an
approach is quite reasonable because we want the algorithm
to explore low-cost regions while avoiding being trapped
in local minima. The nFailMax parameter effectively
controls the quality vs. search-time of the algorithm. Higher
nFailMazx values bias the algorithm toward reducing cost
at the expense of exploration. Thus the search takes more
time for higher nFailMaz if a cost increase is necessary
to find a feasible path.

IV. CoST-SPACE CHASMS

Although the T-RRT works quite well in many scenarios,
we found that it did not perform well when it needed to
traverse narrow regions of low cost surrounded by regions
of increasing cost. These structures are especially common
in manipulation planning problems. For example, they arise
from cost functions that bias the planner to imitate a demon-
strated path, prefer an end-effector orientation, or avoid areas
of uncertain occupancy in the workspace (see Section VII).

The cost functions in these problems create narrow or
lower-dimensional low-cost regions surrounded by increasing
cost. We call this type of structure a cost-space chasm, which
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we will define formally by introducing a property called c-
goodness (inspired by e-goodness [17]).

Let Q denote the C-space and F C Q denote the free
C-space. For a point p € F, let S(p) consist of those points
of F that can be connected to p by a straight line. For a
X C Q, let u(X) denote its volume.

If the cost of configurations were uniform (i.e. we consider
only obstacles) a useful measure of the narrowness of the
space at some point p € F would be the ratio of the volume
reachable from that point by a straight line to the volume
defined by the sampling bounds (1(S(p))/1(Q)). However,
if the cost of configurations in S(p) is not uniform, it will
be more difficult to reach some configurations in S(p) than
others using a planner like the T-RRT. The work along the
line segment from p to ¢ € S(p) determines the level of
difficulty and it is defined as:

W(p,q) = /ﬁ

where C|(-) is the cost of a configuration, £,, is the line seg-
ment from p to ¢, and £Z‘fq is the portion of the line segment
where the cost function has positive slope. This function
captures the amount of cost-increase we must overcome to
move from p to q. Note that the definition of work in [1]
contains another term that accounts for the length of L,
but it is not relevant for computing c-goodness.

We would now like to compute the work-weighted volume
of S(p) and compare that to the volume of the C-space.
We weigh all ¢ € S(p) using a function f(p,q) and the
work-weighted volume of S(p) is the integral of f(p,q)
over all ¢ € S(p). f(p,q) should have the following
properties: f(p,q) € [0,1], f(p,q1) < f(p,q2) if and only if
W(p,q1) > W(p,q2), and f(p,q1) = f(p, g2) if and only if
W(p,q1) = W(p, q2). A weight of f(p,q) = 1 should mean
that moving from p to ¢ requires no work and f(p,q) = 0
should mean that it requires infinite work. There are many
ways to define an f(p,q) with these properties; for example
f(p,q) = e~ W®9/* for some positive constant k.

If a p satisfies the equation

9C(Lpq(1))

ot dt (1)

+
rq

/ f(p,q)dq > cp(Q) (2)
S(p)

for a non-negative c, then we say that p is c-good. Defining
f(p,q) according to the above requirements produces what
we would expect for the uniform-cost case: f(p,q) = 1 for
all ¢ and the left side of Equation 2 becomes (S (p)). Thus
c-goodness for the uniform-cost case is simply a measure of
the narrowness of the space (1(S(p)) > cu(Q)).

A cost-space chasm is then a set of connected configu-
rations with low c-goodness. We term such sets “cost-space
chasms” because they resemble the deep steep-sided chasms
between mountains when visualized.

Despite the T-RRT’s success in many scenarios, we found
that it did not perform well for high-dimensional problems
involving such chasms. To understand why, consider a node
of the tree that is near the bottom of a chasm. This node

Algorithm 1: Bidirectional T-RRT(gs, g4)

1 Tg.Init(gs); Ty.Init(gg);

2 Ty.temp = Ty.temp = initTemp;

3 while TimeRemaining() do

Qrand < RandomConfig();

Q2 oqr + NearestNeighbor(Ta, ¢rand);
qaeach < Extend(Ta. qpeqars Grand);

14
15 end

dnear

9reach

if g2

<— NearestNeighbor(7}, g
— Ex:end(Tb, rears @%non);
reach = 9reach then

P <+ ExtractPath(7,, ¢%

a .
'rea.ch,)’

reach

Ty, ¢°

reach’ reach)’

return SmoothPath(P);

else

Swap(Ta, Tp);

end

16 return NULL;

Algorithm 2: Extend(T', gnear, qtarget)

1 gs < Qnear; qé’ld < Qnear;
2 while true do
if 4s = Qtarget then

X AN W

9
10
11
12
13
14
15
16
17 end

return gs;

else if ”qtarget - QSH > ||q§’ld - qta,'rgetH then
return qg’ld;

end

a2 — gs;

gs < qs + min(A(Zste;n ||qta'rget — QSH)

(gtarget=4s) .
lgtarget —asll’

qs <+ ConsiderCost(7, qgld, qs);

if ¢s # NULL then
T.AddVertex(qgs, c);
T.AddEdge(¢2'?, ¢s);

else
return ¢2'
end

d.

B

Algorithm 3: ConsiderCost(T’, qgld, qs)

1 if not CollisionFree(qud, qs) then return NULL;

s

2 if ¢; < ¢; then return gs;

old

3 dij — ||(Is - QSH; »
4 P eTp (C(QS)T.E;(TZ; D)/ ds );
5 if Rand(0,1) < p then
6 T.temp < T.temp/a;
7 T.nFail < 0;
8 return qs;
9 else
10 if GradienTRRT then
11 Vg < GetGradient(qs);
12 qg <+ qs — Vg;
13 dij < [lag'® — qqll; y
15 end
16 if T.'nFail > T.nFailMax then
17 T.temp < a(T.temp);
18 T.nFail < 0;
19 else
20 TnFail <+ T.nFail + 1;
21 end
22 if GradienTRRT and CollisionFree(q2'¢, q4) and
(C(gq) < C(g2*%) or Rand(0,1) < p) then
23 return qgq;
24 end
25 return NULL;
26 end
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will have low c-goodness, which means that we have a low
probability of generating a collision-free extension that is not
a significant cost increase. The T-RRT’s exploration in this
type of scenario is thus quite slow and the resulting paths lie
on the higher-cost sides of the chasm, not on the bottom.

V. GRADIENT-RRT

To address these drawbacks, we propose combining the
T-RRT with local gradient-descent of the cost function.
Because gradient-descent does not rely on sampling to find
lower-cost configurations, we can use it to navigate cost-
space chasms. However, we must be very careful in how we
include the gradient. For example, a naive strategy would be
to apply the gradient at every node generated by the T-RRT.
Doing so would inhibit the T-RRT’s exploration and cause
the tree to be trapped in local minima.

The GradienT-RRT algorithm differs from T-RRT in the
ConsiderCost function (Algorithm 3 with GradienTRRT =
True). If the configuration g is rejected (because it is higher-
cost and it failed the temperature check), then we compute
the gradient at ¢, and take a step from ¢, in the direction
of the gradient. This produces the configuration gg4. If g4 is
lower cost than the parent of ¢s; or passes the temperature
check, we accept it. If g, has a higher cost and fails the
temperature check, we reject it and terminate the extension.

It is important to note that the nFail counter and the
temperature are not affected by the acceptance/rejection of
gy in GradienT-RRT; nF'ail is only modified with respect
to the cost of gs. Not modifying nF'azl and the temperature
for gradient nodes is important because sometimes nodes
generated using the gradient are only slightly higher in cost
than the parent of g5 (for instance consider a tree trying
to grow out of a cost-space bowl; the gradient will push
the extension back into the bowl, as in Figure 2a). Such
nodes will pass the temperature check and decrease the
temperature, which can trap the tree in a local minimum
(effectively causing it to spiral around the bowl) and prevent
the temperature from increasing significantly.

Incorporating the gradient in this way allows us to preserve
the exploration properties of the T-RRT while addressing
its weakness in navigating cost-space chasms. However, in
situations where the gradient does not help the tree grow,
GradienT-RRT may perform slower than T-RRT (see Figure
2), although it will likely find a lower-cost path.

GradienT-RRT also inherits the probabilistic completeness
of T-RRT because it generates the same nodes as T-RRT
plus extra nodes resulting from the gradient steps. Since
generating extra nodes can only increase coverage of the
feasible manifold as time goes to infinity, the probabilistic
completeness of T-RRT is preserved.

VI. CoSTS AND GRADIENTS

The GradienT-RRT method relies on a fast computation of
the gradient of the cost at a given configuration. For robot
manipulators, many useful cost functions reside in one of
three spaces: workspace, task space, and C-space. We present
a general cost function for each space that is useful for

(b)

Fig. 2. Illustration of two difficult situations for GradienT-RRT. (a) The
tree must grow out of a cost-space bowl. (b) The tree’s progress in a
chasm is blocked by an obstacle. In both of these situations, GradienT-
RRT will generate more nodes in the low-cost region than T-RRT without
making significant progress (the number of extra nodes depends on the
nFailMaz parameter). This will slow down the algorithm, however the
tree will eventual grow out of the bowl and around the obstacle as the
temperature increases.

manipulation planning and describe how to compute the cost
of a configuration C'(¢) as well as the gradient V¢ efficiently.

A. Workspace Costs

Workspace constraints are the most common constraints in
motion planning, where they are used to represent obstacles.
However these constraints are usually binary; either the robot
is in collision or it is not. Imagine, however, that the robot
was planning in a workspace with uncertain occupancy, so
that the cost of a configuration depended on the belief of the
robot being in collision. Our approach to computing the cost
and gradient for such a scenario is similar to that used in
CHOMP [18], which considers distance to obstacles as the
cost of a configuration.

Let the workspace cost be C,, () for z € R3. C(q) is then
the integral of C\, () over x € R(q), where R(q) is the space
occupied by the robot at the configuration ¢. Since computing
the exact integral is prohibitively expensive, we perform the
following process to quickly approximate its value.

First, we can pre-compute a voxelization of C,,(x) to save
on computation time when evaluating C'(¢) in the planner.
To do this, we discretize the workspace into a voxel grid
V. Each voxel v € V is assigned a cost C,(v) from the
workspace cost at its center, which reflects the desirability
of occupying v with any part of the robot. In the uncertainty
example above, C\,(v) would depend on the probability of
v being occupied by an obstacle (see Figure 3a).

We also pre-compute a set of points within the volume
of each of the robot’s links. When the robot is placed in a
given configuration, we transform the points inside each link
by the link’s pose and check which voxels the points occupy.
The sum of the voxel cost for each point is the approximated
cost of the configuration. Note that this process can be made
arbitrarily accurate by adding more points and by increasing
the resolution of V, though the time needed to evaluate the
cost will increase.

To obtain the points in the robot’s volume, we first divide
each robot link into simplices using a combination of convex
decomposition [19] and Delaunay Triangulation. We then
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choose a simplex with probability proportional to its volume
and generate a sample point within that simplex by taking a
random convex combination of its vertices [20]. We repeat
this process for some number of iterations to generate a
uniformly sampled set of points P in the robot’s volume.
The sampling can also be biased toward lower-volume but
more important parts of the robot (such as the fingers) by
biasing the selection of simplices (see Figure 3b).

Besides evaluating the cost of a configuration, GradienT-
RRT requires the gradient of the cost function. To compute
the gradient Vx of a point 2 € R(q), we can take the partial
derivative of the cost function along each spatial dimension
and evaluate it at x. However, Vz exists in the workspace
and we must transform this vector into the C-space in order
to obtain V¢. We can do this through the Jacobian J(g¢, z),
which is defined by:

&= J(g,z)q 3)

We can then generalize the Jacobian to account for multiple
points x1, za, ... € R(q)

J(val)

Jg 21, 20,..) = | I@72) )

The C-space gradient is then

(&)

Vq=1Jq,z1,29,..)" [fo, vzl ]T

In order to implement the above process efficiently we
must have a fast way to compute Vz. We can use V to
approximate this gradient by first finding the voxel v that
contains x and then computing the partial derivative as the
difference in cost between voxels neighboring v along each
spatial dimension. We can thus compute the gradient for each
p € P and arrive at the C-space gradient via Equation 5.

B. Task Space Costs

Another important class of constraints lie in the Task
Space of robot, which is the space of the transform of the
robot’s end-effector. This space includes both the translation
and rotation components and it is homeomorphic to SE(3).

In previous work [21][22], we have developed Task Space
Regions (TSRs), which describe sets of valid configurations
in SE(3). We showed that such sets are particularly useful
for specifying manipulation tasks such as reaching to grasp
an object or manipulating objects with pose constraints. For
more complex pose constraints, we have also developed the
TSR Chain representation [23], which allows TSRs to be
defined relative to each other.

TSRs and TSR Chains previously defined binary con-
straints on end-effector pose: either the end-effector was
inside the volume allowed by the TSR or it was not. We
can extend these representations for cost-space planning by
using the task space distance between the end-effector pose
at ¢ and the nearest TSR or TSR Chain as C(q).

(b)

Fig. 3. (a) Example of a scene with uncertain occupancy generated using
a laser-scanner. Pink: known obstacles, blue: uncertain voxels. (b) Five
hundred points sampled in the volume of the Barrett arm with a bias toward
the links of the hand.

Once we have this distance, the gradient can be computed
using the Jacobian pseudo-inverse method. Details about
computing the distance to a TSR or TSR Chain can be found
in [22] and [23], respectively.

C. C-Space Costs

Finally, we consider constraints defined in the C-space.
Many useful constraints can be defined in the C-space; in-
cluding constraints on torque and joint limits. As an example,
we present a cost function that is designed to bias the planner
toward a set of known configurations. This cost function is
useful for biasing the search toward a desired configuration,
such as elbow-up or elbow-down, or toward a desired path.

Suppose we have a finite set of configurations U with
associated costs C'(u) for all w € U. We would like to
evaluate the cost of a configuration ¢ ¢ U. Since we would
like to bias the planner toward U, the cost should increase as
we move away from U. To achieve this behavior, we propose
a cost function that has the following desirable properties:

1) The function is smooth.

2) All u € U contribute to C(g).

3) C(q) is affected more by closer u € U.

The parameters needed to define the function are the
following:

o The finite set of configurations U along with C(u) for

allu e U

e A covariance ¥ for each u € U
where X is an n X n symmetric matrix used to weight the
distance metric. Thus the weighted squared distance between
¢ and the ith configuration u; € U is d; = (q—ui)TEi_l(q—
u;). The cost functions is:

Ul

Clg)=5s) (CEZ”) + 1)

=1

U]

—1
s= (> (6)

j=1"

The derivative of the weighted squared distance to wu; is
d; = 2(q —u;)TS; 1. The gradient of the cost is then
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Ul 5

_ C(us) d; 1) d;
qus; ( 4 +1> E s — &z

j=1

(N
Note that a small offset is added to d; when the distance
approaches zero to prevent numerical instability.

VII. EXAMPLE PROBLEMS

We now present three manipulation planning problems
which consider different types of cost. Each problem is
designed to highlight the need for an efficient method of
navigating cost-space chasms. We compare the performance
of the T-RRT and GradienT-RRT in the three problems for
varying values of nFailMax (see Figure 6) and discuss the
results. We set the parameters Agseep = 0.05, initTemp =
0.01, and a = 2 for all experiments. The magnitude of the
gradient step was bounded to be less than 0.05rad for the
first and third examples and 0.1rad for the second.

A. Path Imitation using a C-Space Constraint

For many problems involving human-robot interaction,
it is desirable for the paths generated by the robot to
conform to some legibility or aesthetic criteria [24] that can
be demonstrated via example paths. To incorporate these
considerations into our planner we build on a learning-from-
demonstration strategy. We first train a learning algorithm
on a set of examples paths and then construct a C-space
cost function around the optimal path produced by the
learning algorithm. Configurations closer to the learned path
receive a lower cost than configurations farther from it.
This construction biases the algorithm to search around the
learned path first while also allowing it to explore regions
of the C-space farther from the learned path as time goes
on. The advantage of this approach is that we can bias the
search toward the learned path while taking into account
feasibility constraints which are not accounted for by the
learning algorithm, such as collision,.

In this example problem, the robot’s task is to reach for a
bottle on a kitchen counter (Figure 4a). Five example paths
have been provided to the robot for reaching for the same
bottle in different locations on the counter (Figure 5a). All of
the example paths have the robot’s elbow point up throughout
the path (as opposed to pointing down or to the side). We use
the GMM-GMR toolbox [25] to compute a set of Gaussians
that describe the paths and to obtain the learned path from
the Gaussians. The learned path also has associated variances
in each dimension of C-space, expressing the confidence of
each predicted point in each dimension (Figure 5b).

We use the cost function described in Section VI-C to
transform the learned path into a cost function. The set U
is the points in the path (sampled at a fixed resolution), and
the X values are the variances of the prediction. The costs
of all points in U are set to 0. The resulting cost function is
shaped like a chasm in C-space with the learned path at the
bottom (see Figure 5c).

Fig. 4. Examples of paths planned for the three problems for nF'ail M ax
= 30 (only the translation of the end-effector is shown) after 300 iterations
of shortcut smoothing. (a) C-space path imitation, (b) Task Space constraint,
(c) Uncertain workspace occupancy. Blue: T-RRT path. Red: GradienT-RRT
path. The green path in (a) is the path learned from demonstration.

Demonstrated
paths

Gaussian
fit to
paths

Most likely
path from
Gaussians

©)

Fig. 5. (a) Example C-space paths (purple) and the learned path (green),
only the translation of the end-effector is shown. (b) Process of learning the
path using the GMM-GMR toolbox; the path is shown for joints five and
six of the robot. (c) The learned path transformed into a cost function using
Equation 6.

B. Task Space Constraints

Many common tasks in manipulation planning also involve
constraints on end-effector pose. While we have treated these
as hard constraints in previous work [21][22], there are
also situations where they can be seen as soft constraints.
Consider a reaching task where the pose of the end-effector
is not constrained. We have observed that paths generated
by RRTs for such problems involve significant (and often
needless) rotation of the wrist. The task is accomplished but
users find that the rotation of the wrist is unpredictable so
they feel less comfortable around the robot.

To address such a constraint on end-effector pose, we
employ TSRs or TSR Chains as soft constraints by using the
task space distance to the TSR as C(q). The search is thus
biased to generate nodes on or near the constraint manifold
defined by the TSR while still allowing the algorithm to
explore beyond this manifold as time goes on.

In this example problem the task is again to reach for
a bottle on the counter (Figure 4b), however we assign a
TSR to bias the robot not to tilt its end-effector throughout
the path. Since we are restricting two DOF of rotation, this
constraint induces a lower-dimensional zero-cost manifold in
the C-space; an infinitely thin chasm with cost increasing in
all directions around it.
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(a-c) Average planning times for the C-space, task space, and workspace examples, respectively. (d-f) Corresponding average cost integral of paths

after 300 iterations of shortcut smoothing. Blue Dashed: T-RRT, Red: GradienT-RRT. The error bars are standard deviations computed over 10 runs for

each value of nFailMax.

C. Uncertain Workspace Occupancy

Another important use for soft constraints is in planning
paths in uncertain environments, where we can not be sure
if some areas of the environment are empty or filled because
of incomplete sensor data. In such environments we want
to encroach as little as possible on uncertain areas. While it
may be tempting to treat uncertain areas as obstacles, this
can lead to infeasible planning queries because, for instance,
the goal configuration may intersect an uncertain area.

Our approach to this problem is to create a voxel grid
over the workspace and label each voxel with its probability
of occupancy. We compute the cost of a configuration of
the robot from a set of points sampled within its geometry
using the methods of Section VI-A. The planner is thus
biased to stay away from higher-occupancy regions in the
workspace during the path and to escape from these regions
without increasing cost if the start or goal lies within one of
them. However, given more time the algorithm will begin to
explore the higher-occupancy regions as well. Note that we
still impose hard collision constraints for known obstacles in
addition to this constraint.

In this example problem, the task is to reach for a bottle in
a cluttered space (Figure 4c). An uncertain region has been
placed in front of the robot. It is possible for the robot to
avoid the uncertain region completely by reaching around it,
but this induces a narrow passage in workspace between the
uncertain region and the boundary of the robot’s reachability.
Thus the constraint is a one-sided chasm, with the workspace
closer to the base of the robot being higher cost and the
workspace farther from the robot being unreachable.

We also implemented a similar scenario on the HERB
robot, where the uncertainty in the environment is derived
from laser-scan data (Figure 7). Here the bottle is in a cabinet
which is occluded from the laser scanner by the cabinet door.
Note that the bottle is engulfed by the uncertainty created by
this occlusion so the robot cannot simply avoid the uncertain

Fig. 7.
GradienT-RRT with uncertain workspace occupancy. The blue areas in the
robot’s world model (right) represent the probability of occupancy of a cell,
with light blue being less occupied and dark blue being more occupied.

Time-lapse images from the execution of two paths planned by

region when reaching to grasp. Please see our video for the
execution of the paths planned by GradienT-RRT (several
snapshots are shown in Figure 7).

D. Discussion of Results

Comparisons of run time and path integral cost are shown
in Figure 6. In all three examples, the costs of the paths
produced by GradienT-RRT were lower on average than
those produced by the T-RRT for all values of nFailMax.
The computation times of GradienT-RRT were much lower
than those for T-RRT for the task space and uncertainty
examples. The path imitation example’s computation time
is higher (Figure 6a) because the learned path collides with
the upper cabinet and the bottle; i.e. the chasm intersects
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an obstacle (as in Figure 2b). As a result the GradienT-RRT
attempts to generate more nodes in the chasm, which slows
down the algorithm at higher values of nFailMax.

What is most encouraging about these results is that the
cost of the path produced by GradienT-RRT only decreases
slightly when increasing nF'ailMax. The GradienT-RRT is
far less sensitive to the nFailMax parameter because it
does not rely on sampling to traverse a chasm; it uses the
gradient to generate nodes in low cost regions. Thus we can
set nFailMax to be relatively low (between 30 and 50)
and still achieve roughly the same performance as setting
it higher. We believe that this is a significant improvement
over T-RRT, where increasing nFailMax is the only way
to compute better paths but doing so produces an increase
in computation time.

VIII. CONCLUSION AND FUTURE WORK

We have presented the GradienT-RRT algorithm as a
method to navigate chasms in cost space. The algorithm
is a combination of the T-RRT and local gradient descent.
Because gradient-descent does not rely on sampling to find
lower-cost configurations, GradienT-RRT can traverse cost-
space chasms more quickly and at lower cost than T-RRT. We
have also described general cost functions in workspace, task
space, and C-space that are useful for manipulation planning
and that induce such cost-space chasms. When we compared
GradienT-RRT and T-RRT on three example problems, we
found that the GradienT-RRT outperformed T-RRT in terms
of the cost of the final path for all examples and in terms
of computation time for two of the three examples. We
also found that GradienT-RRT was not very sensitive to the
nFailMazx parameter, making it easier to tune than T-RRT.
Finally we showed GradienT-RRT running on the physical
HERB robot, where it planned to retrieve an object while
considering uncertain workspace occupancy.

In future work we would like to explore planning with
multiple simultaneous constraints. Specifically, we are inter-
ested in ways to optimize multiple constraints without mixing
them into a single cost function. One of the key challenges is
combining multiple gradients into a single direction vector.

We would also like to address the issue of goal sampling
so that GradienT-RRT can generate goals during the planning
process instead of being restricted to a single goal. This
is important because there is often an infinite set of goal
configurations in many types of manipulation problems.
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