Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems
October 9 - 15, 2006, Beijing, China

Hierarchical Motion Planning for
Self-reconfigurable Modular Robots

Preethi Bhat! James Kuffner!

! The Robotics Institute
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213, USA
{preethi, kuffner, seth} @cs.cmu.edu

Abstract— Motion planning for a self-reconfigurable robot
involves coordinating the movement and connectivity of each of
its homogeneous modules. Reconfiguration occurs when the shape
of the robot changes from some initial configuration to a target
configuration. Finding an optimal solution to reconfiguration
problems involves searching the space of possible robot config-
urations. As this space grows exponentially with the number of
modules, optimal planning becomes intractable. We propose a
hierarchical planning approach that computes heuristic global
reconfiguration strategies efficiently. Our approach consists of a
base planner that computes an optimal solution for a few modules
and a hierarchical planner that calls this base planner or reuses
pre-computed plans at each level of the hierarchy to ultimately
compute a global suboptimal solution. We present results from a
prototype implementation of the method that efficiently plans for
self-reconfigurable robots with several thousand modules. We also
discuss tradeoffs and performance issues including scalability,
heuristics and plan optimality.

I. INTRODUCTION

0 1000 3000 5000

P 5o

/7000 8000 12,479

Fig. 1.

An example plan for module motions on the roadmap with 12,005
catoms. The number labels indicate the number of module moves.

A self-reconfigurable modular robotic system comprises

of a collection of homogeneous modules that can connect,
disconnect, and move around adjacent modules. The system

1-4244-0259-X/06/$20.00 ©2006 IEEE

Seth Goldstein!

Siddhartha Srinivasa?

2 Intel Research Pittsburgh
4720 Forbes Avenue, Suite 410
Pittsburgh, PA 15213, USA
siddhartha.srinivasa@intel.com

is capable of reassembling itself to a desired target config-
uration. Reconfiguration occurs for purposes of locomotion,
manipulation, or for the creation of stable static structures.
Motion planning for such systems is especially challenging as
it involves coordinating the movement of a possibly large num-
ber of modules while enforcing motion constraints imposed by
their physical design.

A motion plan is a sequence of module motions that changes
the shape of the system from a start configuration to a goal
configuration while enforcing constraints such as avoiding
collision and maintaining connectivity. Optimality for such
reconfiguration strategies can be measured in different ways
such as minimizing the number of module moves, minimizing
time for reconfiguration or minimizing energy consumption
during reconfiguration. In this paper, we focus on generating
plans that minimize the number of module moves.

In order to find an optimal solution, we can explore the
discrete configuration space, guided by heuristics. This ap-
proach is feasible if the number of modules is small. However,
because the configuration space grows exponentially with the
number of modules, finding an optimal plan for a large number
of modules quickly becomes intractable. Experimental results
have shown that finding an optimal plan for more than a
few dozen modules using classical search algorithms such
as A* takes a few hours to compute [1]. In many cases,
the planner fails to discover a feasible path. Thus, research
efforts have primarily focused on determining good heuristics
for suboptimal planners, or devising purely local methods for
reconfiguration.

We present a hierarchical approach to motion planning
for systems with many thousands of modules. Given the
high cost of computing optimal plans using classical search
algorithms, we focus on divide-and-conquer techniques and on
the efficient reuse of existing plans. We impose a hierarchy
by recursively reconfiguring groups of modules into meta-
modules. Reconfiguration results in a fractal structure — a
meta-module at level ¢ of the hierarchy is comprised of a
group of structurally identical but smaller meta-modules of
level (i —1). We exploit the self-similarity of the structure by
pre-computing scale-invariant motion templates. A template
describes a motion of meta-modules at level ¢ of the hierarchy

886

Fig. 2. Conceptual view of a high-dimensional configuration space roadmap.

in terms of the motion of the constituent meta-modules of level
(i—1). Applied recursively, a template describes a move at any
level of the hierarchy in terms of the motion of the original
modules (which constitute level 0 of the hierarchy). Likewise,
a motion plan at any level of the hierarchy, comprised of a
sequence of moves, can be translated to a motion plan for the
modules with no extra planning cost. Since higher levels of
the hierarchy contain fewer meta-catoms, a motion plan at that
level can be computed quickly using classical A* search.

Conceptually, one can view the hierarchical planner as a
special kind of roadmap in the very high-dimensional con-
figuration space of the modules, as shown in figure 2. It
provides a fast path from configurations close to the start
and goal configurations, much like a highway connecting
two cities. Admittedly, while getting to the highway is easy
(in most cities), reaching and exiting the roadmap from an
arbitrary configuration might potentially involve generating
a plan for all of the modules. However, we believe that,
for configurations spaced far apart in configuration space,
this cost is generally far less than the cost of computing an
optimal plan without using the roadmap. Figure I illustrates
a plan for module motion on the roadmap. The path begins
at the hierarchical start configuration labeled O (far left), and
intermediate configurations after a few steps in the roadmap
are shown. The labels represent the number of steps needed
to reach that configuration. The path finally terminates at
the hierarchical goal configuration in the roadmap (far right).
Traversing the roadmap is fast and the total planning time
is on the order of a few minutes. Our hierarchical algo-
rithm is targeted at the Claytronics project. The goal of this
project is to create dynamically deformable objects modeled
using a large number of homogeneous modules called catoms
(Claytronics atom). A Claytronics ensemble would be capable
of dynamically rearranging itself to maintain the shape of the
object at any instance of time. The current physical catom
prototype is a cylinder with magnets on its surface (Figure 3).

Catom movement is achieved using electro-magnetic forces.

Fig. 3. Physical prototype of two dimensional catoms.

The catoms move about each other by turning successive
magnets on or off. Our hierarchical planner has been used to
plan for the reconfiguration of several simulated Claytronics
ensembles from a given initial configuration to a target goal
configuration (Figure 3).

II. RELATED WORK

Different approaches have been proposed to address the
problem of motion planning for self-reconfigurable systems.
Biologically inspired approaches using hormones to direct
reconfiguration has been well explored. Bojinov et. al [2]
use local sensing and local control rules to achieve motion
planning. Butler et. al [3] propose a generic algorithm based
on cellular automata that uses a set of rules to perform tasks
such as locomotion and navigating tunnels. Kubica et. al [4]
use simple local rules inspired by local insects to produce
complex behaviors, by local reactive path planning technique
to achieve reconfiguration. Shen et. al [5] propose biologically
inspired protocols for adaptive communication and distributed
collaboration between modules to achieve global effects such
as locomotion.

Decentralized planning has been investigated by many in-
cluding Kubica et. al [4], Murata et. al [6], and De Rosa et. al
[7]. De Rosa et. al [7] explore reconfiguration using distributed
manipulation of regularly shaped voids in the structure. Stoy
et. al [8] achieve reconfiguration by directing the growth of the
configuration using seeds that communicate locally. A more
centralized approach to motion planning has been explored
by Yoshida etr. al [9]. Nguyen et. al [10] explore some of
the properties of modular robots in a 2D hexagonal lattice
and offer an interesting approach to reconfiguration using
scaffolding-like structures.

Two-phase strategy for motion planning uses a global plan-
ner to provide high-level plan and a local motion planner
to translate it to the modules. Yoshida et. al [11] propose a
local motion planner that uses local rules stored in a database.
Walter et. al [12] initially find all admissible paths for recon-
figuration and heuristically ranks them. In the second stage, a
deterministic, distributed algorithm is used to achieve reconfig-
uration using little intermodule message passing. Zhang et. al
[13] propose a general constraint-based control framework for
modular self-reconfigurable robots where constraint solvers are
goal oriented deliberative agents that can be used as control
regulators or as information retrievers. Pamecha er. al [14]

887

discuss some useful heuristics and configuration metrics that
can be applied to modular robot motion planning.

III. THE PROBLEM

While our planning algorithm can be applied to any self-
reconfiguring system, our specific implementation platform is
the Claytronics system. In this section, we describe the system
and its pertinent notation, describe the motion constraints that
are specific to our system, and define the self-reconfiguration
problem.

A Claytronics system is comprised of a large number of
modules called catoms (short for Claytronics atoms). We
envision the system to be comprised of many thousands of tiny
spherical catoms (of diameter 2mm.) whose surfaces are tes-
selated with mechanisms for attachment and detachment with
other catoms. However, the current physical catom prototype is
a cylinder of diameter 44mm. and height 40mm. constrained
to move on a planar power strip. Electromagnets on the surface
of the cylinder are turned on and off for attachment and
detachment with other catoms. In this paper, we focus on
motion planning for the planar Claytronics system.

In the plane, a catom is a circular entity. It attaches to
other catoms via six electromagnets spaced uniformly on its
circumference. A configuration is a collection of connected
catoms. Due to the discrete number of connectors, catoms in
a configuration occupy discrete nodes in a hexagonal planar
grid. We describe a node by a pair of integers C € 12. A
configuration ¢ of n catoms is a collection of occupied nodes
given by:

q:{C’l,C’g,...,Cn}

Furthermore, a configuration is globally connected, i.e.there
exists at least one connected path from every catom in the
configuration to every other.

A catom in a configuration can move about an adjacent
connected catom if it satisfies certain motion constraints. For
the planar system, we define the set of valid moves to be
clockwise or counter-clockwise rotations:

dir = {CW,CCW}

Each move changes the configuration ¢ of the system to ¢’.
This is encapsulated in the function:

q = Move(q, Cy,, Cy, dir)

where C,,, is the catom which moves and C, is the anchor
catom about which the moving catom rotates. The move
satisfies the following constraints.

1. C,, and C, are neighbors.

2. ¢ is fully connected.

3. A move does not introduce collision among catoms.

A plan is a sequence of moves applied to a start configura-
tion g5 to produce a goal configuration g,. It is a solution to
the self-reconfiguration problem.

If each configuration can be represented as a vertex in a
transition graph [14] whose edges are moves, the number of
vertices is exponential in the number of catoms. Hence, an

(a) Schematic representation
of a meta-module

(b) Sample hierarchical configuration out-
put from the planner

Fig. 4. Structure of a meta-module in a hierarchy

exhaustive search of the space of configurations is infeasible,
necessitating searches based on informed heuristics. An in-
formed heuristic must be permutation invariant, i.e., it must
reflect the fact that if the catoms in a configuration ¢ were
numbered, all re-numberings of the catoms produce the same
configuration q.

In Section IV, we describe a hierarchical planner that
reduces searching by repeatedly reusing existing paths. As a
result, we are able to plan for many thousands of catoms. We
also describe two permutation invariant heuristics used in our
searches and compare their effectiveness.

IV. HIERARCHICAL PLANNER

The hierarchy we utilize has a structural pattern enforced for
motion template reuse. Planning is done at the top-level of the
hierarchy and templates are reused at lower levels to ultimately
generate the catom-level plans. The motion templates are pre-
computed.

A. The Hierarchy

We build hierarchies using catoms and abstractions of
catom groups called meta-catoms. Figure 4(a) is a schematic
representation of a meta-catom. A meta-catom M C' at level ¢
is a collection of seven meta-catoms at level ¢ — 1 (catoms if
level i — 1 = 0) forming a hexagonal structure as shown. The
meta-catom at level ¢ has six active magnets in its periphery,
represented by the large circles. The other magnets do not
take part in motion at level 7. Hence, a meta-catom at any
level is functionally similar to a catom. A configuration is a
collection of catoms or meta-catoms. Figure 4(b) represents a
sample hierarchical configuration output from the planner that
has 3 meta-catoms at the highest level.

The hierarchical approach can be intuitively understood as
getting on a roadmap from the start configuration, traversing
this roadmap until we get close to the goal and then getting off
the roadmap to the goal configuration. The process of getting
on and off the roadmap corresponds to configuring in and out
of a hierarchical template structure. This step could potentially
be very difficult to compute. There are different approaches to
solving this problem, such as utilizing carefully-defined local
rules to quickly transition from a configuration to a hierarchy
template configuration. Alternatively, a greedy approach could
iterate through the hierarchy, greedily aggregating the first few
modules to form meta-modules where each iteration results in

888

a new level of the hierarchy. The structure imposed on the
hierarchy enables us to pre-compute optimal moves offline in
the form of motion templates and reuse these templates at any
level of the hierarchy. If we have motion templates for all
moves, we need to plan only at the top-level of this high-
dimensional configuration space with a few meta-modules
using classical A* search techniques.

B. Motion templates

Motion templates are precomputed motions that are recur-
sively reused to generate catom-level plans. A template takes
as input a move at level ¢ and outputs a sequence of moves at
level (i — 1) that produce the required motion.

An instance of a motion template is shown in figure 5. The
large circles represent meta-modules at level ¢ of the hierarchy.
Each meta-module is comprised of seven meta-modules of
level (i — 1), as shown by the small circles. The input move is
a CW rotation of the center meta-module about its anchor. The
start and desired goal configurations of the move are shown
in the top left and lower left of the figure, respectively.

The meta-modules at level (i — 1) of the moving meta-
module are numbered from 0 to 6. The output of the template
is a motion plan for these seven meta-modules. The motion
plan is generated by an A* search for the seven meta-modules.
Two intermediate configurations of the resulting motion plan
are shown in the top right and bottom right of the figure.

To ensure global connectivity and maximum reuse, tem-
plates are designed for a worst case scenario where all adjacent
meta-modules at level ¢ are assumed to be present. By doing
so, the same template can be reused regardless of the number
of neighboring meta-modules actually present. Gray circles
in the figure represent the neighboring meta-modules and the
global connectivity of the entire structure is maintained.

For our implementation, we use two templates — the CW
template described above and a CCW template. Generating
templates is cheap as it involves a one-time cost of planning
for the motion of seven meta-modules and a memory cost of
storing the motion plan. Using more templates brings the final
catom-level plan closer to the optimal solution.

C. Base Planner

The base planner plans at the top most level of the hierarchy
and also generates motion templates. It uses classical A*
search, guided by heuristics to plan for a small number of
modules.

In the greedy nearest neighbor heuristic, we compute the
cost of a configuration by comparing it to the goal configu-
ration in the following manner: The cost of every module is
the Euclidian distance between itself and its nearest neighbor
in the goal configuration, normalized by the catom diameter.
The cost of the entire configuration is the sum of the module
costs for all modules in the configuration. This heuristic causes
the search to expand nodes with increasing cost. This is a
permutation independent heuristic that is always optimistic
(and thus admissible). Hence, A* is guaranteed to produce
an optimal path in terms of the number of module moves.

Catoms to which
connectivity has
to be maintained

Stationary
obstacle
catoms

Fig. 5. Template for a clockwise move. Gray circles represent obstacle
catoms and the hashed circle represents the catom to which connectivity has
to be maintained during the move

We have also experimented with another heuristic we call
greedy nearest mismatched neighbor. In this heuristic, we
initially preprocess the current and goal configurations such
that all modules that are already in their goal position in
the current configuration are removed and the corresponding
module from the goal configuration are also removed. We then
calculate the cost in the same manner as the greedy nearest
neighbor. Intuitively, this means that the modules attempt to
move towards the free goal positions and not towards positions
that are already occupied. It also has the implication that the
heuristic tries not to disturb modules that are already in their
final goal positions. This heuristic is also admissible and hence
A* returns an optimal plan.

We compare the performance of these two heuristics in
section V. The main reasons for choosing the above two
heuristics are simplicity, ease of implementation, speed and
optimality. We are exploring other alternative heuristics that
can be applied to this problem.

We prune the search space by applying only valid actions.
Valid actions are moves that satisfy all of the constraints
mentioned in Section III and generate a valid configuration.
Experimental results have shown that constraining the expan-
sion of a node to valid children configurations reduces the
branching factor significantly.

D. Hierarchical Planning Algorithm

The flowchart representing the overall approach is shown
in figure 6(a) and the flowchart representing the working of
the hierarchical planner is shown in figure 6(b). The start and
the goal configurations are initially converted to a hierarchical
structure. This is not done automatically in our prototype
planner. A perfect hierarchy can be formed with multiples of
powers of 7 catoms. If, however, the configuration does not
have multiples of powers of 7 catoms, motion templates need
to be created for meta-catoms with less than 7 catoms. The

889

{.27 Hierarchical
start
. . Catom | Recover | Reconfigu-
Create ,|Hierarchical| | gyel From |ra-tion
hierarch Planner 5 s
. y) Plans hierarchy Strategy
. Hierarchical
~~-goal
4
(a) Overview of the reconfiguration approach.
Hierarchical Planner
Hlefj‘zrlqg! s Template 335:52?‘
o6, S (if available)
(S“':ip_'_”__ or Step k
: Base Planner
RECURSIVELY
(at each level)
i .
Base |High-level | . | Catom
+ Planner plan * . [Level
Template Plans
(if available)
1 . Or
Base Planner
- Step 1| RECURSIVELY »| Catom
Hier: (at each level) | Level
/ Step 1

(b) Overview of the hierarchical planner.

Fig. 6. Flowchart illustrating the reconfiguration approach.

base planner is then called to plan at the top most level of
the hierarchy to reconfigure the meta-modules from the start
shape to the goal shape.

A single step at level i is translated to a sequence of steps
at level ¢ — 1 by either reusing the plan given by a motion
template, if available, or by calling the base planner to generate
a plan. Every step of the plan generated at the top most level
of the hierarchy is thus translated in a depth-first fashion till it
represents catom level moves. Finally, we transform from the
hierarchical structure to the goal configuration with the same
techniques used for generating the hierarchies.

The base planner generates optimal plans, and the pre-
computed motion template plans are also optimal. However,
since we are combining the plans at each level of the hierarchy,
the catom-level plans are not globally optimal. This loss
of optimality is a tradeoff for the increase in speed of the
planner, and the scale of the problems that can be solved
practically. In addition, because our approach reasons about
reconfiguration at a global level, our method has been observed
to converge more consistently than purely local, rule-based
methods. Further analysis needs to be done regarding the
expected convergence rates.

V. RESULTS

Experimental results show that the greedy nearest mis-
matched neighbor heuristic (branching factor of 5.4) increases
the performance of the planner by expanding about 2.5 times
less nodes than greedy nearest neighbor (branching factor of
7). However, the planner spends more time computing the
greedy nearest mismatched neighbor (35.53 % of planning
time) when compared to greedy nearest neighbor (3.77 % of
planning time) heuristic. We ran experiments with four test

Fig. 7. Motion plan for 4 levels, 3 meta-catoms, 1029 catoms and 62,812
catom steps

suites, each suite containing 50 problem instances. The planner
reconfigured 33,614 catoms in 14.98 minutes with more than
28 million steps for reconfiguration. The planner can plan
efficiently, even for systems with many thousands of catoms.
In our experiments, we were limited to plan for configurations
of at most 33,614 catoms due to a memory limit of 512MB
in our implementation. The actual planning time is usually on
the order of a few seconds.

Figure 7 shows an example of a hierarchical start configu-
ration with 4 levels, 3 meta-catoms which translates to 1029
catoms. The transition from the start to the goal takes 62,812
catom steps.

In figures 8(a) and 8(b), the depth of a plan represents the
number of module moves needed to reconfigure from an initial
configuration to the goal. We identify some simultaneous
moves by parallelizing the template and acknowledge that
such a plan is not completely parallel. Figure 8(a) illustrates
that as the complexity of the configuration increases, more
moves are needed for the reconfiguration. It also illustrates
that when multiple moves are permitted at each time step, the
total number of time steps needed is reduced substantially.
Figure 8(b) illustrates that as the number of moves in the
plan increases, the number of times the templates were reused
increases linearly. Figure 8(c) shows that as the number
of catoms in the configuration increases, the time taken to
translate the high-level plan generated at the top-most level
of the hierarchy to the catom-level plan by the use of the
templates also increases.

VI. SUMMARY AND DISCUSSION

This paper presents a global hierarchical motion planning
algorithm for self-reconfigurable modular robotic systems. We
impose a hierarchical structure from input configurations, and
utilize a recursive planner that plans at the top-level of the
generated hierarchy by invoking a base planner. The base
planner is implemented using classical A* search guided
by novel admissible heuristics. The high-level plan is then
translated to the catom-level plan by traversing through the

890

——+— One catom move per time step e

» —+— One catom move per time step A
16} =— Multiple catom moves per time step ,/ 4 12 >— Multiple catom moves per time step| 12 /s‘
// p—=0 - j# #
. £ 7

141 # y - < ¥
c H A o 10 o 10 ¥
k] A F 8 2
2 2 # o = 7
o 7 -
£ . % 8 g 8 fv* v,
g 10 o s Py
° £ S +*
5 2 s 9 % f
2% o] £
9 g b /

ol 4 2 4 ju

>
al 2F - W +
V
2 3 5 6 7 8 9 10 11 2 4 6 8 10 12 14 16 18 2 3 6 7 8 9 10 11
log of no. of catoms log of depth of plan log of no. of catoms
(a) No. of catoms Vs. Depth of plan (b) Depth of plan Vs. Template reuse (c) No. of catoms Vs. Total planning time
Fig. 8. Analysis of the hierarchical planner

hierarchy and generating intermediate plans that exploit pre-
computed template moves. These intermediate plans are then
combined to produce the final low-level catom moves.
Experimental results have shown that the prototype hierar-
chical planner can easily handle planning for systems with
a few thousand catom modules. The planner has also been
designed to prune the search space to the space of feasible con-
figurations and encodes the permutation independent nature of
the problem to reduce the branching factor of the search.
There are several drawbacks to our approach, which form
the basis of our future work. Generating a suitable hierarchical
division and assignment from an arbitrary input configuration
may be difficult. The number of meta catoms at the top level
of the hierarchy should be small enough for the base planner
to handle. Moreover, the final global plan generated by our
planner is not optimal with respect to the number of catom
moves. However, this loss of global optimality is acceptable,
since generating truly optimal plans for such a large number
of modules is currently intractable, and we have observed
our method to consistently generate reasonably efficient re-
configuration plans. Our current implementation only plans
for structures in two dimensions. However, it is relatively
straightforward to extend the method to 3D. Heuristics affect
the performance of the planner significantly, and hence more
research should be done to identify better heuristics for this
problem domain. Finally, our current implementation of the
planner is oblivious of the physics involved and does not
consider the structural stability of the resulting configurations.
Robustness of execution and contingency planning has to be
explored. These issues need to be addressed prior to porting
the planner to run on physical prototype Claytronics systems.

VII. FUTURE WORK

We intend to continue exploring efficient ways of gen-
erating hierarchies from input configurations. Determining
good heuristics to guide the planner is difficult, but affect
performance significantly. Other areas of future work include
exploring ways to compute minimal sets of meta-moves for
common intermediate configurations, incorporating stability of
generated configurations with the constraint, and parallelizing
and distributing the plan for simultaneous catom moves.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CNS-
0428738, DARPA Contract N66001-04-1-8931, Intel Re-
search, and Carnegie Mellon University.

REFERENCES

[1] G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff, “Evaluating efficiency
of self-reconfiguration in a class of modular robots,” Journal of robotic
systems, vol. 13, no. 5, pp. 317 — 338, 1996.

H. Bojinov, A. Casal, and T. Hogg, “Emergent structures in modular
self-reconfigurable robots,” in Proc. IEEE Int’l Conf. on Robotics and
Automation, 2000.

Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized
control for a class of self-reconfigurable robots,” in Proc. IEEE Int’l
Conf. on Robotics and Automation, 2002.

J. Kubica, A. Casal, and T. Hogg, “Complex behaviors from local rules
in modular self-reconfigurable robots,” in Proc. IEEE Int’l Conf. on
Robotics and Automation, 2001.

W.-M. Shen, B. Salemi, and P. Will, “Hormone-inspired adaptive com-
munication and distributed control for conro self-reconfigurable robots,”
IEEE transactions on Robotics and Automation, vol. 18, no. 5, Oct 2002.
S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-tran: Self-reconfigurable modular robotic system,”
IEEE/ASME transactions on mechatronics, vol. 7, no. 4, Dec 2002.

M. D. Rosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai, “Scalable
shape sculpting via hole motion: Motion planning in lattice-constrained
modular robots,” in Proc. IEEE Int’l Conf. on Robotics and Automation,
2006.

K. Stoy and R. Nagpal, “Self-reconfiguration using directed growth,” in
Int’l Symposium on Distributed Autonomous Robotic Systems, 2004.

E. Yoshida, S. Murata, A. Kaminura, K. Tomita, H. Kurokawa, and
S. Kokaji, “Motion planning of self-reconfigurable modular robot,” in
Proc. of Int’l Symposium on Experimental Robotics, 2000.

A. Nguyen, L. Guibas, and M. Yim, “Controlled module density
helps reconfiguration planning,” in In Workshop on the Algorithmic
Foundations of Robotics, March 2000.

E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and
S. Kokaji, “A motion planning method for a self-reconfigurable modular
robot,” in Proc. of the IEEE Int’l Conf. on Intelligent Robots and
Systems, 2001.

J. E. Walter, E. M. Tsai, and N. M. Amato, “Algorithms for fast
concurrent reconfiguration of hexagonal metamorphic robots,” IEEE
transactions on Robotics, pp. 1042-296, 2005.

Y. Zhang, M. P. Fromeherz, L. S. Crawford, and Y. Shang, “A general
constraint-based control framework with examples in modular self-
reconfigurable robots,” in Proc. of IEEE/RSJ Int’l Conf. on Intelligent
Robots and Systems, 2002.

A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian, “Useful metrics for
modular robot motion planning,” in IEEE Transactions on Robotics and
Automation, vol. 13, 1997.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

891

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

