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Abstract— Motion planning for a self-reconfigurable robot
involves coordinating the movement and connectivity of each of
its homogeneous modules. Reconfiguration occurs when the shape
of the robot changes from some initial configuration to a target
configuration. Finding an optimal solution to reconfiguration
problems involves searching the space of possible robot config-
urations. As this space grows exponentially with the number of
modules, optimal planning becomes intractable. We propose a
hierarchical planning approach that computes heuristic global
reconfiguration strategies efficiently. Our approach consists of a
base planner that computes an optimal solution for a few modules
and a hierarchical planner that calls this base planner or reuses
pre-computed plans at each level of the hierarchy to ultimately
compute a global suboptimal solution. We present results from a
prototype implementation of the method that efficiently plans for
self-reconfigurable robots with several thousand modules. We also
discuss tradeoffs and performance issues including scalability,
heuristics and plan optimality.

I. INTRODUCTION

Fig. 1. An example plan for module motions on the roadmap with 12,005
catoms. The number labels indicate the number of module moves.

A self-reconfigurable modular robotic system comprises

of a collection of homogeneous modules that can connect,

disconnect, and move around adjacent modules. The system

is capable of reassembling itself to a desired target config-

uration. Reconfiguration occurs for purposes of locomotion,

manipulation, or for the creation of stable static structures.

Motion planning for such systems is especially challenging as

it involves coordinating the movement of a possibly large num-

ber of modules while enforcing motion constraints imposed by

their physical design.

A motion plan is a sequence of module motions that changes

the shape of the system from a start configuration to a goal

configuration while enforcing constraints such as avoiding

collision and maintaining connectivity. Optimality for such

reconfiguration strategies can be measured in different ways

such as minimizing the number of module moves, minimizing

time for reconfiguration or minimizing energy consumption

during reconfiguration. In this paper, we focus on generating

plans that minimize the number of module moves.

In order to find an optimal solution, we can explore the

discrete configuration space, guided by heuristics. This ap-

proach is feasible if the number of modules is small. However,

because the configuration space grows exponentially with the

number of modules, finding an optimal plan for a large number

of modules quickly becomes intractable. Experimental results

have shown that finding an optimal plan for more than a
few dozen modules using classical search algorithms such

as A* takes a few hours to compute [1]. In many cases,

the planner fails to discover a feasible path. Thus, research

efforts have primarily focused on determining good heuristics

for suboptimal planners, or devising purely local methods for

reconfiguration.

We present a hierarchical approach to motion planning

for systems with many thousands of modules. Given the

high cost of computing optimal plans using classical search

algorithms, we focus on divide-and-conquer techniques and on

the efficient reuse of existing plans. We impose a hierarchy

by recursively reconfiguring groups of modules into meta-

modules. Reconfiguration results in a fractal structure — a

meta-module at level i of the hierarchy is comprised of a

group of structurally identical but smaller meta-modules of

level (i− 1). We exploit the self-similarity of the structure by

pre-computing scale-invariant motion templates. A template
describes a motion of meta-modules at level i of the hierarchy
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Fig. 2. Conceptual view of a high-dimensional configuration space roadmap.

in terms of the motion of the constituent meta-modules of level

(i−1). Applied recursively, a template describes a move at any

level of the hierarchy in terms of the motion of the original

modules (which constitute level 0 of the hierarchy). Likewise,

a motion plan at any level of the hierarchy, comprised of a

sequence of moves, can be translated to a motion plan for the

modules with no extra planning cost. Since higher levels of

the hierarchy contain fewer meta-catoms, a motion plan at that

level can be computed quickly using classical A* search.

Conceptually, one can view the hierarchical planner as a

special kind of roadmap in the very high-dimensional con-

figuration space of the modules, as shown in figure 2. It

provides a fast path from configurations close to the start

and goal configurations, much like a highway connecting

two cities. Admittedly, while getting to the highway is easy

(in most cities), reaching and exiting the roadmap from an

arbitrary configuration might potentially involve generating

a plan for all of the modules. However, we believe that,

for configurations spaced far apart in configuration space,

this cost is generally far less than the cost of computing an

optimal plan without using the roadmap. Figure I illustrates

a plan for module motion on the roadmap. The path begins

at the hierarchical start configuration labeled 0 (far left), and

intermediate configurations after a few steps in the roadmap

are shown. The labels represent the number of steps needed

to reach that configuration. The path finally terminates at

the hierarchical goal configuration in the roadmap (far right).

Traversing the roadmap is fast and the total planning time

is on the order of a few minutes. Our hierarchical algo-

rithm is targeted at the Claytronics project. The goal of this

project is to create dynamically deformable objects modeled

using a large number of homogeneous modules called catoms
(Claytronics atom). A Claytronics ensemble would be capable

of dynamically rearranging itself to maintain the shape of the

object at any instance of time. The current physical catom

prototype is a cylinder with magnets on its surface (Figure 3).

Catom movement is achieved using electro-magnetic forces.

Fig. 3. Physical prototype of two dimensional catoms.

The catoms move about each other by turning successive

magnets on or off. Our hierarchical planner has been used to

plan for the reconfiguration of several simulated Claytronics

ensembles from a given initial configuration to a target goal

configuration (Figure 3).

II. RELATED WORK

Different approaches have been proposed to address the

problem of motion planning for self-reconfigurable systems.

Biologically inspired approaches using hormones to direct

reconfiguration has been well explored. Bojinov et. al [2]

use local sensing and local control rules to achieve motion

planning. Butler et. al [3] propose a generic algorithm based

on cellular automata that uses a set of rules to perform tasks

such as locomotion and navigating tunnels. Kubica et. al [4]

use simple local rules inspired by local insects to produce

complex behaviors, by local reactive path planning technique

to achieve reconfiguration. Shen et. al [5] propose biologically

inspired protocols for adaptive communication and distributed

collaboration between modules to achieve global effects such

as locomotion.

Decentralized planning has been investigated by many in-

cluding Kubica et. al [4], Murata et. al [6], and De Rosa et. al
[7]. De Rosa et. al [7] explore reconfiguration using distributed

manipulation of regularly shaped voids in the structure. Stoy

et. al [8] achieve reconfiguration by directing the growth of the

configuration using seeds that communicate locally. A more

centralized approach to motion planning has been explored

by Yoshida et. al [9]. Nguyen et. al [10] explore some of

the properties of modular robots in a 2D hexagonal lattice

and offer an interesting approach to reconfiguration using

scaffolding-like structures.

Two-phase strategy for motion planning uses a global plan-

ner to provide high-level plan and a local motion planner

to translate it to the modules. Yoshida et. al [11] propose a

local motion planner that uses local rules stored in a database.

Walter et. al [12] initially find all admissible paths for recon-

figuration and heuristically ranks them. In the second stage, a

deterministic, distributed algorithm is used to achieve reconfig-

uration using little intermodule message passing. Zhang et. al
[13] propose a general constraint-based control framework for

modular self-reconfigurable robots where constraint solvers are

goal oriented deliberative agents that can be used as control

regulators or as information retrievers. Pamecha et. al [14]
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discuss some useful heuristics and configuration metrics that

can be applied to modular robot motion planning.

III. THE PROBLEM

While our planning algorithm can be applied to any self-

reconfiguring system, our specific implementation platform is

the Claytronics system. In this section, we describe the system

and its pertinent notation, describe the motion constraints that

are specific to our system, and define the self-reconfiguration

problem.

A Claytronics system is comprised of a large number of

modules called catoms (short for Claytronics atoms). We

envision the system to be comprised of many thousands of tiny

spherical catoms (of diameter 2mm.) whose surfaces are tes-

selated with mechanisms for attachment and detachment with

other catoms. However, the current physical catom prototype is

a cylinder of diameter 44mm. and height 40mm. constrained

to move on a planar power strip. Electromagnets on the surface

of the cylinder are turned on and off for attachment and

detachment with other catoms. In this paper, we focus on

motion planning for the planar Claytronics system.

In the plane, a catom is a circular entity. It attaches to

other catoms via six electromagnets spaced uniformly on its

circumference. A configuration is a collection of connected

catoms. Due to the discrete number of connectors, catoms in

a configuration occupy discrete nodes in a hexagonal planar

grid. We describe a node by a pair of integers C ∈ I
2. A

configuration q of n catoms is a collection of occupied nodes

given by:

q = {C1, C2, . . . , Cn}
Furthermore, a configuration is globally connected, i.e.there

exists at least one connected path from every catom in the

configuration to every other.

A catom in a configuration can move about an adjacent

connected catom if it satisfies certain motion constraints. For

the planar system, we define the set of valid moves to be

clockwise or counter-clockwise rotations:

dir = {CW, CCW}
Each move changes the configuration q of the system to q′.
This is encapsulated in the function:

q′ = Move(q, Cm, Ca, dir)

where Cm is the catom which moves and Ca is the anchor

catom about which the moving catom rotates. The move

satisfies the following constraints.

1. Cm and Ca are neighbors.

2. q′ is fully connected.

3. A move does not introduce collision among catoms.

A plan is a sequence of moves applied to a start configura-

tion qs to produce a goal configuration qg . It is a solution to

the self-reconfiguration problem.

If each configuration can be represented as a vertex in a

transition graph [14] whose edges are moves, the number of

vertices is exponential in the number of catoms. Hence, an

(a) Schematic representation
of a meta-module

(b) Sample hierarchical configuration out-
put from the planner

Fig. 4. Structure of a meta-module in a hierarchy

exhaustive search of the space of configurations is infeasible,

necessitating searches based on informed heuristics. An in-

formed heuristic must be permutation invariant, i.e., it must

reflect the fact that if the catoms in a configuration q were

numbered, all re-numberings of the catoms produce the same

configuration q.

In Section IV, we describe a hierarchical planner that

reduces searching by repeatedly reusing existing paths. As a

result, we are able to plan for many thousands of catoms. We

also describe two permutation invariant heuristics used in our

searches and compare their effectiveness.

IV. HIERARCHICAL PLANNER

The hierarchy we utilize has a structural pattern enforced for

motion template reuse. Planning is done at the top-level of the

hierarchy and templates are reused at lower levels to ultimately

generate the catom-level plans. The motion templates are pre-

computed.

A. The Hierarchy

We build hierarchies using catoms and abstractions of

catom groups called meta-catoms. Figure 4(a) is a schematic

representation of a meta-catom. A meta-catom MC at level i
is a collection of seven meta-catoms at level i − 1 (catoms if

level i− 1 = 0) forming a hexagonal structure as shown. The

meta-catom at level i has six active magnets in its periphery,

represented by the large circles. The other magnets do not

take part in motion at level i. Hence, a meta-catom at any

level is functionally similar to a catom. A configuration is a

collection of catoms or meta-catoms. Figure 4(b) represents a

sample hierarchical configuration output from the planner that

has 3 meta-catoms at the highest level.

The hierarchical approach can be intuitively understood as

getting on a roadmap from the start configuration, traversing

this roadmap until we get close to the goal and then getting off

the roadmap to the goal configuration. The process of getting

on and off the roadmap corresponds to configuring in and out

of a hierarchical template structure. This step could potentially

be very difficult to compute. There are different approaches to

solving this problem, such as utilizing carefully-defined local

rules to quickly transition from a configuration to a hierarchy

template configuration. Alternatively, a greedy approach could

iterate through the hierarchy, greedily aggregating the first few

modules to form meta-modules where each iteration results in
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a new level of the hierarchy. The structure imposed on the

hierarchy enables us to pre-compute optimal moves offline in

the form of motion templates and reuse these templates at any

level of the hierarchy. If we have motion templates for all

moves, we need to plan only at the top-level of this high-

dimensional configuration space with a few meta-modules

using classical A* search techniques.

B. Motion templates

Motion templates are precomputed motions that are recur-

sively reused to generate catom-level plans. A template takes

as input a move at level i and outputs a sequence of moves at

level (i − 1) that produce the required motion.

An instance of a motion template is shown in figure 5. The

large circles represent meta-modules at level i of the hierarchy.

Each meta-module is comprised of seven meta-modules of

level (i−1), as shown by the small circles. The input move is

a CW rotation of the center meta-module about its anchor. The

start and desired goal configurations of the move are shown

in the top left and lower left of the figure, respectively.

The meta-modules at level (i − 1) of the moving meta-

module are numbered from 0 to 6. The output of the template

is a motion plan for these seven meta-modules. The motion

plan is generated by an A* search for the seven meta-modules.

Two intermediate configurations of the resulting motion plan

are shown in the top right and bottom right of the figure.

To ensure global connectivity and maximum reuse, tem-

plates are designed for a worst case scenario where all adjacent

meta-modules at level i are assumed to be present. By doing

so, the same template can be reused regardless of the number

of neighboring meta-modules actually present. Gray circles

in the figure represent the neighboring meta-modules and the

global connectivity of the entire structure is maintained.

For our implementation, we use two templates — the CW

template described above and a CCW template. Generating

templates is cheap as it involves a one-time cost of planning

for the motion of seven meta-modules and a memory cost of

storing the motion plan. Using more templates brings the final

catom-level plan closer to the optimal solution.

C. Base Planner

The base planner plans at the top most level of the hierarchy

and also generates motion templates. It uses classical A*

search, guided by heuristics to plan for a small number of

modules.

In the greedy nearest neighbor heuristic, we compute the

cost of a configuration by comparing it to the goal configu-

ration in the following manner: The cost of every module is

the Euclidian distance between itself and its nearest neighbor

in the goal configuration, normalized by the catom diameter.

The cost of the entire configuration is the sum of the module

costs for all modules in the configuration. This heuristic causes

the search to expand nodes with increasing cost. This is a

permutation independent heuristic that is always optimistic

(and thus admissible). Hence, A* is guaranteed to produce

an optimal path in terms of the number of module moves.
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Fig. 5. Template for a clockwise move. Gray circles represent obstacle
catoms and the hashed circle represents the catom to which connectivity has
to be maintained during the move

We have also experimented with another heuristic we call

greedy nearest mismatched neighbor. In this heuristic, we

initially preprocess the current and goal configurations such

that all modules that are already in their goal position in

the current configuration are removed and the corresponding

module from the goal configuration are also removed. We then

calculate the cost in the same manner as the greedy nearest

neighbor. Intuitively, this means that the modules attempt to

move towards the free goal positions and not towards positions

that are already occupied. It also has the implication that the

heuristic tries not to disturb modules that are already in their

final goal positions. This heuristic is also admissible and hence

A* returns an optimal plan.

We compare the performance of these two heuristics in

section V. The main reasons for choosing the above two

heuristics are simplicity, ease of implementation, speed and

optimality. We are exploring other alternative heuristics that

can be applied to this problem.

We prune the search space by applying only valid actions.

Valid actions are moves that satisfy all of the constraints

mentioned in Section III and generate a valid configuration.

Experimental results have shown that constraining the expan-

sion of a node to valid children configurations reduces the

branching factor significantly.

D. Hierarchical Planning Algorithm

The flowchart representing the overall approach is shown

in figure 6(a) and the flowchart representing the working of

the hierarchical planner is shown in figure 6(b). The start and

the goal configurations are initially converted to a hierarchical

structure. This is not done automatically in our prototype

planner. A perfect hierarchy can be formed with multiples of

powers of 7 catoms. If, however, the configuration does not

have multiples of powers of 7 catoms, motion templates need

to be created for meta-catoms with less than 7 catoms. The
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(a) Overview of the reconfiguration approach.

(b) Overview of the hierarchical planner.

Fig. 6. Flowchart illustrating the reconfiguration approach.

base planner is then called to plan at the top most level of

the hierarchy to reconfigure the meta-modules from the start

shape to the goal shape.

A single step at level i is translated to a sequence of steps

at level i − 1 by either reusing the plan given by a motion

template, if available, or by calling the base planner to generate

a plan. Every step of the plan generated at the top most level

of the hierarchy is thus translated in a depth-first fashion till it

represents catom level moves. Finally, we transform from the

hierarchical structure to the goal configuration with the same

techniques used for generating the hierarchies.

The base planner generates optimal plans, and the pre-

computed motion template plans are also optimal. However,

since we are combining the plans at each level of the hierarchy,

the catom-level plans are not globally optimal. This loss

of optimality is a tradeoff for the increase in speed of the

planner, and the scale of the problems that can be solved

practically. In addition, because our approach reasons about

reconfiguration at a global level, our method has been observed

to converge more consistently than purely local, rule-based

methods. Further analysis needs to be done regarding the

expected convergence rates.

V. RESULTS

Experimental results show that the greedy nearest mis-

matched neighbor heuristic (branching factor of 5.4) increases

the performance of the planner by expanding about 2.5 times

less nodes than greedy nearest neighbor (branching factor of

7). However, the planner spends more time computing the

greedy nearest mismatched neighbor (35.53 % of planning

time) when compared to greedy nearest neighbor (3.77 % of

planning time) heuristic. We ran experiments with four test

Fig. 7. Motion plan for 4 levels, 3 meta-catoms, 1029 catoms and 62,812
catom steps

suites, each suite containing 50 problem instances. The planner

reconfigured 33,614 catoms in 14.98 minutes with more than

28 million steps for reconfiguration. The planner can plan

efficiently, even for systems with many thousands of catoms.

In our experiments, we were limited to plan for configurations

of at most 33,614 catoms due to a memory limit of 512MB

in our implementation. The actual planning time is usually on

the order of a few seconds.

Figure 7 shows an example of a hierarchical start configu-

ration with 4 levels, 3 meta-catoms which translates to 1029

catoms. The transition from the start to the goal takes 62,812

catom steps.

In figures 8(a) and 8(b), the depth of a plan represents the

number of module moves needed to reconfigure from an initial

configuration to the goal. We identify some simultaneous

moves by parallelizing the template and acknowledge that

such a plan is not completely parallel. Figure 8(a) illustrates

that as the complexity of the configuration increases, more

moves are needed for the reconfiguration. It also illustrates

that when multiple moves are permitted at each time step, the

total number of time steps needed is reduced substantially.

Figure 8(b) illustrates that as the number of moves in the

plan increases, the number of times the templates were reused

increases linearly. Figure 8(c) shows that as the number

of catoms in the configuration increases, the time taken to

translate the high-level plan generated at the top-most level

of the hierarchy to the catom-level plan by the use of the

templates also increases.

VI. SUMMARY AND DISCUSSION

This paper presents a global hierarchical motion planning

algorithm for self-reconfigurable modular robotic systems. We

impose a hierarchical structure from input configurations, and

utilize a recursive planner that plans at the top-level of the

generated hierarchy by invoking a base planner. The base

planner is implemented using classical A* search guided

by novel admissible heuristics. The high-level plan is then

translated to the catom-level plan by traversing through the
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(a) No. of catoms Vs. Depth of plan (b) Depth of plan Vs. Template reuse (c) No. of catoms Vs. Total planning time

Fig. 8. Analysis of the hierarchical planner

hierarchy and generating intermediate plans that exploit pre-

computed template moves. These intermediate plans are then

combined to produce the final low-level catom moves.

Experimental results have shown that the prototype hierar-

chical planner can easily handle planning for systems with

a few thousand catom modules. The planner has also been

designed to prune the search space to the space of feasible con-

figurations and encodes the permutation independent nature of

the problem to reduce the branching factor of the search.

There are several drawbacks to our approach, which form

the basis of our future work. Generating a suitable hierarchical

division and assignment from an arbitrary input configuration

may be difficult. The number of meta catoms at the top level

of the hierarchy should be small enough for the base planner

to handle. Moreover, the final global plan generated by our

planner is not optimal with respect to the number of catom

moves. However, this loss of global optimality is acceptable,

since generating truly optimal plans for such a large number

of modules is currently intractable, and we have observed

our method to consistently generate reasonably efficient re-

configuration plans. Our current implementation only plans

for structures in two dimensions. However, it is relatively

straightforward to extend the method to 3D. Heuristics affect

the performance of the planner significantly, and hence more

research should be done to identify better heuristics for this

problem domain. Finally, our current implementation of the

planner is oblivious of the physics involved and does not

consider the structural stability of the resulting configurations.

Robustness of execution and contingency planning has to be

explored. These issues need to be addressed prior to porting

the planner to run on physical prototype Claytronics systems.

VII. FUTURE WORK

We intend to continue exploring efficient ways of gen-

erating hierarchies from input configurations. Determining

good heuristics to guide the planner is difficult, but affect

performance significantly. Other areas of future work include

exploring ways to compute minimal sets of meta-moves for

common intermediate configurations, incorporating stability of

generated configurations with the constraint, and parallelizing

and distributing the plan for simultaneous catom moves.
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