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Abstract— Robotics research often focuses on increasing
robot capability. If end users do not perceive these increases,
however, user acceptance may not improve. In this work, we
explore the idea of perceived capability and how it relates to
true capability, differentiating between physical and social ca-
pabilities. We present a framework that outlines their potential
relationships, along with two user studies, on robot speed and
speech, exploring these relationships. Our studies identify two
possible consequences of the disconnect between the true and
perceived capability: (1) under-perception: true improvements
in capability may not lead to perceived improvements and (2)
over-perception: true improvements in capability may lead to
additional perceived improvements that do not actually exist.

I. INTRODUCTION

Roboticists often focus on increasing robot capability: we
make robots faster [1], help them perceive the world [3], and
enable them to interact with people [4]. The goal is to make
robots a part of everyday life, with purposes ranging from
entertainment to assisting with tedious or dangerous tasks
[5]-[10].

An integral part of making this goal a reality is acceptance
[11], [12], which is largely affected by users’ perceptions
[12]. Therefore, increasing robot capability does not nec-
essarily lead to increased acceptance since it is actually
the users’ perception of capability — the robot’s perceived
capability — that determines acceptance.

For example, imagine a robot designed to clean the home.
If a user perceives the robot’s capability to be lacking, they
may be reluctant to allow it to handle their possessions. On
the other hand, if the user overestimates the robot’s capabil-
ity, this can lead to unmet expectations and disappointment.

In this paper, we focus on the idea of perceived capability,
and the disconnect between it and the robot’s true capability.
We start by conjecturing a framework that links true and per-
ceived capability and then outline their possible relationships.
Within this framework, we investigate the effects of two
important robot capabilities, speed and speech, on perceived
capability via two user studies.

Framework for Perceived Capability

Prior work in anthropomorphism, mental models, and
sensemaking shows there is often a disconnect between
users’ perceptions and a robot’s true capability [13]-[16].
This occurs largely because people are unfamiliar and lack
experience with robots. Hence, their knowledge is often
based on popular culture which depicts a wide variety of
robots with a multitude of capabilities.

In order to investigate this disconnect, we introduce a
framework which enumerates the possible relationships be-
tween true and perceived capability. Our framework dis-
tinguishes between physical capability (e.g., doing laundry)
and social capability (e.g., understanding what someone is
saying), and between a particular skill and overall capability.
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Fig. 1: We analyze the effects of two different robot skills — speed and
speech — on the robot’s perceived capability.

Study on Perceived Capability and Speed

Within this framework, we conduct a user study to in-
vestigate the effects of robot speed on perceived capability.
Although a considerable amount of robotics research focuses
on enabling robots to complete tasks at a reasonable pace,
it is unclear how such increases affect our perceptions and
hence, attitudes towards robot.

Our findings show that doubling the speed of the robot
only slightly increases perceived capability. Comments from
users indicate this under-perception is because although users
perceive the significant increase in the robot’s speed, they do
not necessarily associate speed with overall capability.
Study on Perceived Capability and Speech

Our second user study focuses on the effects of true
skills, such as speaking or succeeding at a physical task,
on perceived capability. Speech plays an important role in
communication and socialization and is known to cause
anthropomorphization, or the process of attributing human-
like behaviors and intelligence [17]. Since many robots
already utilize speech, we are interested in exploring how
its use impacts perceptions of capability.

We investigate two types of speech (Fig.1): conversational,
or speech which is purely phatic in nature, and functional,
or speech which is task-oriented and easy generate.

Our findings confirm that a true physical capability dif-
ference (succeeding at the task) can affect perceived phys-
ical capability and that a true social capability difference
(speaking) can affect perceived social capability. However,
we also find that the two dimensions can influence each
other, leading to over-perception: speech, in particular con-
versational speech, increases perceived physical capability,
despite adding nothing to the robot’s true physical capability.

Overall, we find two possible consequences of a discon-
nect between true and perceived capability. The first is under-
perception: increasing a robot’s true capability does not lead
to an improvement in users’ perceptions, as seen in our study
on robot speed. The second is over-perception: increasing a
robot’s true capability can lead to a much larger improvement
in users’ perceptions, as seen in our study on speech.

These findings indicate that understanding the effects of
true capability can help guide future research by showing
what capabilities roboticists should prioritize and how to
avoid raising users’ expectations to an unrealistic level.
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Fig. 2: Framework for perceived capability.

II. PERCEIVED CAPABILITY

To explore the disconnect between true and perceived
capability, we conjecture a framework, shown in Fig.2, which
looks at capability along three dimensions: true vs. perceived
capability, physical vs. social capability, and skill vs. overall
capability.

A. True vs. Perceived Capability

True capability refers to what the robot is actually able to
do, while perceived capability refers to what users believe
the robot can do.

Our first user study (Section III) suggests improvements
in true capability do not always translate to increases in per-
ceived capability. Furthermore, our next study (Section IV)
reveals that improvements in true capability can lead to a
disproportionate increase in perceived capability. Therefore,
it important to understand how to convey a robot’s true
capability in order to set the correct expectations.

Robots are a novel and diverse technology which are not
yet widely available. Thus, preconceptions of their capabili-
ties are unlikely to be realistic as most people’s knowledge of
robots come from science fiction and popular culture. When
encountering a real robot, people may try to reason about it
by comparing it to a similar entity, such as a human [18].
A growing body of research suggests this is especially true
for robots with more human-like appearances or behaviors
[14], but this can be problematic as robots and humans have
vastly different strengths and weaknesses [19].

Moreover, although we often compare robots and humans,
prior work shows we still treat them quite differently [20],
[21]. Therefore, it is important to understand how people
perceive a robot’s skills and effects of these perceptions.

B. Physical vs. Social Capability

Most tasks desired from future robots can be divided into
two distinct categories: physical and social.

1) Physical: Perceived physical capability is intimately
related to trust. When the robot makes a mistake, trust drops
[22] because the robot does not meet expectations of relia-
bility which suggests that its perceived physical capability is
too high. In our study in Section IV, we also use physical
mistakes to manipulate true capability.

Drawing from the large body of survey literature, we
developed a method for evaluating perceived physical ca-
pability [7], [23]-[25]. We identified fourteen common tasks
(see Table I) that people envision future robots to perform,
with the majority of tasks taking place in personal settings
such as the home. This corresponds with [5], who found
people were most open to robots acting as housekeepers or
assistants.

To measure perceived physical capability, we ask users to
rate how capable the robot is of performing each task on a
7-point Likert scale.

2) Social: Socially interactive robots are valued for their
potential as companions or informational assistants [26].
However, true social robots require human-like intelligence,
a longstanding goal in the field of AI [17], [27]. Because this
is still an open research problem, several people have adopted
the weak Al stance, concentrating instead on projecting the
illusion of intelligence [17], [28].

Projecting intelligence simply requires displaying the at-
tributes that facilitate people’s definition of intelligence [17].
Even the Turing Test which examines a machine’s ability to
exhibit behavior indistinguishable from a human, is based
on perceived rather than true intelligence. Much of what is
considered to constitute human intelligence actually relates
to social ability: thus, we also explore the notion of perceived
social capability.

[17] argues that perceived social capability may be a
more valuable tool for acceptance then true social capability.
However, if we manipulate perceived capability too far in
either direction, we may hinder acceptance. On the one
hand, if expectations are set too high, the robot may end up
disappointing users. On the other hand, if expectations are
too low, the robot may fall into disuse. Thus, it is important
to strike just the right balance.

Nomura’s Robot Anxiety Scale (RAS), one of the most
popular robot scales, explores difficulties that can arise
from interacting with a communicative robot [29]. Many
items in this scale concentrate on not just communication,
but socialization. Drawing inspiration from the RAS, we
developed eleven items that focus on a robot’s ability to
successfully communicate and interact with humans, shown
in Table I.

To measure perceived social capability, we ask users to
rate how capable the robot is of performing each task on a
7-point Likert scale.

TABLE I: Perceived Capability Measures

Physical Social

wiping down cleaning surfaces
cleaning up the dining table
taking out the trash

tidying up

organizing the pantry

doing laundry

preparing simple meals

doing lawn work

giving information and news
understanding what I am talking about
understanding my emotions

informing me when something is wrong
following the direction of a conv.
understanding difficult conversations
informing me what it is about to do
making me understand what it saying
bringing a drink understanding what I am doing
helping me get ready talking about irrelevant things*

acting as alarm system -

watering/caring for plant -

pet care -

child care -




Fig. 3: Videos shown to participants depicted the robot retrieving a microwave meal with an actor washing dishes nearby. The robot 1) comes into the
kitchen, 2) opens the microwave, 3), retrieves the microwave meal, 4), closes the microwave and 5) leaves the kitchen.

C. Skill vs. Overall Capability

Capability encompasses the entirety of what a robot can
do, making it difficult to directly measure and manipulate.
Thus, we deconstruct capability into individual skills or
abilities that a robot can possess such as folding clothes or
telling jokes. Skills, like capability, can be either physical or
social, and can be true or perceived.

D. Relationships

Our framework explores true and perceived capability via
a sequence of connections, shown in Fig.2. Some connections
are set, while others, shown by dotted lines, are not always
present, or are weaker than expected.

A robot’s true capability is comprised of its true physical
and social capability which are each comprised of true
skills. However, moving forward through the framework,
improvements in true skills might not necessarily be reflected
in perceived skills, due to observability. For example, a robot
gains new sensors to record audio, but a user observing the
robot may not notice the difference. Similarly, improvements
in perceived skills might not lead to improvements in per-
ceived capabilities, due to users’ definitions off capability.

While some connections may be weaker than expected,
other can be stronger. One of the contributions of our study
(in Section IV) is to show the existence of such a connection,
depicted in orange in Fig.2. This can be attributed to the com-
plex processes that occur when we interact with robots, such
as anthropomorphization, which can cause users to attribute
non-existent abilities to the robot, e.g. conversational speech
can lead to the perception of capability at physical tasks.

Thus, there are potential connections between perceived
social skills and perceived physical capability, or between
perceived physical skills and perceived social capability.
These connections can be direct or can be caused by con-
nections between a perceived skill (like speech) and another
perceived skill (like understanding natural language).

E. Measuring Perceived Capability

We measure perceived physical and social capability
through the tasks in Table 1. For each task, we present users
with the following statement: “I believe the robot is capable
of X,” where X is the task. Users are asked to rate their
agreement with the statement on a 7-point Likert scale. Users
also asked when comparing two robots to choose the robot
they believe is more capable of performing each task.

III. SPEED STUDY

Our first study is about under-perception. An increase in
true capability does not necessarily lead to an increase in
perceived capability.

We exposed users to two videos of a robot performing a
physical task next to an actor. In each scenario, the robot
enters the kitchen and retrieves a microwave meal while
standing next to the actor. In one video, the robot moves
faster and spends less time planning.

A. Study Design

1) Manipulated Variables: We manipulated speed by pro-
ducing two videos of a robot performing a physical task
— retrieving a microwave meal — at two different speeds
(2.3 minutes vs. 1.15 minutes to complete the task). The
lower speed represents the state of the art, while the higher
speed represents a capability well beyond current robot
manipulation skills in both planning and execution time.

2) Participants: We recruited 20 participants (12 females
and 8 males) through Amazon Mechanical Turk. All par-
ticipants were located in the United States, primary En-
glish speakers and ranging in age from 23 to 65 (M=39.0,
SD=10.55) years. 40% percent of participants were male
and 60% were female. Participants were compensated $4 for
successful completion of the study.

Participants were told that they were taking part in a survey
to design better home robots. All participants successfully
answered a set of control questions about the videos they
were shown and none had previously participated in a study
with the robot.

This resulted in 14 participants spread across the 2 con-
ditions. On average, participants rated their familiarity with
robots as 2.2 (§D=1.28) and their previous level of interaction
as 1.3 (SD=0.47) on a 7-point Likert scale.

3) Procedure: We opted for a within-subjects design,
where participants were shown both the slow and fast videos,
in order to enable direct comparisons and stay away from
absolute ratings (as suggested by a pilot study). The order
of the videos shown were counterbalanced to negate ordering
effects.

Participants were given a link through Amazon Mechan-
ical Turk to the study. After reading the instructions and
giving their consent, participants were shown the first video
of the robots labeled “Robot 1.” To continue the study, par-
ticipants had to watch the entire video. They then answered
questions about the video and perceived capability. They
repeated this process after watching the second video.

4) Hypothesis: We hypothesize that even when doubling
the speed of the robot, it will not affect perceived capability
as the robot is still much slower than a human.

5) Measures: We used the perceived capability measures
outlined in Section II-E.

B. Results

Our hypothesis predicted that speed would not signif-
icantly affect a robot’s perceived physical capability. To



test this hypothesis, we performed a non-inferiority test to
show that the difference between the slow and fast robot
is significantly greater than a negative margin —A. Setting
A = 5%, a one-tailed paired t-test supported the hypothesis:
—0.296 > —0.3, t(25) = —1.796, p = 0.042.
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Fig. 4: Perceived physical capability metrics for slow vs. fast robot.

Despite a difference in true capability that would be
considered very large from a robotic algorithmic standpoint,
the mean ratings were not significantly different (Fig.4).
Since speed is a physical trait, we did not expect it to
affect perceived social capability: we found no significant
difference in the perceived social capability ratings.

We confirmed in a follow-up question that users did per-
ceive the difference in speed, but this had a very small effect
on the robot’s perceived capability, i.e. on their perceptions of
what tasks the robot is capable of performing. They said, for
example, that despite the robot being faster, it was either “still
not fast enough”, or it did not matter, because the“robot’s
speed did not impact its ability to do other tasks” and thus,
cannot be trusted.

These results suggest that true improvements in capability
do not necessarily lead to perceived improvements in capa-
bility: there can be a disconnect between the two.

IV. SPEECH STUDY

Speech is an interesting and uniquely human behavior. We
choose to investigate it within our framework for perceived
capability because of its continual usage and popularity in
robotics.

A. Background

Among many possible skills that can affect perceived
capability, we focus on speech because it causes anthropo-
morphization [14] and plays an important role in human
communication and socialization. However, anthropomor-
phization may cause users to perceive capabilities that do
not actually exist: this is a main finding of our study in the
next section.

Starting from early chatterbots such as ELIZA and
PARRY, much of speech research has focused on enabling
machines to make conversation with humans [30], [31].
However, making conversation is difficult, because it relies
on grounding — it requires participants to coordinate both
the content and process of the communication [32]-[34]. As
a result, a different type of speech is predominant in current
technology: a more rudimentary, functional speech that arises

from people’s preference for interacting via speech [5]. This
type of speech is easy to generate and consists mostly of
relaying a machine’s status or responding to a set of pre-
programmed voice commands.

Motivated by the different types of speech in research

and the real world, our study divides speech into these two
categories: functional and conversational.
Functional Speech. We define functional speech as speech
that relates purely to the state of the robot. This speech uti-
lizes warnings and requires no human-understanding, making
it easy to generate.

Traditional industrial robots relay information with meth-
ods such as blinking lights or warning sounds [35]. Although
these are effective, speech allows a larger range of informa-
tion to be communicated and can be helpful in appropriately
setting users’ expectations [36].

Fig.5 shows an example of functional speech.
Conversational Speech. We define conversational speech
as purely phatic or social in its purpose. Unlike functional
speech, it requires human-understanding, making the robot
responsive and engaging.

Although true conversational speech often conveys infor-
mation about the speaker, we simplify it in this study to
be purely phatic, or social in its purpose, containing no
information about the robot’s intended task [37], [38].

Fig.5 also shows an example of conversational speech.

B. Study Design

In order to further investigate the relationship between true
and perceived capability, we conducted an online user study
looking at the effects of success in completing a physical
task and two types of speech: functional and conversational.

We exposed users to different scenarios of the robot
performing a physical task next to an actor shown through
video. In each scenario, the robot enters the kitchen and
retrieves a microwave meal while standing next to the actor.
In half of the scenarios, the robot fails to complete the task
by dropping the microwave meal on the ground. The robot
then leaves the kitchen, possibly with the meal.

In the scenarios, the robot also varies its use of speech.
In some cases, the robot engages the actor in dialogue. The
actor only speaks to the robot, if it engages him first.

1) Design Choice: We chose to perform an online study
with videos rather than an in person study due to the chal-
lenges in controlling all variables of the interaction. Showing
the robot performing a difficult task was necessary for one
of our manipulated variables, but the robot lacked robustness
when performing the task. In several scenarios, the robot
and actor engage in controlled dialogue. However, in an in
person study, the participants responses to the robot varies
the remaining interaction, creating a different experience for
each user.

2) Manipulated Variables: We manipulated the pres-
ence of functional speech, the presence of conversational
speech, and the robot’s success in completing a physical task
(success vs. failure) for a total of 2 x 2 x 2 = 8 conditions
(depicted in Fig.5).

For each condition, we created a script that outlined the
robot’s actions performing the meal retrieval task as well
as the robot and actor’s speech. We then created video
recordings of the robot and actor following each script.

In the success videos, the robot successfully retrieves the
meal and leaves the kitchen with it.
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Fig. 5: A visual depiction of the three factors we manipulated (functional speech, conversational speech, and task success), each with two levels.

In the failure videos, the robot drops the microwave meal
before leaving the kitchen. The robot does not acknowledge
dropping the meal in order to maintain consistency.

In the functional videos, only the robot speaks, warning
the nearby actor of its future movements.

In the conversational videos, the robot exchanges dialogue
with the actor about an upcoming sports game. The robot
does not relay any information about its state other than
responding “well” to a query about how it is doing.

In the combined functional and conversational videos, the
robot uses both functional and conversational speech by
combining its sports dialogue with warnings related to its
actions.

In the no speech videos, the robot does not speak or
acknowledge the actor at all.

3) Participants: We recruited 225 participants (98 fe-
males and 127 males) through Amazon Mechanical Turk.
All participants were located in the United States, primary
English speakers and ranging in age from 18 to 61 (M=32.13,
SD=9.7T) years. 56% percent of participants were male and
44% were female. Participants were compensated $4 for
successful completion of the study.

Participants were told that they were taking part in a
survey to improve interactions with robots. We eliminated
participants who failed to answer a set of control questions
about the videos they were shown or who had previously
participated in a study with the robot.

This resulted in 186 participants spread across the 28
conditions. Due to random assignment and elimination of
participants, there were between six and eight participants in
each condition.

On average, participants rated their familiarity with robots
as 2.54 (SD=1.55) and their previous level of interaction as
1.66 (SD=1.04) on a 7-point Likert scale.

4) Procedure: We opted for a mixed study design, where
participants were shown two of the eight videos, in order
to enable direct comparisons and stay away from absolute
ratings (as suggested by our pilot study).

We took all possible pairwise combinations of the eight
videos to get a total of 28 study conditions. Participants were
randomly assigned to one of the 28 conditions. In order to
negate ordering effects, we randomized the order videos were
shown in.

Participants were given a link through Amazon Mechan-
ical Turk to the study. After reading the instructions and

giving their consent, participants were shown the two videos
of the robots, labeled “Robot 17 and "Robot 2.” To progress
in the study, participants had to watch the videos from start to
finish. After watching the videos, participants answered our
questionnaires for perceived physical and social capability.
Afterwards, participants gave some general feedback about
the robot and themselves.

5) Measures: We used the perceived capability measures
outlined in Section II-E.

Hypothesis 1: When the robot fails to perform a physical
task, perceived physical capability decreases.

Perceived physical capability is measured by participants’
beliefs that that a robot can perform these common tasks.
We predict that showing the robot fail at one of these tasks
will negatively impact perceived physical capability.
Hypothesis 2: When the robot uses speech, perceived social
capability increases.

Speech plays an important role in communication for
humans. The ability to clearly express yourself is key to
successful socialization, making speech an import medium
for social behavior. We predict that showing the robot
speaking will positively impact perceived social capability.
Hypothesis 3: When the robot uses speech, perceived phys-
ical capability increases

Although speech is not a physical trait, it is known to
cause anthropomorphization, which can lead to attributing
other human-like traits to the robot [17], [18]. Since the
capabilities of robots are relatively unknown to most, some
may assume that robots possess physical abilities on par with
humans. Thus, we predict that showing the robot speaking
will positively impact perceived physical capability.
Hypothesis 4: Conversational speech increases perceived
physical capability more than functional speech.

True conversational speech requires human intelligence,
whereas functional speech is easy to generate and requires
no human understanding. People may, therefore, compare
a robot that engages in conversational speech to physically
capable humans. We thus predict that conversational speech
will positively impact perceived physical capability more
than functional speech.

C. Results

Fig.6 plots the overall results for the forced choice mea-
sure. In the following, we analyze each hypothesis individ-
ually.
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1) Effects of Speech and Success: Hypotheses 1 through
3 predicted the effects of speech (aggregated over conversa-
tional and functional) and success on perceived capability.
To test these hypotheses, we performed a factorial repeated-
measures analysis of variance (ANOVA) for each of our
measures: perceived physical capability and perceived social
capability.
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Fig. 7: Perceived physical capability metrics for robots that succeeded vs.
robots that failed.

With respect to H1, participants rated robots that were
successful 1.267 more than robots that failed to com-
plete the task on the perceived physical capability measure
(F'(1,378) = 97.27, p < .001). They also chose robots that
were successful 69% of the time. Fig.7 shows a comparison
between the robots that succeed and those that fail.

We did not find a significant difference in the perceived
social capability ratings for robots that succeeded compared
to robots that failed: failing at a physical task does not nec-
essarily make participants believe the robot is less socially
capable.

With respect to H2, participants rated robots that used
speech, on average, 2.907 more than robots that did not
use speech on our perceived social capability measure
(F'(1,378) = 238.03, p < 0.001). Robots that used speech
were also chosen as more socially capable 85% of the time.
Fig.8 shows a comparison between robots that spoke and
those that did not.

Our analysis also supported H3: participants rated robots
that were silent 0.387 less in physical capability than robots
that spoke (F'(1,378) = 15.88, p < 0.001). They also chose
robots that spoke as more physically capable 60% of the
time. Fig.9 shows a comparison between the robots that
spoke and those that did not.
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Fig. 9: Perceived physical capability metrics for robots that spoke vs. robots
that did not.

2) Different Types of Speech: H4 predicted that con-
versational speech increases perceived physical capability
more than functional speech. To analyze how these two
different types of speech affect perceived physical capability,
we ran a factorial repeated-measures ANOVA using success,
functional speech and conversational speech as factors.

We found significant main effects for all three fac-
tors: sucess F'(1,378) = 129.7, p < 0.001; functional
F(1,378) = 7.14, p < 0.001; conversational F'(1,378) =
14.2, p < 0.001.

On average, both types of speech increased perceived
physical capability and there was no significant interaction
effect. However, when analyzing the mean ratings and di-
rect comparison percentages, we came across a surprising
finding:
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Fig. 10: Perceived physical capability of conversational and functional
speech when the robot succeeds and when it fails.

Although conversational speech tends to increase
perceived capability more than functional speech
when the robot succeeds, this is no longer the case
when the robot fails at its task.

In fact, as Fig.10 shows, both the percentage chosen and
the mean rating are lower for conversational robots when
they fail at the task.

V. DISCUSSION

In this work, we presented a framework for perceived
capability and explored within this framework, the effects
of speech and speed on perceived capability.

We found that increases in robot speed do not significantly
affect perceived physical capability. Although users perceive
the increased speed, we discovered they did not associate
speed with a robot’s physical capability. This could be
because humans naturally assume that any reasonable robot
will complete tasks at the same pace as a person.

Our results also showed that robot speech positively affects
perceived social capability. Interestingly, we discovered that
speech also positively affects perceived physical capability,
despite true physical capability remaining unchanged.

This could be due to people believing that physical capa-
bility is trivial: many of the tasks that make up our physical
capability measure are easily completed by humans. Speech,
on the other hand, can give the illusion of human intelligence,
which may seem more difficult to achieve.

We also looked at two types of speech, functional and con-
versational, and found that conversational speech increases
perceived physical capability more than functional speech,
but only when the robot succeeds. Since conversational
speech more closely resembles everyday, human dialogue,
users might be more likely to attribute higher levels of
intelligence than with simple, functional speech.

Another explanation is that functional speech, through its
warnings, reveals the true capability of the robot. Participants
commented that the robot’s warnings “revealed its limita-
tions” and “made it apparent what the robot could and could
not do.”

However, when the robot fails, conversational speech has
lower perceived physical capability than functional speech.
Comments from participants suggest that the robot’s ability
to make social chit-chat challenges their perceptions when
the robot fails. This indicates that users have higher expec-
tations for conversational robots which are challenged when

the robot fails. Participants also pointed out that the robot’s
inability to acknowledge its error or recover seemed at odds
with its relatively human-like speech.

On the other hand, if the robot gave warnings, participants

were less surprised when the robot dropped the meal sug-
gesting that functional speech is successful in setting more
realistic expectations, closer to the robot’s true capability.
This was also the case if the robot used both functional
and conversational speech. This interpretation follows [36],
which found that when robots utilize warnings or mitigation
strategies, such as apologizing, people are more forgiving if
a breakdown occurs.
Perceived Capability Findings. Looking back to our frame-
work, our findings confirmed that success, a true physical
skill, was properly perceived, and as a result affected the
perceived physical capability. We also found that a true social
skill, speech, affects perceived social capability.

However, speed, a true physical skill was properly per-
ceived but did not affect perceived physical capability.

We were also able to show that there is a cross effect
between the physical and social realms, which is part of
over-perception — perceiving capability that is not actually
there. Speech not only affects perceived social capability,
but perceived physical capability as well. We see this cross
connection in our framework: a true social skill i ncreases
a perceived social skill, which increases perceived social
capability and perceived physical capability.

One explanation for this connection is that some perceived
skills have a direct connection to other perceived skills in the
framework. For instance, perceived speech could be affecting
a physical perceived skill, and, through it, overall perceived
physical capability. This is an area of future exploration:
testing this connection by asking users specifically about
other perceived skills, as opposed to measuring the overall
perceived physical capability.

On the other hand, under-perception can also happen: we

saw in our user study on speed (Section III) that it is possible
for a skill, such as speed, to not affect either perceived
physical or perceived social capability.
Limitations. Speech is currently utilized on many robots,
but generating realistic dialogue remains a challenge. This
motivated our decision to look at functional speech, which is
simplistic, easy to generate and most importantly, resembles
the speech used by real world by technology, like cell phones.
This created an interesting contrast and allowed us to test a
more feasible form of speech.

We also simplified conversational speech to be purely
phatic, although in real life, speech is often both informative
and social. This helped to maximize the effectiveness of each
type of speech as was verified by an initial pilot study.

Furthermore, we used videos in the study and not real
interactions. We made this decision to ensure that the robot’s
fluctuating interaction with a naive user would not introduce
confounds into the results.

This work focuses on first impression because they play an
important role in acceptance. However, perceptions are often
based on our prior knowledge. It would be interesting in the
future, to look at how users’ experiences and familiarization
with a robot alters their perceived capability.

Implications. The disconnect between true and perceived
capability can lead to both under-, as well as over-perception.

With under-perception, an increase in true capability will
not necessarily be reflected in acceptance, like we saw with



speed. Our results suggest that even if we make robots
5 times faster, there will still be important challenges to
acceptance. Studying under-acceptance in more depth could
inspire prioritizing robotics research, focusing on the critical
factors that will improve acceptance.

With over-perception, an increase in true capability can
lead to false perceptions of capability, like we saw with
speech. This can be dangerous, because it can set unrealistic
expectations: when expectations are not met, trust in the
robot drops, which also impacts acceptance [22], [39], [40].

Therefore, mitigating expectations when adding to capa-
bility is also important. For instance, our study suggests that
functional speech is better at setting perceived capability to
a more realistic level. On the other hand, several participants
noted how tiresome warnings are.

Overall, our work is a first step in understanding the
relationship between true and perceived capability. Although
this work presents a simple framework, our findings create
the foundation for building a probabilistic graphical model
for perceived capability. We are excited to investigate the
connections in this graphical model further, and contribute
to a better understanding of under- and over- perceptions.
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