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ABSTRACT
Trust is essential for human-robot collaboration and user adoption
of autonomous systems, such as robot assistants. This paper in-
troduces a computational model which integrates trust into robot
decision-making. Specifically, we learn from data a partially ob-
servable Markov decision process (POMDP) with human trust as
a latent variable. The trust-POMDP model provides a principled
approach for the robot to (i) infer the trust of a human teammate
through interaction, (ii) reason about the effect of its own actions
on human behaviors, and (iii) choose actions that maximize team
performance over the long term. We validated the model through
human subject experiments on a table-clearing task in simulation
(201 participants) and with a real robot (20 participants). The results
show that the trust-POMDP improves human-robot team perfor-
mance in this task. They further suggest that maximizing trust in
itself may not improve team performance.
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Figure 1: A robot and a human collaborate to clear a table.
The human, with low initial trust in the robot, intervenes to
stop the robot from moving the wine glass.

1 INTRODUCTION
Trust is essential for seamless human-robot collaboration and user
adoption of autonomous systems, such as robot assistants. Mis-
guided trust in robot autonomy may lead to over-reliance or under-
reliance with negative effects on task performance [20]. For exam-
ple, in our study, a human participant and a robot collaborated to
clear a table (Figure 1). Although the robot was fully capable of
handling all objects on the table, inexperienced participants often
stopped the robot from moving the wine glass initially. They did
not trust the robot and felt that it was too risky to let the robot
move the glass. Clearly human trust in the robot directly affected
the perception of risk [30] and consequently, the interaction.

To enable more fluent human-robot collaboration, we propose
a computational model that integrates human trust into robot de-
cision making. Since human trust is not directly observable to the
robot, we model it as a latent variable in a partially observable
Markov decision process (POMDP) [16]. Our trust-POMDP model
contains two key components: (i) a trust dynamics model, which
captures the evolution of human trust in the robot, and (ii) a human
decision model, which connects trust with human actions. Our
POMDP formulation can accommodate a variety of trust dynamics
and human decision models. Here, we adopt a data-driven approach
and learn these models from data.

Although prior work has studied human trust elicitation and
modeling [9, 19, 31, 32], we close the loop between trust modeling
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Figure 2: Sample runs of the trust-POMDP strategy and the myopic strategy on a collaborative table-clearing task. The top
row shows the probabilistic estimates of human trust over time on a 7-point Likert scale. The trust-POMDP strategy starts by
moving the plastic bottles to build trust (T = 1, 2, 3) and moves the wine glass only when the estimated trust is high enough
(T = 5). The myopic strategy does not account for trust and starts with the wine glass, causing the human with low initial trust
to intervene (T = 1).

and robot decision-making. The trust-POMDP enables the robot to
systematically infer and influence the human collaborator’s trust,
and leverage trust for improved human-robot collaboration and
long-term task performance. Consider again the table clearing ex-
ample (Figure 2). The trust-POMDP strategy first removes the three
plastic water bottles to build up trust and only attempts to remove
the wine glass afterwards. In contrast, a baseline myopic strategy
maximizes short-term task performance and does not account for
human trust in choosing the robot actions. It first removes the wine
glass, which offers the highest reward, resulting in unnecessary
interventions by human collaborators with low initial trust.

We validated the trust-POMDP model through human subject
experiments on the collaborative table-clearing task both online
in simulation (201 participants) and with a real robot (20 partic-
ipants). Compared with the myopic strategy, the trust-POMDP
strategy significantly reduced participants’ intervention rate, indi-
cating improved team collaboration and task performance. While
our experiments are specific to the table-clearing task, the trust-
POMDP approach is general and applicable to a broad range of
human-robot collaborative tasks.

Integrating trust modeling and robot decision-making enables
robot behaviors that leverage human trust and actively modulate it
for seamless human-robot collaboration. Under the trust-POMDP
model, the robot may deliberately choose to fail in order to re-
duce the trust of an overly trusting user and achieve better task
performance over the long term. Further, embedding trust in a
reward-based POMDP framework makes our robot task-driven:
when the human collaboration is unnecessary, the robot may set
aside trust building and act to maximize the team task performance
directly. All these diverse behaviors emerge automatically from the
trust-POMDP model, without explicit manual robot programming.

2 RELATEDWORK
Trust has been studied extensively in the social science research
literature [11, 17], with Mayer et al., suggesting that three general
levels summarize the bases of trust: ability, integrity, and benev-
olence [22]. Trust in automation differs from trust between peo-
ple in that automation lacks intentionality [20]. Additionally, in a
human-robot collaboration task, human and robot share the same
objective metric of task performance. Therefore, similar to previous
work [6, 27, 28, 31, 33], we assume that human teammates will not
expect the robot to deceive them on purpose, and their trust will
depend mainly on the perceived robot ability to complete the task
successfully.

Binary measures of trust [12], as well as continuous measures [6,
19, 33], and ordinal scales [13, 23] have been proposed. For real-
time measurement, Desai [6] proposed the Area Under Trust Curve
(AUTC) measure, which was recently used to account for one’s
entire interactive experience with the robot [34].

Researchers have also studied the temporal dynamics of trust
conditioned on the task performance: Lee and Moray [19] proposed
an autoregressive moving average vector form of time series analy-
sis; Floyd et al. [9] used case-based reasoning; Xu and Dudek [32]
proposed an online probabilistic trust inference model to estimate a
robot’s trustworthiness; Wang et al. [31] showed that adding trans-
parency in the robot model by generating explanations improved
trust and performance in human teams. While previous works have
focused on either quantifying or maximizing trust in human-robot
interaction, our work enables the robot to leverage upon a model
of human trust and choose actions to maximize task performance.

In human-robot collaborative tasks, the robot often needs to rea-
son over the human’s hidden mental state in its decision-making.
The POMDP provides a principled general framework for such
reasoning. It has enabled robotic teammates to coordinate through
communication [3] and software agents to infer the intention of
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human players in game AI applications [21]. The model has been
successfully applied to real-world tasks, such as autonomous driv-
ing where the robot car interacts with pedestrians and human
drivers [1, 2, 10]. When the state and action space of the POMDP
model become continuous, one can use hindsight optimization [14],
or value of information heuristics [29], which generate approximate
solutions but are computationally more efficient.

Nikolaidis et al. [26] proposed to infer the human type or prefer-
ence online using models learned from joint-action demonstrations.
This formalism recently extended from one-way adaptation (from
robot to human) to human-robot mutual adaptation [24, 25], where
the human may choose to change their preference and follow a
policy demonstrated by the robot in the recent history. In this work,
we provide a general way to link the whole interaction history with
the human policy, by incorporating human trust dynamics into the
planning framework.

3 TRUST-POMDP
3.1 Human-robot team model
We formalize the human-robot team as a Markov Decision Pro-
cess (MDP), with world state x ∈ X , robot action aR ∈ AR, and
human action aH ∈ AH. The system evolves according to a proba-
bilistic state transition function p(x ′ |x ,aR,aH) which specifies the
probability of transitioning from state x to state x ′ when actions
aRand aH are applied in state x . After transitioning, the team re-
ceives a real-valued reward r (x ,aR,aH,x ′), which is constructed to
elicit the desirable team behaviors.

We denote byht = {x0,aR0 ,a
H
0 ,x1, r1, . . . ,xt−1,a

R
t−1,a

H
t−1,xt , rt }

∈ Ht as the history of interaction between robot and human until
time step t . In this paper, we assume that the human observes the
robot’s current action and then decides his own action. In the most
general setting, the human uses the entire interaction history ht
to decide the action. Thus, we can write the human’s (possibly sto-
chastic) policy as πH(aHt |xt ,a

R
t ,ht ) which outputs the probability

of each human action aHt .
Given a robot policy πR, the value, i.e., the expected total dis-

counted reward of starting at a state x0 and following the robot and
human policies is

v(x0 |π
R,πH) = E

aRt ∼π R,aHt ∼πH

∞∑
t=0

γ t r (xt ,a
R
t ,a

H
t ), (1)

and the robot’s optimal policy πR
∗ can be computed as

πR
∗ = argmax

π R
v(x0 |π

R,πH). (2)

In our case, however, the robot does not know the human policy
in advance. It computes the optimal policy under expectation over
the human policy:

πR
∗ = argmax

π R
E
πH

v(x0 |π
R,πH). (3)

Key to solving Eq. 3 is for the robot to model the human policy,
which potentially depends on the entire history ht . The history
ht may grow arbitrary long and make the optimization extremely
difficult.

3.2 Trust-dependent human behaviors
Our insight is that in a number of human-robot collaboration sce-
narios, trust is a compact approximation of the interaction history ht .
This allows us to condition human behavior on the inferred trust
level and in turn find the optimal policy that maximizes team per-
formance.

Following previous work on trust modeling [32], we assume that
trust can be represented as a single scaler random variable θ . Thus,
the human policy is rewritten as

πH(aHt |xt ,a
R
t ,θt ) = πH(aHt |xt ,a

R
t ,ht ). (4)

3.3 Trust dynamics
Human trust changes over time.We adopt a common assumption on
the trust dynamics: trust evolves based on the robot’s performance
et [19, 32]. Performance can depend not just on the current and
transitioned world state but also the human and robot’s actions

et+1 = performance(xt+1,xt ,a
R
t ,a

H
t ). (5)

For example, performancemay indicate success or failure of the ro-
bot to accomplish a task. This allows us to write our trust dynamics
equation as

θt+1 ∼ p(θt+1 |θt , et+1). (6)

We detail in Section 4 how trust dynamics is learned via interaction.

3.4 Maximizing team performance
Trust cannot be directly observed by the robot and therefore must
be inferred from the human’s actions. In addition, armed with a
model, the robot may actively modulate the human’s trust for the
team’s long-term reward.

We achieve this behavior by modeling the interaction as a par-
tially observable Markov decision process (POMDP), which pro-
vides a principled general framework for sequential decision mak-
ing under uncertainty. A graphical model of the Trust-POMDP and
a flowchart of the interaction are shown in Figure 3.

To build trust-POMDP, we create an augmented state space
with the augmented state s = (x ,θ ) composed of the fully-observed
world state x and the partially-observed human trust θ . We maintain
a belief b over the human’s trust. The trust dynamics and human
behavioral policy are embedded in the transition dynamics of trust-
POMDP. We describe in Section 4 how we learn the trust dynamics
and the human behavioral policy.

The robot now has two distinct objectives through its actions:
• Exploitation.Maximize the team’s reward
• Exploration. Reveal and change the human’s trust so that
future actions are rewarded better.

The solution to a Trust-POMDP is a policy that maps belief
states to robot actions, i.e., aR = πR(bt ,xt ). To compute the optimal
policy, we use the SARSOP algorithm [18], which is computationally
efficient and has been previously used in various robotic tasks [2].

4 LEARNING TRUST DYNAMICS AND
HUMAN BEHAVIORAL POLICIES

Nested within the trust-POMDP is a model of human trust dynam-
ics p(θt+1 |θt , et+1), and behavioral policy πH(aHt |xt ,a

R
t ,θt ). We
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Figure 3: The trust-POMDP graphical model (left) and the
team interaction flowchart (right). The robot’s action aRt de-
pends on the world state xt and its belief over trust θt .

adopted a data-driven approach and built the two models for the ta-
ble clearing task from data collected in an online AMT experiment.
Suitable probabilistic models derived via alternative approaches
can be substituted for these learned models (e.g., for other tasks
and domains).

4.1 Data Collection
Table clearing task. A human and a robot collaborate to clear
objects off a table. The objects include three water bottles, one fish
can, and one wine glass. At each time step, the robot picks up one
of the remaining objects. Once the robot starts moving towards
the intended object, the human can choose between two actions:
{intervene and pick up the object that the robot is moving towards,
stay put and let the robot pick the object by itself}. This process is
repeated until all the objects are cleared from the table.

Each object is associatedwith a different reward, based onwhether
the robot successfully clears it from the table (which we call SP-
success), the robot fails in clearing it (SP-fail), or the human inter-
venes and puts it on the tray (IT). Table 1 shows the rewards for
each object and outcome. We assume that a robot success is always
better than a human intervention, since it reduces human effort.
Additionally, there is no penalty if the robot fails by dropping one
of the sealed water bottles, since the human can pick it up. On the
other hand, dropping the fish can results in some penalty, since
its contents will be spilled on the floor. Breaking the glass results
in the highest penalty. We see that staying put when the robot
attempts to pick up the bottle has the lowest risk, since there is no
penalty if the robot fails. On the other hand, staying put in the case
of the glass object has the largest risk-return trade off. We expect
the human to let the robot pick up the bottle even if their trust is
low, since there is no penalty if the robot fails. On the other hand,
if the human does not trust the robot, we expect them to likely
intervene on glass or can, rather than risking a high penalty in case
of robot failure. When we conduct the experiment, we assume that
the robot never fails in the table clearing task, and this information
is unknown to the participants. One can use the same approach as
described to learn trust dynamics for robot failures as well.

Table 1: The reward function R for the table-clearing task.

Bottle Fish Can Wine Glass

SP-success 1 2 3
SP-fail 0 −4 −9
IT 0 0 0

Table 2: Muir’s questionnaire.

1. To what extent can the robot’s behavior be predicted from
moment to moment?
2. To what extent can you count on the robot to do its job?
3. What degree of faith do you have that the robot will be able
to cope with similar situations in the future?
4. Overall how much do you trust the robot?

In this work, we choose the table clearing task to test our trust-
POMDP model, because it is simple and allows us to analyze ex-
perimentally the core technical issues on human trust without
interference from confounding factors. Note that the primary ob-
jective and contribution of this work are to develop a mathematical
model of trust embedded in a decision framework, and to show that
this model improves human robot collaboration. In addition, we be-
lieve that the overall technical approach in our work is general and
not restricted to this particular simplified task. What we learned
here on the trust-POMDP for a simplified task will be a stepstone
towards more complex, large-scale applications.
Participants. For the data collection, we recruited 81 participants
through Amazon’s Mechanical Turk (AMT). The participants are all
from United States, aged 18-65 and with approval rate higher than
95%. Each participant was compensated $1 for completing the study.
To ensure the quality of the recorded data, we asked all participants
an attention check question that tested their attention to the task.
We removed 5 data points either because the participants failed
on the attention check question or the their data were incomplete.
This left us 76 valid data points for model learning.
Procedure. Each participant is asked to perform an online table
clearing task together with a robot. Before the task starts, the par-
ticipant is informed of the reward function in Table 1. We first
collect the participant’s initial trust in the robot. We used Muir’s
questionnaire [23], with a seven-point Likert scale as a human trust
metric, i.e., trust ranges from 1 to 7. The Muir’s questionnaire we
used is listed in Table 2. At each time step, the participant watches a
video of the robot attempting to pick up an object, and are asked to
choose to intervene or stay put. They then watch a video of either
the robot picking up the object, or them intervening based on their
action selection. Then, they report their updated trust in the robot.

We are interested in learning the trust dynamics and the human
behavioral policies for any state and robot action. However, the
number of open-loop 1 robot policies is O(K !), where K is the
number of objects on the table. In order to focus the learning on
a few interesting robot policies (i.e. picking up the glass in the
beginning vs in the end), while still covering a large space of policies,
we split the data collection process, so that in one half of the trials

1When collecting data from AMT, the robot follows an open-loop policy, i.e., it does
not adapt to the human behavior.
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the robot randomly chooses a policy out of a set of pre-specified
policies, while in the other half the robot follows a random policy.
Data Format. The data we collected from each participant has the
following format:

di = {θM
0 ,a

R
0,a

H
0 , e1,θ

M
1 , . . . ,a

R
K−1,a

H
K−1, eK ,θ

M
K }

where K is the number of objects on the table. θM
t is the estimated

human trust at time t by averaging the participants’ responses to
the Muir’s questionnaire to a single rating between 1 and 7. aRt is
the action taken by the robot at time step t . aHt is the action taken
by the human at time step t . et+1 is the performance of the robot
that indicates whether the robot succeeded at picking up the object
or the human intervened.

4.2 Trust dynamics model
We model human trust evolution as a linear Gaussian system. Our
trust dynamics model relates the human trust causally to the robot
task performance et+1.

P(θt+1 |θt , et+1) = N(αet+1θt + βet+1 ,σet+1 ) (7)

θMt ∼ N(θt ,σ
2) , θMt+1 ∼ N(θt+1,σ

2) (8)

where N(µ,σ ) denotes a Gaussian distribution with mean µ and
standard deviation σ . αet+1 and βet+1 are linear coefficients for the
trust dynamics, given the robot task performance et+1. In the table
clearing task, et+1 indicates whether the robot succeeded at picking
up an object or the human intervened, e.g., et+1 can represent that
the robot succeeded at picking a water bottle, or that the human
intervened at the wine glass. θMt and θMt+1 are the observed human
trust (Muir’s questionnaire) at time step t and time step t + 1.

The unknown parameters in the trust dynamics model include
αet+1 , βet+1 , σet+1 and σ . We performed full Bayesian inference on
the model through Hamiltonian Monte Carlo sampling using the
Stan probabilistic programming platform [4]. Figure 4 shows the
trust transition matrices for all possible robot performance in the
table clearing task. Aswe can see, human trust in the robot gradually
increased with observations of successful robot actions (as indicated
by transitions to higher trust levels when the participants stayed
put and robot succeeded). On the other hand, trust tended to remain
constant or decrease slightly when interventions occurred. These
results matched our expectations that successful robot performance
positively influenced trust.

4.3 Human behavioral policies
Our key intuition in the human model is that human’s behavior
depends on the trust in the robot. To support our intuition, we
consider two types of human behavioral models. The first model
is a trust-free human behavioral model that ignores human trust,
while the second is a trust-based human behavioral model that
explicitly models human trust. In both human models, we assume
humans follow the softmax rule 2 when they make decisions in an
uncertain environment [5]. More explicitly,

2According to the softmax rule , the human’s decision of which action to take is
determined probabilistically on the actions’ relative expected values.
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Figure 4: Trust transition matrices, which represent the
change of trust given the robot performance. In general,
trust stays constant or decreases slightly when the human
intervenes (top row), and increases when the human stays
put (bottom row).

• Trust-free human behavioral model: At each time step, the
human selects an action probabilistically based on the ac-
tions’ relative expected values. The expected value of an ac-
tion depends on the human’s belief on the robot to succeed
and the risk of letting robot to do the task. In the trust-free
human model, the human’s belief on the robot success on a
particular task does not change over time.

• Trust-based human behavioral model: Similar to the model
above, the human follows the softmax rule at each time step.
However, the trust-based human model assumes that hu-
man’s belief on the robot success changes over time, and it
depends on human’s trust in the robot.

Before we introduce the models, we start with some notations.
Let j denote the object that the robot tries to pick at time step t . Let
r Sj be the reward if the human stays put and the robot succeeds, and
r Fj be the reward if the human stays put and the robot fails. Let θt
be the human trust in the robot at time step t . S(x) = 1

1+e−x is the
sigmoid function, which is equivalent to the softmax function in
the case of binary human actions. B(p) is the Bernoulli distribution
that takes action stay put with probability p.

The trust-free human behavioral model is as follows,

Pt = S(bjr
S
j + (1 − bj )r

F
j ) (9)

aHt ∼ B(Pt ) (10)

where, bj is the human’s belief on the robot successfully picking
up object j, and it remains constant. 0 < Pt < 1 is the probability
that human stays put at time step t . aHt is the action human taken
at time step t .

Next, we introduce the trust-based human behavioral model:
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Figure 5: The model prediction on the mean of human in-
tervention rate with respect to trust. Under the trust-free
human behavioral model, which does not account for trust,
the human intervention rate stays constant. Under the trust-
based human behavioral model, the intervention rate de-
creases with increasing trust. The rate of decrease depends
on the object; it is more sensitive to the risker objects.

btj = S(γjθt + ηj ) (11)

Pt = S(btj r
S
j + (1 − btj )r

F
j ) (12)

θMt ∼ N(θt ,σ
2) , aHt ∼ B(Pt ) (13)

wherebtj is the human’s belief on robot success on object j at time
step t , and it depends on the human’s trust in the robot. γj and ηj
are the linear coefficients for object j. 0 < Pt < 1 is the probability
that the human stays put at time step t . θMt is the observed human
trust from Muir’s questionnaire at time step t , and we assume it
follow a Gaussian distribution with mean θt and standard deviation
σ . aHt is the action human taken at time step t .

The unknown parameters here include bj in the trust-free hu-
man model, and γj , ηj , σ in the trust-based human model. We per-
formed Bayesian inference on the two models above using Hamil-
tonian Monte Carlo sampling [4]. The trust-based human model
(log-likelihood = −153.37) fit the collected AMT data better than
the trust-free human model (log-likelihood = −156.40). The log-
likelihood values are relatively low in both two models due to the
large variance among different users. Nevertheless, this result sup-
ports our notion that the prediction on human behavior is improved
when we explicitly model human trust.

Figure 5 shows the mean probability of human interventions
with respect to human’s trust in the robot. For both two models, the
human tends to intervene more on objects with higher risk, i.e., the
human intervention rate on glass is higher than can, which is again
higher than bottle. The trust-free human behavioral model ignores
human trust, thus the human intervention rate does not change.
On the other hand, the trust-based human behavioral model has
a general falling trend, which indicates that participants are less
likely to intervene when their trust in the robot is high. This is
observed particularly for the highest-risk object (glass), where the
object intervention rate drops significantly when human trust score
is maximum.

To summarize, the results of Sec. 4.2 and Section 4.3 indicate that
• Human trust is affected by robot performance: human trust
can be built up by successfully picking up objects (Figure 4).
In addition, it is a good strategy for the robot to start with
low risk objects (bottle), since the human is less likely to
intervene even if the trust in the robot is low (Figure 5).

• Human trust affects human behaviors: the intervention rate
on the high risk objects could be reduced by building up
human trust (Figure 5).

5 EXPERIMENTS
We conducted two human subjects experiments, one on AMT with
human participants interacting with recorded videos and one in
our lab with human participants interacting with a real robot. The
purpose of our study was to test whether the trust-POMDP robot
policy would result in better team performance than a policy that
did not account for human trust.

We had two experimental conditions, which we refer to as “trust-
POMDP” and “myopic”.

• In the trust-POMDP condition, the robot uses human trust as
a means to optimize the long term team performance. It fol-
lows the policy computed from the trust-POMDP described
in Section 3.4, where the robot’s perceived human policy
is modeled via the trust-based human behavioral model de-
scribed in Section 4.3.

• In the myopic condition, the robot ignores human trust. It
follows a myopic policy by optimizing Eq. 3, where the ro-
bot’s perceived human policy is modeled via the trust-free
human behavioral model described in Section 4.3.

5.1 Online AMT experiment

Hypothesis 1. In the online experiment, the performance of teams
in the trust-POMDP condition will be better than of the teams in the
myopic condition.
We evaluated team performance by the accumulated reward over
the task. We expected the trust-POMDP robot to reason over the
probability of human interventions, and act so as to minimize the
intervention rate for the highest reward objects. The robot would
do so by actively building up human trust before it goes for high
risk objects. On the contrary, the myopic robot policy was agnostic
to how the human policy may change from the robot and human
actions.

Procedure. The procedure is similar to the one for data collection
(Sec. 4.1), with the difference that, rather than executing random
sequences, the robot executes the policy associated with each con-
dition. While we kept the Muir’s questionnaire in the experiment as
a groundtruth measure of trust, the robot did not use the score, but
estimated trust solely from the trust dynamics model as described
in Sec. 4.2.

Model parameters. In the formulation of Section 3.4, the observ-
able state variable x represents the state of each object (on the
table or removed). We assume a discrete set of values of trust θ :
{1, 2, 3, 4, 5, 6, 7}. The transition function incorporates the learned
trust dynamics and human behavioral policies, as described in Sec. 4.
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Figure 6: Comparison of the Trust-POMDP and the myopic policies in the AMT experiment and the real-robot experiment.

The reward function R is given by Table 1. We used a discount factor
of γ = 0.99, which favors immediate rewards over future rewards.

Subject Allocation We chose a between-subjects design in order
to not bias the users with policies from previous conditions. We
recruited 208 participants through Amazon Mechanical Turk, aged
18 − 65 and with approval rate higher than 95%. Each participant
was compensated $1 for completing the study. We removed 7 wrong
(participants failed on the attention check question) or incomplete
data points. In the end, we had 101 data points for the trust-POMDP
condition, and 100 data points for the myopic condition.

5.2 Real-robot experiment
In the real-robot experiment we followed the same robot policies,
model parameters and procedures as the online AMT experiment,
with that the participants interacted with an actual robot in person.

Hypothesis 2. In the real-robot experiment, the performance of
teams in the trust-POMDP condition will be better than of the teams
in the myopic condition.

Subject Allocation.We recruited 20 participants from our univer-
sity, aged 21-65. Each participant was compensated $10 for com-
pleting the study. All data points were kept for analysis, i.e., 10 data
points for the trust-POMDP condition and 10 data points for the
myopic condition.

5.3 Team performance
We performed an one-way ANOVA test of the accumulated rewards
(team performance). In the online AMT experiment, the accumu-
lated rewards of trust-based condition was significantly larger than

the myopic condition (F (1, 199) = 7.81,p = 0.006). This result
supports Hypothesis 1.

Similarly, the accumulated rewards of the trust-based condition
was significantly larger than themyopic condition (F (1, 18) = 11.22,
p = 0.004). This result supports Hypothesis 2.

The difference in performance occurred because participants’
intervention rate in the trust-POMDP condition was significantly
lower than myopic condition (Figure 6 - left column). In the online
AMT experiment, the intervention rate in the trust-POMDP con-
dition was 54% and 31% lower in the can and glass object. In the
real-robot experiment, the intervention rate in the trust-POMDP
condition dropped to zero (100% lower) in the can object and 71%
lower in the glass object.

In the myopic condition, the robot picked the objects in the order
of highest to lowest reward (Glass, Can, Bottle, Bottle, Bottle). In
contrast, the trust-based human behavior model influenced the
trust-POMDP robot policy by capturing the fact that interventions
on high-risk objects were more likely if trust in the robot was
insufficient. Therefore, the trust-POMDP robot reasoned that it
was better to start with the low risk objects (bottles), build human
trust (Figure 6 - center column) and go for high risk object (glass)
last. In this way, the trust-POMDP robot minimized the human
intervention ratio on the glass and can object, which significantly
improved the team performance.

5.4 Trust evolution
Figure 6 (center column) shows the participants’ trust evolution.
Wemake two key observations. First, successfully completing a task
increased participants’ trust in the robot. This is consistent with
the human trust dynamics model we learned in Section 4.2. Second,
there is a lack of significant difference in the average trust evolution



HRI ’18, March 5–8, 2018, Chicago, IL, USA M. Chen et al.

Online AMT experiment

Earlier Later
2
0
2
4

Tr
us

t c
ha

ng
e

Bottle

Earlier Later
1

0

1

2
Can

Earlier Later

0
1
2
3

Glass

Real-robot experiment

Earlier Later

0

1

2

Tr
us

t c
ha

ng
e

Bottle

Earlier Later
1

0

1

Can

Earlier Later

1

0

1

Glass

Figure 7: Time-dependent nonlinear effects of trust dynam-
ics. The same outcome has greater effect on trust when it
occurs earlier than later.

between the two conditions ( Figure 6, center column), especially
given that fewer human interventions occurred under the trust-
POMDP policy. This can be partially explained by a combination
of averaging and nonlinear trust dynamics, specifically that robot
performance in the earlier part of the task has a more pronounced
impact on trust [6]. This is a specific manifestation of the “primacy
effect”, a cognitive bias that results in a subject crediting a performer
more if the performer succeeds earlier in time [15]. Figure 7 shows
this time-dependent aspect of trust dynamics in our experiment;
the change in the mean of trust was larger if the robot succeeded
earlier, most clearly seen for the Can and Glass objects in the real-
robot experiment. As such, in the myopic condition, although there
were more interventions on the glass/can at the beginning, this was
averaged out by a larger increase in the human trust.

5.5 Human behavioral policy
Figure 6 (right column) shows the observed human behaviors given
different trust levels. Consistent with the trust-based human behav-
ioral model (Section Section 4.3), participants were less likely to
intervene as their trust in the robot increased. The human’s action
also depended on the type of object. For low risk objects (e.g.bottles),
participants allowed the robot’s attempt to complete the task even
if their trust in the robot was low. However, for a high risk object
(glass), participants intervened unless they trusted the robot more.

6 DISCUSSION
The experimental results show that the trust-POMDP policy signif-
icantly outperforms the myopic policy that ignores trust in robot
decision-making. The trust-POMDP robot was able to make good
decisions on whether to pick up the low risk object to increase
human trust, or to go directly to the high risk object when trust is
high enough. This is one main advantage that trust-POMDP robot
has over the myopic robot.

The trust-POMDP policy differs from approaches that focus on
trust maximization [31, 32], i.e., the trust-POMDP uses trust as the
means to maximize task performance and builds up human trust
only when necessary. In the table-clearing task, the behaviors of
trust-POMDP and trust maximization strategies are similar, and it

is hard to observe a statistically significant difference in the AMT
or the real-robot experiments due to the limited sample size. We
performed 104 simulation runs to compare the two strategies on
the table-clearing task. An one-way ANOVA shows that the trust-
POMDP strategy achieved significantly higher reward (F (1, 9998) =
26.03,p < 0.001). We find this result promising. Additionally, we
hypothesize that in a repeated task with a long time horizon, the
two strategies behave similarly at the beginning of the interaction
duration, as building human trust at the beginning tends to benefit
team performance in the future.

There are several limitations in our current work. The experi-
ment design explored one mode of the trust-POMDP framework
in which the robot always succeeded in the task. In the future,
we plan to incorporate robot failures as well. Similar to previ-
ous works [6, 32], we modeled trust as a single real-valued latent
variable dependent only on robot performance. However, a multi-
dimensional parameterization of trust could be be a more accurate
representation. In addition, the evolution of trust might also depend
on the type of motion executed by the robot (e.g., for expressive
or deceptive motions [7, 8]). The current trust-POMDP model also
assumes static robot capabilities, but a robot’s true capabilities may
change over time. In fact, the trust-POMDP can be extended to
model robot capabilities via additional state variables that affect
the state transition dynamics. Finally, the reward function is manu-
ally specified in this work. However, the reward function may be
difficult to specify in practice. One possible way to resolve this is to
learn the reward function from human demonstrations (e.g., [26]).

7 CONCLUSION
This paper presents the trust-POMDP, a computational model for
integrating human trust into robot decision making. The trust-
POMDP closes the loop between trust models and robot decision
making. It enables the robot to infer and influence human trust
systematically and to leverage trust for fluid collaboration.

This work points to several directions for further investigation. In
addition to addressing the limitations aforementioned, we consider
two particularly promising topics. First, over-trust may sometimes
degrade task performance, as it causes the human to over-rely on
robot autonomy. We believe that by modeling human trust and
connecting it with human and robot decision-making, the trust-
POMDP will be able to detect human over-reliance and intervene
to engage the human when necessary. Second, the trust-POMDP is
a generative decision model conditioned explicitly on trust. Explicit
trust modeling provides several advantages: it fits better to experi-
mental data (see Section 4.3), and potentially improves the efficiency
of learning by reducing sample complexity. Most importantly, the
trust model learned on one task may transfer to a related task. This
last aspect is another interesting direction for future work.
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