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Abstract
We present MOPED, a framework for Multiple Object Pose Estimation and Detection that seamlessly integrates single-
image and multi-image object recognition and pose estimation in one optimized, robust, and scalable framework. We
address two main challenges in computer vision for robotics: robust performance in complex scenes, and low latency
for real-time operation. We achieve robust performance with Iterative Clustering Estimation (ICE), a novel algorithm
that iteratively combines feature clustering with robust pose estimation. Feature clustering quickly partitions the scene
and produces object hypotheses. The hypotheses are used to further refine the feature clusters, and the two steps iterate
until convergence. ICE is easy to parallelize, and easily integrates single- and multi-camera object recognition and pose
estimation. We also introduce a novel object hypothesis scoring function based on M-estimator theory, and a novel pose
clustering algorithm that robustly handles recognition outliers. We achieve scalability and low latency with an improved
feature matching algorithm for large databases, a GPU/CPU hybrid architecture that exploits parallelism at all levels, and
an optimized resource scheduler. We provide extensive experimental results demonstrating state-of-the-art performance in
terms of recognition, scalability, and latency in real-world robotic applications.
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1. Introduction

The task of estimating the pose of a rigid object model
from a single image is a well-studied problem in the
literature. In the case of point-based features, this is
known as the Perspective-n-Point (PnP) problem (Fischler
and Bolles 1981), for which many solutions are avail-
able, both closed-form (Lepetit et al. 2008) and iterative
(Dementhon and Davis 1995). Assuming that enough per-
fect correspondences between 2D image features and 3D
model features are known, one only needs to use the PnP
solver of choice to obtain an estimation of an object’s
pose. When noisy measurements are considered, non-linear
least-squares minimization techniques (e.g. Levenberg–
Marquardt (LM) (Marquardt 1963)) often provide better
pose estimates. Given that such techniques require good
initialization, a closed-form PnP solver is often used to
initialize the non-linear minimizer.

The very related task of recognizing a single object and
determining its pose from a single image requires solv-
ing two sub-problems: finding enough correct correspon-
dences between image features and model features, and
estimating the model pose that best agrees with that set of

correspondences. Even with highly discriminative locally
invariant features, such as SIFT (Lowe 2004) or SURF (Bay
et al. 2008), mismatched correspondences are inevitable,
forcing us to utilize robust estimation techniques such as
M-estimators or RANSAC (Fischler and Bolles 1981) in
most modern object recognition systems. A comprehensive
overview of model-based 3D object recognition/tracking
techniques is available at Lepetit and Fua (2005).

The problem of model-based 3D object recognition is
mature, with a vast literature behind it, but it is far from
solved in its most general form. Two problems greatly
influence the performance of any recognition algorithm.

The first problem is scene complexity. This can arise
due to feature count, with both extremes (too many fea-
tures, or too few) significantly decreasing the recognition
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Fig. 1. Recognition of real-world scenes. (Top) High-complexity
scene. MOPED finds 27 objects, including partially occluded,
repeated and non-planar objects. Using a database of 91 models
and an image resolution of 1,600 × 1,200, MOPED processes
this image in 2.1 seconds. (Bottom) Medium complexity scene.
MOPED processes this 640 × 360 image in 87 ms and finds
all known objects (the undetected green soup can is not in the
database).

rate. Related is the issue of repeated objects: the match-
ing ambiguity introduced by repeated instances of an object
presents an enormous challenge for robust estimators, as the
matched features might belong to different object instances
despite being correct. Solutions such as grouping (Lowe
1987), interpretation trees (Grimson 1991) or image space
clustering (Collet et al. 2009) are often used, but false pos-
itives often arise from algorithms not being able to handle
unexpected scene complexity. Figure 1 shows an example of
an image of high complexity and multiple repeated objects
correctly processed by MOPED.

The second problem is that of scalability and system
latency. In systems that operate online, a trade-off between
recognition performance and latency must be reached,
depending on the requirements for each specific task. In
robotics, the reaction time of robots operating in dynamic
environments is often limited by the latency of their
perception (see, e.g., Srinivasa et al. 2010; WillowGarage
2008). Increasing the volume of input data to process (e.g.
increasing the image resolution, using multiple cameras)
usually results in a severe penalty in terms of processing
time. Yet, with cameras getting better, cheaper, and smaller,

Fig. 2. Object grasping in a cluttered scene using MOPED. (Top)
Scene observed by a set of three cameras. (Bottom) Our robotic
platform HERB (Srinivasa et al. 2010) in the process of grasping
an object, using only the pose information from MOPED.

multiple high-resolution views of a scene are often easily
available. For example, our robot HERB has, at various
times, been outfitted with cameras on its shoulder, in the
palm, on its ankle-high laser, as well as with a stereo pair.
Multiple views of a scene are often desirable, because they
provide depth estimation, robustness against line-of-sight
occlusions, and an increased effective field of view. Figure
2 shows MOPED applied on a set of three images for grasp-
ing. Also, the higher resolution can potentially improve the
recognition of complicated objects and the accuracy of pose
estimation algorithms, but often at a steep penalty cost, as
the extra resolution often causes an increase in the number
of false positives as well as severe degradation in terms of
latency and throughput.

In this paper, we address these two problems in model-
based 3D object recognition through multiple novel con-
tributions, both algorithmic and architectural. We provide
a scalable framework for object recognition specifically
designed to address increased scene complexity, limit false
positives, and utilize all computing resources to provide
low-latency processing for one or multiple simultaneous
high-resolution images. The Iterative Clustering Estimation
(ICE) algorithm is our most important contribution to han-
dling scenes with high complexity while keeping latency
low. In essence, ICE jointly solves the correspondence and
pose estimation problems through an iterative procedure.
ICE estimates groups of features that are likely to belong
to the same object through clustering, and then searches for
object hypotheses within each of the groups. Each hypoth-
esis found is used to refine the feature groups that are likely
to belong to the same object, which in turn helps in finding
more accurate hypotheses. The iteration of this procedure
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focuses the object search only in the regions with potential
objects, avoiding the waste of processing power in unlikely
regions. In addition, ICE allows for an easy parallelization
and the integration of multiple cameras in the same joint
optimization.

Another important contribution of this paper is a robust
metric to rank object hypotheses based on M-estimator
theory. A common metric used in model-based 3D object
recognition is the sum of reprojection errors. However, this
metric prioritizes objects that have been detected with the
least amount of information, since each additional recog-
nized object feature is bound to increase the overall error.
Instead, we propose a quality metric that encourages objects
to have as most correspondences as possible, thus achieving
more stable estimated poses. This metric is relied upon in
the clustering iterations within ICE, and is specially use-
ful when coupled with our novel pose clustering algorithm.
The key insight behind our pose clustering algorithm, called
Projection Clustering, is that our object hypotheses have
been detected from camera data, which might be noisy,
ambiguous and/or contain matching outliers. Therefore,
instead of using a regular clustering technique in pose space
(using, e.g., Mean Shift (Cheng 1995) or Hough Trans-
forms (Olson 1997)), we evaluate each type of outlier and
propose a solution that handles incorrect object hypotheses
and effectively merges their information with those that are
most likely to be correct.

In this work we also tackle the issues of scalabil-
ity, throughput, and latency, which are vital for real-time
robotics applications. ICE enables easy parallelism in the
object recognition process. We also introduce an improved
feature matching algorithm for large databases that bal-
ances matching accuracy and logarithmic complexity. Our
GPU/CPU hybrid architecture exploits parallelism at all
levels. MOPED is optimized for bandwidth and cache man-
agement and single input multiple data (SIMD) instruc-
tions. Components such as feature extraction and matching
have been implemented on a GPU. Furthermore, a novel
scheduling scheme enables the efficient use of symmetric
multiprocessing (SMP) architectures, utilizing all available
cores on modern multi-core CPUs.

Our contributions are validated through extensive exper-
imental results demonstrating state-of-the-art performance
in terms of recognition, pose estimation accuracy, scalabil-
ity, throughput and latency. Five benchmarks and a total
of over 6,000 images are used to stress-test every compo-
nent of MOPED. The different benchmarks are executed in
a database of 91 objects, and contain images with up to 400
simultaneous objects, high-definition video footage, and a
multi-camera setup.

Preliminary versions of this work have been published
at Collet et al. (2009); Collet and Srinivasa (2010) and
Martinez et al. (2010). Additional information, videos,
and the full source code of MOPED are available
online at http://personalrobotics.intel-research.net/projects/
moped.

2. Problem formulation

The goal of MOPED is the recognition of objects from
images given a database of object models, and the estima-
tion of the pose of each recognized object. In this section,
we formalize these inputs and outputs and introduce the
terminology we use throughout the paper.

2.1. Input: images

The input to MOPED is a set I of M images

I = {I1, . . . , Im, . . . , IM }, Im = {Km, Tm, gm}. (1)

In the general case, each image is captured with a differ-
ent calibrated camera. Therefore, each image Im is defined
by a 3 × 3 matrix of intrinsic camera parameters Km, a
4×4 matrix of extrinsic camera parameters Tm with respect
to a known world reference frame, and a matrix of pixel
values gm.

MOPED is agnostic to the number of images M . In other
words, it is equally valid in both an extrinsically calibrated
multi-camera setup, and in the simplified case of a single
image (M = 1) and a camera-centric world (T1 = I4, where
I4 is a 4× 4 identity matrix).

2.2. Input: object models

Each object to be recognized by MOPED first goes through
an offline learning stage, in which a sparse 3D model
of the object is created. First, a set of images is taken
with the object in various poses. Reliable local descrip-
tors are extracted from natural features using SIFT (Lowe
2004), which have proven to be one of the most distinctive
and robust local descriptors across a wide range of trans-
formations (Mikolajczyk and Schmid 2005). Alternative
descriptors (e.g. SURF (Bay et al. 2008), ferns (Ozuysal
et al. 2010)) can also be used. Using structure from motion
(Szeliski and Kang 1994) on the matched SIFT keypoints,
we merge the information from each training image into
a sparse 3D model. Each 3D point is linked to a descrip-
tor that is produced from clustering individual matched
descriptors in different views. Finally, proper alignment and
scale for each model are computed to match the real object
dimensions and define an appropriate coordinate frame,
which for simplicity is defined at the object’s center.

Let O be a set of object models. Each object model is
defined by its object identity o and a set of features Fo

O = {o, Fo}, Fo = {F1;o, . . . , Fi;o, . . . , FN ;o}. (2)

Each feature is represented by a 3D point location P =
[X , Y , Z]T in the object’s coordinate frame and a feature
descriptor D, whose dimensionality depends on the type of
descriptor used, e.g. k = 128 if using SIFT or k = 64 if
using SURF. That is,

Fi;o = {Pi;o, Di;o}, Pi;o ∈ R
3, Di;o ∈ R

k . (3)

The union of all features from all objects in O is defined
as F =⋃

o∈O Fo.
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Fig. 3. Illustration of two ICE iterations. Colored outlines represent estimated poses. (a) Feature extraction and matching. (b) Feature
clustering. (c) Hypothesis generation. (d), (e) Cluster clustering. (f) Pose refinement. (g) Final result.

2.3. Output: recognized objects

The output of MOPED is a set of object hypotheses H.
Each object hypothesis Hh = {o, Th} is represented by an
object identity o and a 4 × 4 matrix Th that corresponds to
the pose of the object with respect to the world reference
frame.

3. Iterative Clustering Estimation

The task of recognizing objects from local features in
images requires solving two sub-problems: the correspon-
dence problem and the pose estimation problem. The cor-
respondence problem refers to the accurate matching of
image features to features that belong to a particular object.
The pose estimation problem refers to the generation of
object poses that are geometrically consistent with the
found correspondences.

The inevitable presence of mismatched correspondences
forces us to utilize robust estimation techniques, such as
M-estimators or RANSAC (Fischler and Bolles 1981).
In the presence of repeated objects in a scene, the cor-
respondence problem cannot be solved in isolation, as
even perfect image-to-model correspondences need to be
linked to a particular object instance. Robust estima-
tion techniques often fail as well in the presence of this
increased complexity. Solutions such as grouping (Lowe
1987), interpretation trees (Grimson 1991) or image space
clustering (Collet et al. 2009) alleviate the problem of
repeated objects by reducing the search space for object
hypotheses.

The ICE algorithm at the heart of MOPED aims to jointly
solve the correspondence and pose estimation problems
in a principled way. Given initial image-to-model corre-
spondences, ICE iteratively executes clustering and pose
estimation to progressively refine which features belong to
each object instance, and to compute the object poses that
best fit each object instance. The algorithm is illustrated in
Figure 3.

Given a scene with a set of matched features
(Figure 3(a)), the Clustering step generates groups of image
features that are likely to belong to a single object instance
(Figure 3(b)). If prior object pose hypotheses are available,
features consistent with each object hypothesis are used
to initialize distinct clusters. Numerous object hypotheses
are generated for each cluster (Figure 3(c)). Then, object
hypotheses are merged together if their poses are similar
(Figure 3(d)), thus uniting their feature clusters into larger
clusters that potentially contain all information about a sin-
gle object instance (Figure 3(e)). With multiple images, the
use of a common reference frame allows us to link object
hypotheses recognized in different images, and thus create
multi-image feature clusters. If prior object pose hypothe-
ses are not available (i.e. at the first iteration of ICE), we
use the density of local features matched to an object model
as a prior, with the intuition that groups of features spatially
close together are more likely to belong to the same object
instance than features spread across all images. Thus, we
initialize ICE with clusters of features in image space (x, y),
as seen in Figure 3(b).

The Estimation step computes object hypotheses given
clusters of features (as shown in Figure 3(c) and (f)).
Each cluster can potentially generate one or multiple object
hypotheses, and also contain outliers that cannot be used for
any hypothesis. A common approach for hypothesis gener-
ation is the use of RANSAC along with a pose estimation
algorithm, although other approaches are equally valid. In
RANSAC, we choose subsets of features at random within
the cluster, then hypothesize an object pose that best fits
the subset of features, and finally check how many fea-
tures in the cluster are consistent with the pose hypothesis.
This process is repeated multiple times and a set of object
hypotheses is generated for each cluster. The advantage of
restricting the search space to that of feature clusters is the
higher likelihood that features from only one object instance
are present, or at most a very limited number of them. This
process can be performed regardless of whether the features
belong to one or multiple images.
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The set of hypotheses from the Estimation step are then
utilized to further refine the membership of each feature to
each cluster (Figure 3(d) and (e)). The whole process is iter-
ated until convergence, which is reached when no features
change their membership in a Clustering step (Figure 3(f)).

In practice, ICE requires very few iterations until con-
vergence, usually as little as two for setups with one or
a few simultaneous images. Parallelization is easy, since
the initial steps are independent for each cluster in each
image and object type. Therefore, large sets of images can
be potentially integrated into ICE with very little impact on
overall system latency. Two ICE iterations are required for
increased robustness and speed in setups ranging from one
to a few simultaneous images, while further iterations of
ICE might potentially be necessary if tens or hundreds of
simultaneous images are to be processed.

3.1. ICE as Expectation–Maximization

It is interesting to note the conceptual similarity between
ICE and the well-known Expectation–Maximization (EM)
(Dempster et al. 1977) algorithm, particularly in the learn-
ing of Gaussian Mixture Models (GMMs) (Redner and
Walker 1984). EM is an iterative method for finding param-
eter estimates in statistical models that contain unobserved
latent variables, alternating between expectation (E) and
maximization (M) steps. The E step computes the expected
value of the log-likelihood using the current estimate for
the latent variables. The M step computes the parameters
that maximize the expected log-likelihood found on the E
step. These parameter values determine the latent variable
distribution in the next E step. In GMMs, the EM algorithm
is applied to find a set of Gaussian distributions that best
fits a set of data points. The E step computes the expected
membership of each data point to one of the Gaussian distri-
butions, while the M step computes the parameters for each
distribution given the memberships computed in the E step.
Then, the E step is repeated with the updated parameters to
recompute new membership values. The entire procedure is
repeated until model parameters converge.

Despite the mathematical differences, the concept behind
ICE is essentially the same. The problem of object recog-
nition in the presence of severe clutter and/or repeated
objects can be interpreted as one of estimation of model
parameters, the pose of a set of objects, where the model
depends on unobserved latent variables: the correspon-
dences of image features to particular object instances.
Under this perspective, the Clustering step of ICE com-
putes the expected membership of each local feature to one
of the object instances, while the Estimation step computes
the best object poses given the feature memberships com-
puted in the Clustering step. Then, the entire procedure
is repeated until convergence. If our object models were
Gaussian distributions, ICE and GMMs would be virtually
equivalent.

4. The MOPED framework

This section contains a brief summary of the MOPED
framework and its components. Each individual component
is explored in depth in subsequent sections.

The steps itemized in the following sections compose the
basic MOPED framework for the typical requirements of a
robotics application. In essence, MOPED is composed of a
single feature extraction and matching step per image, and
multiple iterations of ICE that efficiently perform object
recognition and pose estimation per object in a bottom-
up approach. Assuming the most common setup of object
recognition, utilizing a single or a small set of images (i.e.
less than 10), we fix ICE to compute two full Clustering–
Estimation iterations plus a final cluster merging to remove
potential multiple detections that might have not yet con-
verged. In this way, we ensure a good trade-off between high
recognition rate and reduced system latency, but a greater
number of iterations should be considered if working with
a larger set of simultaneous images.

1. Feature extraction

Salient features are extracted from each image. We repre-
sent images I as sets of local features fm. Each image Im ∈ I
is processed independently, so that

Im = {Km, Tm, fm}, fm = FeatExtract( gm) . (4)

Each individual local feature fj;m from image m is defined
by a 2D point location pj;m = [x, y]T and its corresponding
feature descriptor dj;m; that is,

fm = {f1;m, . . . , fj;m, . . . , fJ ;m}, fj;m = {pj;m, dj;m}. (5)

We define the union of all extracted local features from
all images m as f =⋃M

m=1 fm.

2. Feature matching

One-to-one correspondences are created between extracted
features in the image set and object features stored in the
database. For efficiency, approximate matching techniques
can be used, at the cost of a decreased recognition rate. Let
C be a correspondence between an image feature fj;m and a
model feature Fi;o, such that

Co
j,m =

{ (
fj;m, Fi;o

)
, if fj;m ↔ Fi;o

∅, otherwise

}
. (6)

The set of correspondences for a given object o and
image m is represented as Co

m =
⋃
∀j Co

j;m. The sets of
correspondences Cm, Co are defined equivalently as Cm =⋃
∀j,o Co

j;m and Co =⋃
∀j,m Co

j;m.

3. Feature clustering

Features matched to a particular object are clustered in
image space (x, y), independently for each image. Given
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that spatially close features are more likely to belong to
the same object instance, we cluster the set of feature loca-
tions p ∈ Co

m, producing a set of clusters that group features
spatially close together.

Each cluster Kk is defined by an object identity o, an
image index m, and a subset of the correspondences to
object O in image Im, that is,

Kk = {o, m, Ck ⊂ Co
m}. (7)

The set of all clusters is expressed as K.

4. Estimation 1: hypothesis generation

Each cluster is processed in each image independently in
search of objects. RANSAC and LM are used to find object
instances that are loosely consistent with each object’s
geometry in spite of outliers. The number of RANSAC iter-
ations is high and the number of LM iterations is kept low,
so that we discover multiple object hypotheses with coarse
pose estimation. At this step, each hypothesis h consists of

h = {o, k, Th, Ch ⊂ Ck}, (8)

where o is the object identity of hypothesis h, k is a clus-
ter index, Th is a 4 × 4 transformation matrix that defines
the object hypothesis pose with respect to the world refer-
ence frame, and Ch is the subset of correspondences that
are consistent with hypothesis h.

5. Cluster clustering

As the same object might be present in multiple clusters and
images, poses are projected from the image set onto a com-
mon coordinate frame, and features consistent with a pose
are re-clustered. New, larger clusters are created, that often
contain all consistent features for a whole object across the
entire image set. These new clusters contain

KK = {o, CK ⊂ Co}. (9)

6. Estimation 2: pose refinement

After Steps 4 and 5, most outliers have been removed,
and each of the new clusters is very likely to contain
features corresponding to only one instance of an object,
spanned across multiple images. The RANSAC procedure
is repeated for a low number of iterations, and poses are
estimated using LM with a larger number of iterations to
obtain the final poses from each cluster that are consistent
with the multi-view geometry.

Each multi-view hypothesis H is defined by

H = {o, TH , CH ⊂ CK}, (10)

where o is the object identity of hypothesis H , TH is a
4× 4 transformation matrix that defines the object hypoth-
esis pose with respect to the world reference frame, and CH

is the subset of correspondences that are consistent with
hypothesis H .

7. Pose recombination

A final merging step removes any multiple detections that
might have survived, by merging together object instances
that have similar poses. A set of hypotheses H, with Hh =
{o, TH }, is the final output of MOPED.

5. Addressing complexity

In this section, we provide an in-depth explanation of our
contributions to address complexity that have been inte-
grated in the MOPED object recognition framework, and
how each of our contributions relate to the ICE procedure.

5.1. Image space clustering

The goal of Image Space Clustering in the context of object
recognition is the creation of object priors based solely on
image features. In a generic unstructured scene, it is infea-
sible to attempt the recognition of objects with no higher-
level reasoning than the image-model correspondences
Co

j,m = ( fj;m, Fi;o). Correspondences for a single object type
o may belong to different object instances, or may be match-
ing outliers. Multi-camera setups are even more uncertain,
since the amount of image features increases dramatically,
and so does the probability of finding multiple repeated
objects in the combined set of images. Under these circum-
stances, the ability to compute a prior over the image fea-
tures is of utmost importance, in order to evaluate which of
the features are likely to belong to the same object instance,
and which of them are likely to be outliers.

RANSAC (Fischler and Bolles 1981) and M-estimators
are often the methods of choice to find models in the pres-
ence of outliers. However, both of them fail in the pres-
ence of heavy clutter and multiple objects, in which only
a small percentage of the matched correspondences belong
to the same object instance. To overcome this limitation,
we propose the creation of object priors based on the den-
sity of correspondences across the image, by exploiting
the assumption that areas with a higher concentration of
correspondences for a given model are more likely to con-
tain an object than areas with very few features. Therefore,
we aim to create subsets of correspondences within each
image that are reasonably close together and assume they
are likely to belong to the same object instance, avoiding
the waste of computation time in trying to relate features
spread all across the image. We can accomplish this goal by
seeking the modes of the density distribution of features in
image space. A well-known technique for this task is Mean
Shift clustering (Cheng 1995), which is a particularly good
choice for MOPED because no fixed number of clusters
needs to be specified. Instead, a radius parameter needs to
be chosen, that intuitively selects how close two features
must in order to be part of the same cluster. Thus, for each
object in each image independently, we cluster the set of
feature locations p ∈ Co

m (i.e. pixel positions p = (x, y)),
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Fig. 4. Example of highly cluttered scene and the importance
of clustering. (Top-left) Scene with nine overlapping notebooks.
(Bottom-left) Recovered poses for notebooks with MOPED.
(Right) Clusters of features in image space.

producing a set of clusters K that contain groups of fea-
tures spatially close together. Clusters that contain very
few features, those in which no object can be recognized,
are discarded, thus considering the features as outliers and
discarding them as well.

The advantage of using Mean Shift clusters as object pri-
ors is illustrated in Figure 4. In Figure 4(top-left) we see
an image with nine notebooks. As a simple example, let us
imagine that all notebooks have the same number of cor-
respondences, and that 70% of those correspondences are
correct, i.e. that the global inlier ratio w = # inliers

# points = 0.7.
The inlier ratio for a particular notebook is then wobj =

w
# obj = 0.0778. The number of iterations k theoretically
required (Fischler and Bolles 1981) to find one particular
instance of a notebook with probability p is

k = log( 1− p)

log( 1−( wobj)n )
, (11)

where n is the number of inliers for a successful detec-
tion. If we require n = 5 inliers and a probability p =
0.95 of finding a particular notebook, then we should per-
form k = 1.05M iterations of RANSAC. On the other
hand, clustering the correspondences in smaller sets as in
Figure 4 (right) means that fewer notebooks (at most three)
are present in a given cluster. In such a scenario, find-
ing one particular instance of a notebook with 95% prob-
ability requires 16, 586, and 4,386 iterations when 1, 2,
and 3 notebooks, respectively, are present in a cluster, at
least three orders of magnitude lower than the previous
case.

5.2. Estimation 1: Hypothesis generation

In the first Estimation step of ICE, our goal is to generate
coarse object hypotheses from clusters of features, so that
the object poses can be used to refine the cluster associa-
tions. In general, each cluster Kk = {o, m, Ck ⊂ Co

m} may
contain features from multiple object hypotheses as well as
matching outliers. In order to handle the inevitable presence

of matching outliers, we use the robust estimation proce-
dure RANSAC. For a given cluster Kk , we choose a subset
of correspondences C ⊂ Ck and estimate an object hypoth-
esis with the best pose that minimizes the sum of repro-
jection errors (see Equation (18)). We minimize the sum
of reprojection errors via a standard LM non-linear least
squares minimization. If the amount of correspondences in
Ck consistent with the hypothesis is higher than a threshold
ε, we create a new object instance and refine the estimated
pose using all consistent correspondences in the optimiza-
tion. We then repeat this procedure until the amount of
unallocated points is lower than a threshold, or the maxi-
mum number of iterations has been exceeded. By repeating
this procedure for all clusters in all images and objects,
we produce a set of hypotheses h, where each hypothesis
h = {o, k, Th, Ch ⊂ Ck}.

At this stage, we wish to obtain a set of coarse pose
hypotheses to work with, as fast as possible. We require
a large number of RANSAC iterations to detect as many
object hypotheses as possible, but we can use a low maxi-
mum number of LM iterations and loose threshold ε when
minimizing the sum of reprojection errors. Accurate pose
will be achieved in later stages of MOPED. The initializa-
tion of LM for pose estimation can be implemented with
either fast PnP solvers such as those proposed in Collet
et al. (2009) and Lepetit et al. (2008) or even completely at
random within the space of possible poses (e.g. some dis-
tance in front of the camera). Random initialization is the
default choice for MOPED, as it is more robust to the pose
ambiguities that sometimes confuse PnP solvers.

5.3. Hypothesis quality score

It is useful at this point to introduce a robust metric to
quantitatively compare the goodness of multiple object
hypotheses. The desired object hypothesis metric should
favor hypotheses with:

• the greatest number of consistent correspondences;
• the minimum distance error in each of the correspon-

dences.

The sum of reprojection errors in Equation (19) is not a
good evaluation metric according to these requirements, as
this error is bound to increase whenever an extra correspon-
dence is added. Therefore, the sum of reprojection errors
favors hypotheses with the lowest number of correspon-
dences, which can lead to choosing spurious hypotheses
over more desirable ones.

In contrast, we define a robust estimator based on the
Cauchy distribution that balances the two criteria stated
above. Consider the set of consistent correspondences Ch

for a given object hypothesis, where each correspondence
Cj = ( fj;m, Fi;o). Assume the corresponding features in Cj

have locations in an image pj and in an object model Pj. Let
dj = d( pj, ThPj) be an error metric that measures the dis-
tance between a 2D point in an image and a 3D point from
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hypothesis h with pose Th (e.g. reprojection, backprojection
errors). Then, the Cauchy distribution ψ( dj) is defined by

ψ( dj)= 1

1+
(

dj
σ

)2 , (12)

where σ 2 parameterizes the cut-off distance at which
ψ( dj)= 0.5. In our case, the distance metric dj is the
reprojection error measured in pixels. This distribution is
maximal when dj = 0, i.e. ψ( 0)= 1, and monotoni-
cally decreases to zero when a pair of correspondences
are infinitely away from each other, i.e. ψ(∞)= 0. The
Quality Score Q for a given object hypothesis h is then
defined as a summation over the Cauchy scores ψ( dj) for
all correspondences:

Q( h)=
∑
∀j:Cj∈Ch

ψ( dj)=
∑
∀Cj∈Ch

1

1+ d2(pj ,ThPj)

σ 2

. (13)

The Q-score has a lower bound at 0, if a given hypoth-
esis has no correspondences or if all its correspondences
have infinite error, and has an upper bound at |O|, which
is the total number of correspondences for model O. This
score allows us to reliably rank our object hypotheses and
evaluate their strength.

The cut-off distance σ may be either a fixed value, or
adjusted at each iteration via robust estimation techniques
(Zhang 1997), depending on the application. Robust esti-
mation techniques require a certain minimum outlier/inlier
ratio to work properly ( # outliers

# inliers < 1 in all cases), known
as the breaking point of a robust estimator (Huber 1981).
In the case of MOPED, the outlier/inlier ratio is often well
over the breaking point of any robust estimator, especially
when multiple instances of an object are present; as a con-
sequence, robust estimators might result in unrealistically
large values of σ in complex scenes. Therefore, we choose
to set a fixed value for the cut-off parameter, σ = 2 pixels,
for a good balance between encouraging a large number of
correspondences while keeping their reprojection error low.

5.4. Cluster Clustering

The disadvantage of separating the image search space into
a set of clusters is that the produced pose hypotheses may
be generated with only partial information from the scene,
given that information from other clusters and other views
is not considered in the initial Estimation step of ICE. How-
ever, once a rough estimate of the object poses is known, we
can merge the information from multiple clusters and mul-
tiple views to obtain sets of correspondences that contain
all features from a single object instance (see Figure 3).

Multiple alternatives are available to group similar
hypotheses into clusters. In this section, we propose a novel
hypothesis clustering algorithm called Projection Cluster-
ing, in which we perform correspondence-level grouping
from a set of object hypotheses h and provide a mechanism
to robustly filter any pose outliers.

For comparison, we introduce a simpler Cluster Cluster-
ing scheme based on Mean Shift, and analyze the compu-
tational complexity of both schemes to conclude in which
cases we might prefer one over the other.

5.4.1. Mean Shift clustering on pose space A straightfor-
ward hypothesis clustering scheme is to perform Mean Shift
clustering on all hypotheses h = {o, k, Th, Ch ⊂ Ck} for
a given object type o. In particular, we cluster the pose
hypotheses Th in pose space. In order to properly measure
distances between poses, it is convenient to parameterize
rotations in terms of quaternions and project them in the
same half of the quaternion hypersphere prior to clustering,
using then Mean Shift on the resulting seven-dimensional
poses. After this procedure, we merge the correspondence
clusters Ch of those poses that belong to the same pose
cluster TK :

CK =
⋃

Th∈TK

Ch. (14)

This produces clusters KK = {o, CK ⊂ Co} whose corre-
spondence clusters span over multiple images. In addition,
the centroid of each pose cluster TK can be used as initial-
ization for the following Estimation iteration of ICE. At this
point, we can discard all correspondences not consistent
with any pose hypothesis, thus filtering many outliers and
reducing the search space for future iterations of ICE. The
computational complexity of Mean Shift is O( dN2t), where
d = 7 is the dimensionality of the clustered data, N = |h| is
the total number of hypotheses to cluster, and t is the num-
ber of iterations that Mean Shift requires. In practice, the
number of hypotheses is often fairly small, and t ≤ 100 in
our implementation.

5.4.2. Projection clustering Mean Shift provides basic
clustering in pose space, and works well when multiple
correct detections of an object are present. However, it is
possible that spurious false positives are detected in the
hypothesis generation step. It is important to realize that
these false positives are very rarely exclusively due to ran-
dom outliers in the feature matching process. To the con-
trary, most outlier detections are artifacts of the projection
of a 3D scene into a 2D image when captured by a perspec-
tive camera. In particular, we can distinguish between two
different cases:

• A group of correct matches whose 3D configuration is
degenerate or near-degenerate (e.g. a group of 3D points
that are almost collinear), incorrectly grouped with one
single matching outlier. In this case, the output pose is
largely determined by the location of the matching out-
lier, which causes arbitrarily erroneous hypotheses to be
accepted as correct.

• Pose ambiguities in objects with planar surfaces. The
sum of reprojection errors in planar surfaces may con-
tain two complementary local minima in some config-
urations of pose space (Schweighofer and Pinz 2006),
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which often causes the appearance of two distinct and
partially overlapping object hypotheses. These hypothe-
ses are usually too distant in pose space to be grouped
together.

The false positives output in the pose hypothesis genera-
tion are often too distant from any correct hypothesis in the
scene, and cannot be merged using regular clustering tech-
niques (e.g. Mean Shift). However, the point features that
generated those false positives are usually correct, and they
can provide valuable information to some of the correct
object hypotheses. In Projection clustering, we process each
point feature individually, and assign them to the strongest
pose hypothesis to which they might belong. Usually, spu-
rious poses only contain a limited number of consistent
point features, thus resulting in lower Q-scores (Section
5.3) than correct object hypotheses. By transferring most
of the point features to the strongest object hypotheses, we
not only utilize the extra information available in the scene
for increased accuracy, but also filter most false positives
by lowering their number of consistent points below the
required minimum.

The first step in Projection clustering is the computa-
tion of Q-scores for all object hypotheses h. We generate
a pool of potential correspondences Co that contains all
correspondences for a given object type that are consistent
with at least one pose hypothesis. Correspondences from
all images are included in Co. We compute the Q-score for
each hypothesis h from all correspondences Cj = ( fj, Fj)
such that Cj ∈ Co:

Q( h)=
∑
∀j:Cj∈Co

ψ( dj)=
∑
∀Cj∈Co

1

1+ d2(pj ,ThPj)

σ 2

. (15)

For each potential correspondence Cj in Co, we define a
set of likely hypotheses hj as the set of those hypotheses h
whose reprojection error is lower than a threshold γ . This
threshold can be interpreted as an attraction coefficient;
large values of γ lead to heavy transference of correspon-
dence to strong hypotheses, while small values cause few
correspondences to transfer from one hypothesis to another.
In our experiments, a large threshold γ of 64 pixels is used:

h ∈ hj ⇐⇒ d2( pj, ThPj)< γ . (16)

At this point, the relation between correspondences Cj

and hypotheses h is broken. In other words, we empty
the set of correspondences Ch for each hypothesis h, so
that Ch = ∅. Then, we re-assign each correspondence
Cj ∈ Co to the pose hypothesis h within hj with stronger
overall Q-score:

Ch ← Cj : h = arg max
h∈hj

Q( h) . (17)

Finally, it is important to check the remaining num-
ber of correspondences that each object hypothesis has
after Projection clustering. Pose hypotheses that retain less

than a minimum number of consistent correspondences are
considered outliers and therefore discarded.

The Projection Clustering algorithm we propose has a
computational complexity O( MNI), where M = |C| is the
total number of correspondences to process, N = |h| is the
number of pose hypotheses and I = |I| is the total number
of images. Comparing this with the complexity O( dN2t) of
Mean Shift, we see that the only advantage of Mean Shift in
terms of computational cost would be in the case of object
models with enormous numbers of features and many high-
resolution images, so that O( MNI)� O( dN2t). While
offering a similar computational complexity, the advantage
of Projection Clustering with respect to Mean Shift is in
terms of improved robustness and outlier detection, both
of which are essential for handling increased complexity in
MOPED.

5.4.3. Performance comparison In this experiment, we
compare the recognition performance of MOPED when
using the two Cluster Clustering approaches explained in
this section. In addition, and given that Projection Cluster-
ing depends on the behavior of a hypothesis ranking mech-
anism, we implement four different ranking mechanisms
and compare their performance. The first ranking mecha-
nism is our own Q-score introduced in Section 5.3, while
the other approaches considered are the sum of reprojection
errors, the average reprojection error, and the number of
consistent correspondences. The performance of MOPED
when using the different Cluster Clustering and hypothesis
ranking algorithms is shown in Table 1, on a subset of 100
images from the Simple Movie Benchmark (Section 6.2.3)
that contain a total of 1,289 object instances.

An object hypothesis is considered a true positive if its
pose estimate is within 5 cm and 10◦ of the ground truth
pose. Object hypotheses whose pose is outside this error
range are considered false positives. Ground truth objects
without an associated true positive are considered false neg-
atives. According to these performance metrics, the appear-
ance of pose ambiguities and misdetections is particularly
critical, since they often produce both a false positive (the
rotational error is greater than the threshold) and a false
negative (no pose agrees with the ground truth).

The overall best performer is Projection Clustering when
using Q-score as its hypothesis ranking metric, which cor-
rectly recognizes and estimates the pose of 87.6% of the
objects in the dataset. Mean Shift is the second best per-
former, but the increased false-positive rate is mainly due to
pose ambiguities that cannot be resolved and produce spu-
rious detections. The different hypothesis ranking schemes
critically impact the overall performance of Projection
Clustering, as multiple poses often need to be merged after
the first Clustering–Estimation iteration. Ranking spurious
poses over correct poses results in an increased number
of false positives, as Projection Clustering is unable to
merge object hypothesis properly. While Q-score is able
to estimate the best pose out a set of multiple detections,
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Table 1. Mean recognition per image: mean shift versus projec-
tion clustering, in the Simple Movie Benchmark (see Section 6.2.3
for details).

True False False
positive positive negative

Mean Shift 10.92 3.32 1.97
Projection Clustering

(Q-score) 11.3 2.29 1.59
Projection Clustering

(Reprojection) 11.05 7.4 1.84
Projection Clustering

(Average Reprojection) 10.88 7.81 2.01
Projection Clustering

(Number of
Correspondences) 3.6 9.82 9.29

Reprojection and Average Reprojection select sub-optimal
poses that contain just a few points, often including outliers.
This behavior severely impacts the performance of Projec-
tion Clustering, which barely merges any pose hypothe-
ses and produces an increased number of false positives.
The Number of Correspondences metric prefers hypotheses
with many consistent matches in the scene, and Projection
Clustering merges hypotheses correctly. Unfortunately, the
chosen best hypotheses are in most cases incorrect due to
ambiguities, estimating only 28% of the poses correctly.
It must be noted that in simple scenes with a few unoc-
cluded objects, all of the evaluated metrics perform sim-
ilarly well. Projection Clustering and Q-score, however,
showcase increased robustness when working with the most
complex scenes.

5.5. Estimation 2: pose refinement

At the second iteration of ICE, we use the information from
initial object hypotheses to obtain clusters that are most
likely to belong to a single object instance, with very few
outliers. For this reason, the Estimation step at the second
iteration of ICE requires only a low number of RANSAC
iterations to find object hypotheses. In addition, we use
a high number of LM iterations to estimate object poses
accurately.

This procedure is equivalent to that of the first Esti-
mation step, being the objective function to minimize the
only difference between the two. For a given multi-view
feature cluster KK , we perform RANSAC on subsets of
correspondences C ⊂ CK and obtain pose hypotheses
H = {o, TH , CH ⊂ CK} with consistent correspondences
CH ⊂ CK . The objective function to minimize can be either
the sum of reprojection errors (Equation (19)) or the sum of
backprojection errors (Equation (24)). See the appendix for
a discussion on these two objective functions.

We initialize the non-linear minimization of the cho-
sen objective function using the highest-ranked pose in CK

according to their Q-scores. This non-linear minimization
is performed, again, with a standard LM non-linear least
squares minimization algorithm.

5.6. Truncating ICE: pose recombination

An optional final step should be applied in case ICE has not
converged after two iterations, in order to remove multiple
detections of objects. In this case, we perform a full Clus-
tering step as in Section 5.4, and if any hypothesis H ∈ H
is updated with transferred correspondences, we perform a
final LM optimization that minimizes Equation (24) on all
correspondences CH .

6. Addressing scalability and latency

In this section, we present multiple contributions to opti-
mize MOPED in terms of scalability and latency. We first
introduce a set of four benchmarks designed to stress test
every component of MOPED. Each of our contributions is
evaluated and verified on this set of benchmarks.

6.1. Baseline system

For comparison purposes, we provide results for a Baseline
system that implements the MOPED framework with none
of the optimizations described in Section 6. In each case,
we have tried to choose the most widespread publicly avail-
able code libraries for each task. In particular, the following
configuration is used as the baseline for our performance
experiments:

• Feature extraction with an OpenMP-enabled, CPU-
optimized version of SIFT we have developed.

• Feature matching with a publicly available implemen-
tation of Approximate Nearest Neighbor (ANN) by
Arya et al. (1998) and 2-NN per object (described in
Section 6.3.1).

• Image space clustering with a publicly available C
implementation of Mean Shift (Dollár and Rabaud
2010).

• Estimation 1 with 500 iterations of RANSAC and up to
100 iterations of the LM implementation from Lourakis
(2010), optimizing the sum of reprojection errors in
Equation (18).

• Cluster clustering with Mean Shift, as described in
Section 5.4.1.

• Estimation 2 with 24 iterations of RANSAC and up to
500 iterations of LM, optimizing the sum of backprojec-
tion errors in Equation (24). The particular number of
iterations of RANSAC in this step is not a critical factor,
as most objects are successfully recognized in the first
10–15 iterations. It is useful, however, to use a multiple
of the number of concurrent threads (see Section 6.4.3)
for performance reasons.
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• Pose recombination with Mean Shift and up to 500
iterations of LM.

6.2. Benchmarks

We present four benchmarks (Figure 5) designed to stress
test every component of our system. All benchmarks, both
synthetic and real world, provide exclusively a set of images
and ground truth object poses (i.e. no synthetically com-
puted feature locations or correspondences). We performed
all experiments on a 2.33 GHz quad-core Intel Xeon E5345
CPU, 4 GB of RAM and a nVidia GeForce GTX 260 GPU
running Ubuntu 8.04 (32 bits).

6.2.1. The Rotation Benchmark The Rotation Benchmark
is a set of synthetic images that contains highly cluttered
scenes with up to 400 cards in different sizes and orienta-
tions. This benchmark is designed to test MOPED’s scal-
ability with respect to the database size, while keeping a
constant number of features and objects. We have generated
a total of 100 independent images for different resolutions
(1,400 × 1,050, 1,000 × 750, 700 × 525, 500 × 375 and
350 × 262). Each image contains from 5 to 80 different
objects and up to 400 simultaneous object instances.

6.2.2. The Zoom Benchmark The Zoom Benchmark is a
set of synthetic images that progressively zooms in on 160
cards until only 12 cards are visible. This benchmark is
designed to check the scalability of MOPED with respect
to the total number of detected objects in a scene. We gen-
erated a total of 145 independent images for different reso-
lutions (1,400× 1,050, 1,000× 750, 700× 525, 500× 375,
and 350×262). Each image contains from 12 to 80 different
objects and up to 160 simultaneous object instances. This
benchmark simulates a board with 160 cards seen by a 60◦

field of view (FOV) camera at distances ranging from 280 to
1,050 mm. The objects were chosen to have the same num-
ber of features at each scale. Each image has over 25,000
features.

6.2.3. The Simple Movie Benchmark Synthetic bench-
marks are useful to test a system in controlled conditions,
but are a poor estimator of the performance of a system
in the real world. Therefore, we provide two real-world sce-
narios for algorithm comparison. The Simple Movie Bench-
mark consists of a 1,900-frame movie at 1,280× 720 reso-
lution, each image containing up to 18 simultaneous object
instances.

6.2.4. The Complex Movie Benchmark The Complex
Movie Benchmark consists of a 3,542-frame movie at
1,600 × 1,200 resolution, each image containing up to
60 simultaneous object instances. The database contains
91 models and 47,342 SIFT features when running this
benchmark. It is noteworthy that the scenes in this video

present particularly complex situations, including: several
objects of the same model contiguous to each other, which
stresses the clustering step; overlapping partially occluded
objects, which stresses RANSAC; and objects in particu-
larly ambiguous poses, which stresses both LM and the
merging algorithm, that encounter difficulties determining
which pose is preferable.

6.3. Feature matching

Once a set of features have been extracted from input
image(s), we must find correspondences between the image
features and our object database. Matching is done as a
nearest-neighbor search in the 128-dimensional space of
SIFT features. An average database of 100 objects can con-
tain over 60,000 features. Each input image, depending on
the resolution and complexity of the scene, can contain over
10,000 features.

The feature matching step aims to create one-to-one cor-
respondences between model and image features. The fea-
ture matching step is, in general, the most important bot-
tleneck for model-based object recognition to scale to large
object databases. In this section, we propose and evaluate
different alternatives to maximize scalability with respect
to the number of objects in the database, without sacrificing
accuracy. The extension of the matching search space is, in
this case, the balancing factor between accuracy and speed
when finding nearest neighbors.

There are no known exact algorithms for solving the
matching problem that are faster than linear search.
Approximate algorithms, on the other hand, can provide
massive speedups at the cost of a decreased matching accu-
racy, and are often used wherever speed is an issue. Many
approximate approaches for finding the nearest neighbors to
a given feature are based on kd-trees (e.g. ANN (Arya et al.
1998), randomized kd-trees (Silpa-Anan and Hartley 2008),
FLANN (Muja and Lowe 2009)) or hashing (e.g. LSH
(Andoni and Indyk 2006)). A ratio test between the first
two nearest neighbors is often performed for outlier rejec-
tion. We analyze the different alternatives in which these
techniques are often applied to feature matching, and pro-
pose an intermediate solution that achieves a good balance
between recognition rate and system latency.

6.3.1. 2-NN per object On the one end, we can compare
the image features against each model independently. If
using, e.g., ANN, we build a kd-tree for each model in
the database once (off-line), and we match each of them
against every new image. This process entails a complex-
ity of O( |fm||O| log( |F̄o|) ), where |fm| is the number of
features on the image, |O| the number of models in the
database, and |F̄o| the mean number of features for each
model. When |O| is large, this approach is vastly ineffi-
cient as the cost of accessing each kd-tree dominates the
overall search cost. The search space is in this case very
limited, and there is no degradation in performance when
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Fig. 5. MOPED Benchmarks. For the sake of clarity, only half of the detected objects are marked. (a) The Rotation Benchmark: MOPED
processes this scene 36.4 times faster than the baseline. (b) The Zoom Benchmark: MOPED processes this scene 23.4 times faster than
the Baseline. (c) The Simple Movie Benchmark. (d) The Complex Movie Benchmark.

new models are added to the database. We refer to it as
OBJ_MATCH.

6.3.2. 2-NN per database On the other end, we can com-
pare the image features against the whole object database.
This naïve alternative, which we term DB_MATCH, builds
just one kd-tree containing the features from all models.
This solution has a complexity of O( |fm| log( |O||F̄o|) ).
The search space is in this case the whole database. While
this approach is orders of magnitude faster than the previ-
ous one, every new object added to the database degrades
the overall recognition performance of the system due to the
presence of similar features in different objects. In the limit,
if an infinite number of objects were added to the database,
no correspondences would ever be found, because the ratio
test between the first and second nearest neighbor would be
always close to 1.

6.3.3. Brute force on GPU The advent of GPUs and their
many-core architecture allows the efficient implementation
of an exact feature matching algorithm. The parallel nature
of the brute force matching algorithm suits the GPU, and
allows it to be faster than the ANN approach when |O|
is not too large. Given that this algorithm scales linearly

with the number of features instead of logarithmically, we
can match each model independently without performance
loss.

6.3.4. k-NN per database Alternatively, one can consider
the closest k nearest neighbors instead (with k > 2). k-ANN
implementations using kd-trees can provide more neighbors
without significantly increasing their computational cost, as
they are often a byproduct of the process of obtaining the
nearest neighbor. An intermediate approach to those pre-
sented before is the search for k multiple neighbors in the
whole database. If two neighbors from the same model are
found, the distance ratio is then applied to the two nearest
neighbors from the same model. If the nearest neighbor is
the only neighbor for a given model, we apply the distance
ratio with the second nearest neighbor to avoid spurious cor-
respondences. This algorithm (with k = 90) is the default
choice for MOPED.

6.3.5. Performance comparison Figure 6 compares the
cost of the different alternatives on the Rotation Bench-
mark. OBJ_MATCH and GPU scale linearly with respect to
|O|, while DB_MATCH and MOPED-k scale almost loga-
rithmically. We show MOPED-k using k = 90 and k = 30.
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Table 2. Feature matching algorithms in the Simple Movie Bench-
mark. GPU used as performance baseline, as it computes exact
nearest neighbors.

Number of After After Final
correspondences matching clustering

GPU 3893.7 853.2 562.1
OBJ_MATCH 3893.6 712.0 449.2
DB_MATCH 1778.4 508.8 394.7
MOPED-90 3624.9 713.6 428.9

Matching time (ms) Objects found

GPU 253.34 8.8
OBJ_MATCH 498.59 8.0
DB_MATCH 129.85 7.5
MOPED-90 140.36 8.2

The value of k adjusts the speed and quality behavior of
MOPED between OBJ_MATCH (k = ∞) and DB_MATCH
(k = 2). The recognition performance of MOPED-k when
using the different strategies is shown in Table 2. GPU
provides an upper bound for the object recognition, as it
is an exact search method. OBJ_MATCH comes closest
in raw matching accuracy with MOPED-90 a close sec-
ond. However, the number of objects detected are nearly
the same. The matching speed of MOPED-90 is, how-
ever, significantly better than OBJ_MATCH. Feature match-
ing in MOPED-90 thus provides a significant performance
increase without sacrificing much accuracy.

6.4. Architecture optimizations

Our algorithmic improvements were focused mainly on
boosting the scalability and robustness of the system. The
architectural improvements of MOPED are obtained as a
result of an implementation designed to make the best
use of all of the processing resources of standard com-
pute hardware. In particular, we use GPU-based process-
ing, intra-core parallelization using SIMD instructions, and
multi-core parallelization. We have also carefully optimized
the memory subsystem, including bandwidth transfer and
cache management.

All optimizations have been devised to reduce the latency
between the acquisition of an image and the output of the
pose estimates, to enable faster response times from our
robotic platform.

6.4.1. GPU and embarrassingly parallel problems State-
of-the-art CPUs, such as the Intel Core i7 975 Extreme,
can achieve a peak performance of 55.36 GFLOPS, accord-
ing to the manufacturer (Intel Corp. 2010). State-of-the-art
GPUs, such as the ATI Radeon HD 5900, can achieve a
peak performance of 4,640 SP GFLOPS (AMD 2010).

Table 3. SIFT versus SURF: mean recognition performance per
image in the Zoom Benchmark.

Latency (ms) Recognized objects

SIFT 223.072 13.83
SURF 86.136 6.27

To use GPU resources efficiently, input data needs to be
transferred to the GPU memory. Then, algorithms are exe-
cuted simultaneously on all shaders, and finally recover the
results from the GPU memory. As communication between
shaders is expensive, the best GPU-performing algorithms
are those that can be divided evenly into a large num-
ber of simple tasks. This class of easily separable prob-
lems is called Embarrassingly Parallel Problems (EPPs)
(Wilkinson and Allen 2004).

GPU-based feature extraction. Most feature extraction
algorithms consist of an initial keypoint detection step fol-
lowed by a descriptor calculation for each keypoint, both
of which are EPPs. Keypoint detection algorithms can pro-
cess each pixel from the image independently. They may
need information about neighboring pixels, but they do not
typically need results from them. After obtaining the list of
keypoints, the respective descriptors can also be calculated
independently.

In MOPED, we consider two of the most popular locally
invariant features: SIFT (Lowe 2004) and SURF (Bay et al.
2008). SIFT features have proven to be among the best-
performing invariant descriptors in the literature (Mikola-
jczyk and Schmid 2005), while SURF features are consid-
ered to be a fast alternative to SIFT. MOPED uses SIFT-
GPU (Wu 2007) as its main feature extraction algorithm.
If compatible graphics hardware is not detected MOPED
automatically reverts back to performing SIFT extraction
on the CPU, which is an OpenMP-enabled, CPU-optimized
version of SIFT we have developed. A GPU-enabled ver-
sion of SURF, GPU-SURF (Cornelis and Van Gool 2008),
is used for comparison purposes.

We evaluate the latency of the three implementations in
Figure 7. The comparison is as expected: GPU versions of
both SIFT and SURF provide tremendous improvements
over their non-GPU counterparts. Table 3 compares the
object recognition performance of SIFT and SURF: SURF
proves to be 2.59 times faster than SIFT at the cost of
detecting 54% less objects. In addition, the performance
gap between both methods decreases significantly as image
resolution increases, as shown in Figure 7. For MOPED,
we consider SIFT to be almost always the better alterna-
tive when balancing recognition performance and system
latency.

GPU matching. Performing feature matching in the GPU
requires a different approach than the standard ANN tech-
niques. Using ANN, each match involves searching in a
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Fig. 6. Scalability of feature matching algorithms with respect to the database size, in the Rotation Benchmark at 1,400 × 1,050
resolution.

Fig. 7. SIFT-CPU versus SIFT-GPU versus SURF-GPU, in the Rotation Benchmark at different resolutions. (Left) SIFT-CPU versus
SIFT-GPU: 658% speed increase in SIFT extraction on GPU. (Right) SIFT-GPU versus SURF-GPU: 91% speed increase in SURF over
SIFT at the cost of lower matching performance.

kd-tree, which requires fast local storage and a heavy use
of branching that are not suitable for GPUs.

Instead of using ANN, Wu (2007) suggests the use of
brute force nearest-neighbor search on the GPU, which

scales quite well as vector processing matches the GPU
structure quite well. In Figure 6, brute force GPU match-
ing is shown to be faster than per-object ANN and pro-
vide better quality matches because it is not approximate.
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Fig. 8. SSE performance improvement in the Complex Movie
Benchmark. Time per frame without counting SIFT extraction.

As graphics hardware becomes cheaper and more power-
ful, brute-force feature matching in large databases might
become the most sensible choice in the near future.

6.4.2. Intra-core optimizations SSE instructions allow
MOPED to perform 12 floating point instructions per cycle
instead of just one. The 3D to 2D projection function, crit-
ical in the pose estimation steps, is massively improved by
using SSE-specific algorithms from Van Weveren (2005)
and Conte et al. (2000).

The memory footprint of MOPED is very lightweight
for current computers. In the case of a database of 100
models and a total of 102,400 SIFT features, the required
memory is less than 13 MB. The runtime memory footprint
is also small: a scene with 100 different objects with 100
matched features each would require less than 10 MB of
memory to be processed. This is possible thanks to using
dynamic and compact structures, such as lists and sets, and
removing unused data as soon as possible. In addition, SIFT
descriptors are stored as integer numbers in a 128-byte array
instead of a 512-byte array. Cache performance has been
greatly improved due to the heavy use of memory-aligned
and compact data structures (Dysart et al. 2004).

The main data structures are kept constant throughout the
algorithm, so that no data needs to be copied or translated
between steps. k-ANN feature matching benefits from com-
pact structures in the kd-tree storage, as smaller structures
increase the probability of staying in the cache for faster
processing. In image space clustering, the performance of
Mean Shift is boosted 250 times through the use of compact
data structures.

The overall performance increase is over 67% in CPU
processing tasks (see Figure 8).

6.4.3. Symmetric multiprocessing SMP is a multiproces-
sor computer architecture with identical processors and
shared memory space. Most multi-core-based computers
are SMP systems. OpenMP is a standard framework for
multi-processing in SMP systems that we implement in
MOPED.

We use Best Fit Decreasing (Johnson 1974) to balance
the load between cores using the size of a cluster as an
estimate of its processing time, given that each cluster of

Fig. 9. Performance improvement of Pose Estimation step in
multi-core CPUs, in the Complex Movie Benchmark.

Table 4. Impact of pipeline scheduling, in the Simple Movie
Benchmark. Latency measurements in milliseconds.

FPS Latency Latency SD

Scheduled MOPED 3.49 368.45 92.34
Non-Scheduled MOPED 2.70 303.23 69.26
Baseline 0.47 2124.30 286.54

features can be processed independently. Tests on a subset
of 10 images from the Complex Movie Benchmark show
performance improvements of 55% and 174% on dual and
quad core CPUs respectively, as seen in Figure 9.

6.4.4. Multi-frame scheduling In order to maximize the
system throughput, MOPED can benefit from GPU-CPU
pipeline scheduling (Chatha and Vemuri 2002). In order to
use all available computing resources, a second execution
thread can be added, as shown in Figure 10. However, the
GPU and CPU execution times are not equal in real scenes,
and one of the execution threads often needs to wait for the
other (see Figure 11). The impact of pipeline scheduling
depends heavily on image resolution, as shown in Figure 12,
because the GPU and CPU loads do not increase at the same
rate when increasing the number of features but keeping the
same number of objects in each scene. In MOPED, pipeline
scheduling may increase latency significantly, especially if
using high-resolution images, but also increases throughput
almost two-fold. Since GPU processing is the bottleneck
on very small resolutions, these are the best scenarios for
pipeline scheduling. For example, as seen in Figure 12, at a
lower resolution of 500 × 380, throughput is increased by
95.6% and latency is increased by 9%.

We further test the impact of pipeline scheduling in a real
sequence in the Simple Movie Benchmark, in Table 4. The
average throughput of the overall system is increased by
25% when using pipeline scheduling, at the cost of 21.5%
more latency. In addition, we see the average system latency
fluctuates 33.2% more when using pipeline scheduling. In
our particular application, latency is a more critical factor
than throughput, as our robot HERB (Srinivasa et al. 2010)
must interact with the world in real time. Therefore, we
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Fig. 10. (Top) Standard MOPED uses the GPU to obtain the SIFT
features, then the CPU to process them. (Bottom) The addition of a
second execution thread does not substantially increase the system
latency.

Fig. 11. (Top) Limiting factor: CPU. GPU thread processing
frame N + 1 must wait for CPU processing frame N to finish,
increasing latency. (Bottom) Limiting factor: GPU. No substantial
increase in latency.

choose not to use pipeline scheduling in our default imple-
mentation of MOPED (and in the experiments displayed in
this paper). In general, pipeline scheduling should be imple-
mented in any kind of offline process, or whenever latency
is not a critical factor in object recognition.

6.5. Performance evaluation

In this section, we evaluate the impact of our combined
optimizations on the overall performance of MOPED, com-
pared with the baseline system in Section 6.1, and we
analyze how the application of our optimizations improves
system latency and scalability.

Testing both systems on the Simple Movie Bench-
mark (Table 4), MOPED outperforms the baseline with a
5.74-fold increase in throughput and a 7.01-fold decrease
in latency. These improvements become more acute the
greater the scene complexity is. Our architectural optimiza-
tions offer improvement even with the simple scenes, but
the overhead of managing the SMP and GPU processing is
large enough to limit the improvement. However, in scenes
with high complexity (and, therefore, with a high number
of features and objects) this overhead is negligible, result-
ing in massive performance boosts. In the Complex Movie
Benchmark, MOPED shows an average throughput of 0.44
frames per second and latency of 2,173.83 ms, a 30.1-fold
performance increase over the 0.015 frames per second and
65,568.20 ms of average latency of the Baseline system.

It is also interesting to compare the Baseline and
MOPED in terms of system scalability. We are most inter-
ested in the scalability with respect to image resolution,
number of objects in a scene and number of objects in the
database. Our synthetic benchmarks allow for a controlled
comparison of these different parameters without affecting
the others.

The Rotation Benchmark contains images with a con-
stant number of object instances at five different resolu-
tions. Figure 13(left) shows that both MOPED and the base-
line system scale linearly in execution time with respect to
image resolution, i.e. quadratically with respect to image
width. To be more accurate, the implementation of ICE
in both systems allows their performance to increase lin-
early with the number of feature clusters. The number of
SIFT features and feature clusters also increase linearly
with respect to image resolution in this benchmark.

To test the scalability with respect to the number of
objects in the database, images from the Rotation Bench-
mark are generated to have a fixed number of object
instances and poses, and change the identity of the object
instances from a minimum of 5 different objects to a max-
imum of 80. The use of a database-wide feature match-
ing technique (k-NN per database, Section 6.3.4) allows
MOPED to perform almost constantly with respect to the
number of objects in the database. The latency of the base-
line system, which performs independent feature match-
ing per object, increases roughly linearly. Figure 13 shows
the latency of each system relative to their best scores,
to see how latency increments when each of the param-
eters change. Therefore, it is important to note that the
latency of MOPED and the baseline are in different scales in
Figure 13, and one should only compare the relative differ-
ences when changing the image resolution and the size of
the object database.

The number of objects in a scene is another factor that
can greatly affect the performance of MOPED. The Zoom
Benchmark aims to show a relatively constant number of
image features (Figure 14), despite being only 12 (large)
objects visible at 280 mm and 160 (smaller) objects visi-
ble at 1,050 mm. It is interesting to note that the required
time is inversely proportional to the number of objects in
the image, i.e. a small number of large objects are more
demanding than large numbers of small objects. The expla-
nation for this fact is that the smaller objects in this bench-
mark are more likely to fit in a single object prior in the first
iteration of ICE. Clusters that converge after the first itera-
tion of ICE (i.e. with no correspondences transferred to or
from them) require very little processing time in the second
iteration of ICE. On the other hand, bigger objects require
more effort in the second iteration of ICE due to the cluster
merging process. It is also worth noting that this experiment
pushes the limits of our graphics card, causing an inevitable
degradation in performance when the GPU memory limit is
reached. In the 850–1,050 mm range, the number of SIFT
features to compute is slightly lower than in the 280–850
mm range. In the latter case, the memory limit of the GPU
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Fig. 12. Impact of image resolution in Pipeline Scheduling, in the Rotation Benchmark. (Left) Latency comparison (ms). (Right)
Throughput comparison (FPS).

is reached, causing a two-fold increase in feature extraction
latency when this happens. Despite this effect, the average
latency for MOPED in the Zoom Benchmark is 2.4 seconds,
compared with 65.5 seconds in the baseline system.

7. Recognition and accuracy

In this section, we evaluate the recognition rate, pose esti-
mation accuracy and robustness of MOPED in the case
of a single-view setup (MOPED-1V) and a three-view
setup (MOPED-3V, shown in Figure 16), and compare their
results to other well-known multi-view object recognition
strategies.

We have conducted two sets of experiments to prove
MOPED’s suitability for robotic manipulation. The first set
evaluates the accuracy of MOPED in estimating the posi-
tion and orientation of a given object in a set of images.
The second set of experiments evaluates the robustness of
MOPED against modeling errors, which can greatly influ-
ence the accuracy of pose estimation. In all experiments,
we estimate the full six-degree-of-freedom (6-DOF) pose
of objects, and no assumptions are made on their orientation
or position. In all cases, we perform the image space clus-
tering step with a Mean Shift radius of 100 pixels, and we
use RANSAC with subsets of five correspondences to com-
pute each hypothesis. The maximum number of RANSAC
iterations is set to 500 in both Pose Estimation steps. In
MOPED-3V, we enforce the requirement that a pose must
be seen by at least two views, and that at least 50% of
the points from the different hypotheses are consistent with
the final pose. We add this requirement in order to prove
that MOPED-3V takes full advantage of the multi-view
geometry to improve its estimation results.

The experimental setup is a static three-camera setup
with approximately 10 cm baseline between each two cam-
eras (see Figure 16). Both intrinsic and extrinsic parameters
for each camera have been computed, considering camera 1
as the coordinate origin.

7.1. Alternatives for multi-view recognition and
estimation

We consider two well-known techniques for object recogni-
tion and pose estimation in multiple simultaneous views.
The techniques we consider are the generalized cam-
era (Grossberg and Nayar 2001) and the pose averaging
(Viksten et al. 2006) techniques.

7.1.1. Generalized camera The generalized camera
approach parameterizes a network of cameras as sets of
rays that project from each camera center to each image
pixel, thus expressing the network of cameras a single
non-perspective camera with multiple projection centers
and focal planes. Then, the camera pose is optimized in this
generalized space by solving the resulting non-perspective
PnP (i.e. nPnP) problem (Chen and Chang 2004). While
such an approach is perfectly valid, it might not be entirely
feasible in real-time if the correspondence problem needs
to be addressed as well, as the search space increases dra-
matically with each extra image added to the system. This
process takes full advantage of the multi-view geometry
constraints imposed by the camera setup, and its accuracy
results can be considered a theoretical limit for multi-view
model-based pose estimation. In our experiments, we
implement this technique and use 1,000 RANSAC itera-
tions to robustly find correspondences in the generalized
space.

7.1.2. Pose averaging One of the simplest and most often
used alternatives for multi-view recognition is to com-
bine multiple single-image algorithms via pose verification
(Selinger and Nelson 2001), robust averaging, or weighted
voting (Viksten et al. 2006). These methods avoid the larger
search space that may cause difficulties in the generalized
image approach, but they fail to extract information from
the multi-view geometry to provide a globally optimized
pose estimate. In our experiments, we use the output of
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Fig. 13. Scalability experiments in the Rotation Benchmark. (Left) Latency with respect to image resolution. (Right) Latency with
respect to database size.

Fig. 14. Scalability with respect to the number of objects in the scene in the Zoom Benchmark. The scale of the left chart is 22.5 times
that of the right chart for better visibility. (Left) Latency of MOPED. (Right) Latency of the baseline system.

MOPED-1V and perform pose robust averaging using the
Q-scores of the MOPED-1V hypotheses as a weighting
factor.

7.2. Pose estimation accuracy

In this set of experiments, we evaluate MOPED’s accuracy
over the range most useful in robotic manipulation. The
three-camera setup was mounted and calibrated on a flat
table (see Figure 16). Our pose accuracy database is com-
posed of five common household objects of various shapes
and appearances. A set of 27 different positions and ori-
entations for each object were gathered, with depths (i.e.
distances from the central camera) ranging from 0.4 to 1.2
m in 10 cm increments, lateral movements of up to 20 cm
and out-of-plane rotations of up to 45◦. Ten images were
taken with each camera at each position to account for pos-
sible image noise and artifacts, producing 810 images per
object and a total of 4,050 images. Some example images
from this dataset are shown in Figure 15.

It is important to mention that the choice of camera and
lens can greatly affect pose estimation accuracy. The cam-
eras we use in these experiments are low-cost cameras of
640×480 pixels with a 73◦ FOV. The usage of a higher res-
olution image and a lens with a smaller FOV would greatly
improve these results.

In all of these experiments, the distance-normalized
translation error refers to the absolute translation error
divided by the distance with respect to the closest cam-
era. Rotation error is measured as the quaternion angle
α = 2 cos−1( qTqgt). The correct detection rate counts all
pose hypotheses that lie within 5 cm and 10◦ of the true
pose. It is important to note that the correct detection, false-
positive, and false-negative rates do not necessarily need
to add up to 100%, because an algorithm might output a
correct and an incorrect pose in the same image.

Table 5 compares the accuracy of MOPED-1V, robust
pose averaging over MOPED-1V, MOPED-3V and the gen-
eralized image approach. MOPED-1V results show the
average performance over the three cameras in our setup.
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Fig. 15. Examples scenes captured by our camera setup with Cam 1 (top), Cam 2 (middle), and Cam 3 (bottom). (Column 1) Rice
box at 50 cm. (Column 2) Notebook at 60 cm. (Column 3) Coke can at 80 cm. (Column 4) Juice bottle at 1 m. (Column 5) Pasta box
at 1.2 m.

Fig. 16. Three-camera setup used for accuracy tests with the
coordinate frame indicated on bottom left corner.

Table 5. Average accuracy test: (1) MOPED-1V; (2) pose averag-
ing; (3) MOPED-3V; (4) generalized image.

(1) (2) (3) (4)

TX error (cm) 1.45 1.36 0.47 0.46
TX error/distance 1.80% 1.71% 0.61% 0.60%
Rotation error (◦) 6.27 8.11 5.69 3.48
Correct detection

rate 85.0% 88.3% 88.3% 71.9%
False-positive rate 2.78% 0% 0% 0%
False-negative rate 13.61% 11.67% 11.67% 28.15%
Number of iterations/

view 96.71 96.71 98.69 259.05

As we can see in Table 5, accuracy is increased threefold
using MOPED-3V with respect to pose averaging, while
requiring little overhead with respect to MOPED-1V. It is

noteworthy that MOPED-3V and generalized image, con-
sidered a theoretical limit, perform very similarly in terms
of accuracy, with a difference lower than 0.01%. The low
detection rate of the generalized image approach is due to
its enormous computational cost, as it often exceeds the
maximum number of iterations with no correct detection.
The average number of iterations required to detect a sin-
gle object with a generalized image approach is three times
greater than MOPED, and its computational complexity
grows exponentially with respect to the number of objects
in a scene.

7.3. Robustness against modeling noise

In this set of experiments, we evaluate MOPED’s robustness
against modeling inaccuracies. Successful pose estimation
in MOPED-1V is heavily dependent on a good model cali-
bration, especially in terms of scaling, because depth is esti-
mated entirely based on the scale of each model. Therefore,
extreme care needs to be taken when generating models to
set a proper scale, and we often require several tests before a
new object model can be incorporated into the robot’s object
database. For example, a modeling error of 1 mm in a Coke
can (i.e. 1 mm larger than its real size), translates into a
depth estimation error of up to 3 cm at a distance of 1 m,
large enough to cause problems to the robotic manipula-
tor. On the other hand, having multiple views of the same
object enables the use of further constraints in its pose. In
MOPED-3V, an ‘implicit triangulation’ takes place during
the optimization, with the object drifting to its true posi-
tion to minimize the global backprojection error imposed
by the multi-view geometry, despite the larger error when
MOPED-1V processes each view individually.
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Fig. 17. Performance of MOPED-3V in complex scenes. Columns 1–3 depict the recognized poses overlaid on each image. Column 4
shows a reconstruction of the given scenes in our virtual environment.

Table 6. Average distance-normalized translation error with
varying model scale: (1) MOPED-1V; (2) pose averaging; (3)
MOPED-3V; (4) generalized image.

Model scale (1) (2) (3) (4)

0.95 4.11% 4.20% 0.81% 0.81%
0.97 2.56% 2.65% 0.68% 0.62%
0.99 1.86% 1.76% 0.61% 0.54%
1.01 2.12% 1.95% 0.74% 0.69%
1.03 3.14% 2.90% 0.98% 0.94%
1.05 4.72% 4.43% 1.29% 1.18%

Table 7. Average correct detection rate with varying model scale:
(1) MOPED-1V; (2) pose averaging; (3) MOPED-3V; (4) general-
ized image.

Model scale (1) (2) (3) (4)

0.95 69.7% 71.7% 80.8% 59.3%
0.97 82.2% 85.0% 85.8% 66.7%
0.99 84.4% 86.7% 86.7% 71.1%
1.01 84.2% 88.3% 88.3% 70.4%
1.03 74.4% 77.5% 87.5% 65.2%
1.05 55.8% 58.3% 85.0% 54.1%

Table 6 and Table 7 showcase the effect of scaling
errors during the object modeling stage. MOPED-3V out-
performs every other approach in terms of recognition rate,
while achieving similar accuracy results than the general-
ized image approach. The generalized image approach suf-
fers from a major performance drop when modeling errors
appear, since it is often not able to find subsets of cor-
respondences that are consistent enough to generate good
hypotheses. MOPED-1V correctly finds object hypotheses

in each image, but modeling noise causes a drop in the cor-
rect detection rate, as the estimated poses are often outside
the 5 cm threshold. MOPED-3V, on the other hand, finds
object hypotheses in each image, and then uses the inherent
multi-view constraints to correctly estimate the final object
poses.

8. Conclusion

We have presented and validated MOPED, an optimized
framework for the recognition and registration of objects
that addresses the problems of high scene complexity, scal-
ability, and latency that hamper object recognition sys-
tems when working in real-world scenes. The use of ICE
integrates single- and multi-view object recognition in an
efficient, robust, and easy to parallelize manner. The
Hypothesis Quality Score and Projection Clustering work
together to minimize the number of false positives and to re-
utilize all available information in the accurate pose estima-
tion of true positives. The multiple architectural improve-
ments in MOPED provide over 30 times improvement in
latency and throughput, allowing MOPED to perform in
real-time robotic applications.

The different accuracy and recognition experiments we
performed in this paper gives us a quantitative evaluation of
MOPED’s capabilities. However, the most stringent perfor-
mance test of an object recognition system for manipulation
is to actually integrate it in a robotic platform and use it
to interact with people in real time. MOPED has been,
for the past 2 years, an active part of HERB (Srinivasa
et al. 2010), and the pose estimation outputs of MOPED
have been used to grasp more than 2,000 objects. In a con-
trolled experiment, HERB and MOPED achieved a 91%
grasping success rate using a single-image setup (MOPED-
1V) and 98% success rate using a three-camera setup and
MOPED-3V.
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MOPED, however, is not without limitations. While we
have addressed the issue of handling scenes with high com-
plexity with minimal latency, the recognition performance
of MOPED is ultimately tied to the ability of finding enough
local features in a given object. If an object is not textured
enough, too far away, or has large specular reflections on
its surface, the feature extraction/matching steps might not
find enough correspondences in the object to perform any
kind of recognition. In our experience, we have found that
a minimum of 8–10 correspondences are necessary to suc-
cessfully recognize an object and estimate its pose. Hsiao
et al. (2010) showed that the ability to generate more fea-
tures in a scene can result in enormous boosts in recognition
rate for objects with little texture. It would be interesting to
evaluate the performance of such an algorithm integrated in
MOPED.

An additional issue that often arises in the model-based
object recognition literature is the model building stage.
The model building stage we use in MOPED (described
in Collet et al. 2009), despite being mostly automatic, still
requires a certain amount of human supervision, and we
have to carefully scale our objects to achieve proper pose
estimation from a single view. An important path to follow
in the future is the use of object discovery techniques and
multi-modal data to generate accurate models for MOPED.
In particular, we are working on joint camera–laser discov-
ery of objects to eliminate the scale uncertainty and obtain
more robust object boundaries. The use of laser data (or
other kind of 3D information, such as RGB-D cameras)
to improve the Clustering and Estimation steps of MOPED
is another promising line of work to be investigated in the
future.
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Appendix: Pose estimation from point
correspondences

There are two main error metrics to recover the pose of a
3D model from point correspondences, the reprojection and
backprojection errors. Both error functions perform equiv-
alently when estimating object poses in Euclidean space,
so one may choose either. The reprojection error is usu-
ally preferred in the computer vision community because
it is invariant to projective transformations, while the back-
projection error is meaningless in projective space (Hartley
and Sturm 1997). In our particular case, working with cal-
ibrated cameras in an Euclidean space, we have chosen the
backprojection error because it makes our framework more
easily extensible to other types of multi-modal data, such as
LASER point clouds or RGBD cameras, which we plan to
incorporate in the near future. This section contains a brief
derivation of the error functions we use in MOPED, both
for the reprojection and backprojection errors.

A.1. Reprojection error

Consider a set of correspondences Cm in image m, where
each correspondence Co

j;m = ( fj;m, Fi;o). Assume the corre-
sponding features in Co

j;m have locations pj;m in an image
and Pi;o in an object model. For a given transformation T
and an image m with extrinsic parameters T−m (in tensor
notation, Tm = ( T−m){−1}), the sum of reprojection errors is
defined by

ReprojectionErr( T , m)=
∑

Co
j;m∈Cm

[
pj;m − proj

(
TmTPi;o

)]2
.

(18)

The optimal single hypothesis h∗ for a given set of corre-
spondences C is one that minimizes the sum of reprojection
errors of the correspondences across all images. The pose
T∗h for h∗ is then defined as

T∗h = arg min
T

M∑
m=1

ReprojectionErr( T , m) . (19)

A.2. Backprojection error

Alternatively, one can define an analogous optimization in
terms of the backprojection error, by tracing the line Lj;m

from the camera center to each 2D point pj;m, and comput-
ing the distance from Lj;m to the corresponding 3D point
Pi;o. We parameterize a line as L =( c, v), where v is a
unit vector indicating the line direction and c is an arbitrary



1306 The International Journal of Robotics Research 30(10)

point on that line, e.g. the camera center. Using projective
geometry, we obtain

v̄j;m = K−1
m pj;m

‖K−1
m pj;m‖ , (20)

where Km is a 3 × 3 intrinsic camera matrix for image
m. Each line Lj;m in the world reference frame is then
given by

vj;m = (Rm)
T v̄j;m, cj;m = − (Rm)

T tm. (21)

The distance between a point Pi;o and Lj;m is given by

d( Pi;o, Lj;m)= ‖ (I3×3 − vj;mvj;m
T
) (

Pi;o − cj;m
) ‖. (22)

The analogous equation to Equation (19) that minimizes
the sum of backprojection errors of a set of correspon-
dences C with Cj = ( Pi;o, Lj;m) is given by

T∗h = arg min
T

M∑
i=1

∑
Cj∈C

[
d

(
TmTPi;o, Lj;m

)]2
. (23)

In addition, we found it useful to constrain the objects
to lie in front of the cameras. Given that vj;m are vectors
from the camera center pointing towards the image plane,
vj;m

T( Pi;o−cj;m)> 0 for all points Pi;o in front of camera m.
We incorporate this constraint as a regularizer (with weight
ξ > 0) in the minimization

T∗h = arg min
T

M∑
i=1

∑
Cj∈C[

d
(
TmTPi;o, Lj;m

)+ ξ
(

1− vj;m
T ( Pi;o − cj;m)

‖Pi;o − cj;m‖
)]2

.

(24)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


