
A Framework for Extreme Locomotion Planning

Christopher M. Dellin and Siddhartha S. Srinivasa
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

{cdellin,siddh}@cmu.edu

Abstract— A person practicing parkour is an incredible
display of intelligent planning; he must reason carefully about
his velocity and contact placement far into the future in
order to locomote quickly through an environment. We seek to
develop planners that will enable robotic systems to replicate
this performance. An ideal planner can learn from examples
and formulate feasible full-body plans to traverse a new envi-
ronment. The proposed approach uses momentum equivalence
to reduce the full-body system into a simplified one. Low-
dimensional trajectory primitives are then composed by a
sampling planner called Sampled Composition A* to produce
candidate solutions that are adjusted by a trajectory optimizer
and mapped to a full-body robot. Using primitives collected
from a variety of sources, this technique is able to produce
solutions to an assortment of simulated locomotion problems.

I. INTRODUCTION

A human practicing parkour (Figure 1), also known as
“freerunning” or “the art of movement,”1 is an impressive
example of extreme locomotion. The practitioner navigates
through complex 3D terrain at high speeds, and is forced
to reason about his body and contacts with his environment
through both traditional foot and hand holds and other forms
of contact (e.g. rolling). In order to clear obstacles and
maintain control, he must consider the future; often, he
examines the environment in detail beforehand to formulate
an explicit plan. Parkour requires planning for a high-
dimensional hybrid dynamic system where successful plans
involve irregular environment contact as well as high-velocity
maneuvers.

We seek to develop planners that will enable legged
robotic systems (e.g. humanoids and quadrupeds) to solve
these extreme locomotion problems. A planner is necessary
because a purely reactive controller is unable to reason about
the future; its choice of foot placement must account for
obstacles several steps into the future. Such a planner must be
able to formulate high-velocity plans. Planners which assume
quasistatic transitions are not capable of producing suitable
plans for most extreme locomotion problems. It should also
have the capacity to easily learn new techniques to broaden
the class of problems it can solve.

Planning for extreme locomotion in robotics presents a
number of challenges. Motion planning for complex robots
is a particularly high-dimensional problem (typical humanoid
robots have more than 30 actuated degrees of freedom); this
precludes naı̈ve implementations of common planners (e.g.
RRTs, graph search methods). These systems are underactu-
ated (indeed, often in full flight), complicating the control

1See http://en.wikipedia.org/wiki/Parkour.

Fig. 1. Two men practice parkour by maintaining balance and quickly
traversing obstacles using hands and feet [1].

problem. They are also hybrid systems, undergoing both
discrete and continuous dynamics – planners must be able
to reason about phase changes while making and breaking
environment contact. Their motion is also constrained by
dynamic contact force constraints, closed-loop kinematic
constraints, and actuator position and force limits. A success-
ful planner must carefully navigate all of these constraints.

A. Related Work

Variations of the extreme locomotion problem have been
addressed by both the bipedal walking and the animation
communities. Common to all these approaches is a simplifi-
cation of the large state space.

Developed more than forty years ago, the Zero Moment
Point (ZMP) stability criterion [2] allowed a concise rep-
resentation of an important constraint for bipedal walking.
Early methods simplified the planning problem in three ways:
(a) constraining contact to a horizontal plane, (b) enforc-
ing a particular gait (i.e. contact order), and (c) enforcing
statically-stable endpoints of dynamically-balanced segments
[3]. These segments could then be composed for locomotion.
The planners for most modern humanoid robots are direct
descendants of this approach. For example, Chestnutt, et. al.
[4] used a heuristic-based planner to plan paths for the Honda
ASIMO while avoiding moving obstacles.

Recent graph-search methods have allowed researchers
to relax the horizontal-plane constraint and consider rough
terrain. In the LittleDog project, researchers [5], [6], [7]
developed more capable planners for gaited rough-terrain
planning for quadrupeds using heuristic-based algorithms.
These algorithms rely on a fixed gait to reduce the search
dimensionality.

Many researchers in the computer graphics community
have considered physical feasibility when generating the
motion of animated characters. Mordatch et. al. [8] used
an optimization approach to solve a Spring-Loaded Inverted

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 989

Pendulum (SLIP) model with a regular gait to achieve
walking and running motion.

In order to enable non-gaited planning, it was necessary to
further strengthen constraint (c), and enforce static stability
at all times during locomotion. Kuffner [9] used sampling-
based algorithms for flat-plane non-gaited humanoid motion
planning.

While the ZMP constraint is important to consider for
horizontal-plane locomotion, frictional constraints are also
important, especially when extending non-gaited planning
to rough terrain. Therefore, the “linear wrench feasibility”
criterion was developed [10]. Bretl [11] and Hauser [12]
used this more general criterion to create statically-stable
primitives for climbing robots using a non-gaited PRM plan-
ner [13]. Recently, Collette et. al. [14], [15] have developed
a dynamic balance regulation framework using the linear
wrench feasibility criterion.

In the field of computer graphics, researchers use recorded
motion data, organized into a motion graph or database. Lee
et. al. [16] showed a technique for preprocessing motion data
for realtime control of an animated character. Choi et. al. [17]
used Probabalistic Roadmaps (PRMs) to find sequences of
motion clips to navigate through an environment. Reitsma et.
al. [18] directly unrolled motion graphs into an environment
in order to find suitable paths. Safonova et. al. [19] showed an
approach for interpolating motion graphs to generate natural-
looking, optimal motions to follow a rough user-designed
path. Recent work in physically-based motion clip retargeting
(e.g. [20]) may allow for robust control of several useful
dynamic motions (e.g. rolling).

Researchers have also designed and built mechanisms that
perform dynamic locomotion reactively without planners.
Degani [21] developed several dynamic hopping and climb-
ing mechanisms with minimal actuation. The RHex robot
[22] exhibits dynamic running behavior over rough terrain
using six spinning compliant legs.

B. Extreme Locomotion Planning

The techniques developed in related work are inadequate
to solve many extreme locomotion problems. Many planners
impose one or more constraints that are too restrictive (e.g.
flat-plane, quasistatic stability, or fixed gait). Other tech-
niques produce dynamic motion using reactive controllers
which are ill-suited to difficult problems which require
planning.

We address these shortcomings with our framework for
extreme locomotion planning, described in Section II. Our
framework is founded upon three key insights: (a) dimen-
sionality reduction by momentum equivalence, (b) learned
lower-dimensional trajectory primitives, and (c) hierarchical
refinement via optimization.

Our framework is able to produce gaitless, dynamic plans
for complex legged robots using learned trajectory primitives.
The planner can transition smoothly at high velocity between
different behaviors. The resulting system is able to solve
difficult extreme locomotion problems.

We are excited to be pushing the limits of locomotion
planning. However, there is a long way to go. Our current im-
plementation makes a number of assumptions. For simplicity,
we assume a static environment with previously-identified
contact locations. We do not consider plan controllability,
robustness, or collision avoidance, although these avenues are
discussed briefly in Section VIII. Notably, we assume perfect
state estimation, which allows for ground speed matching and
absolves us from an impact contact model. However, these
limitations are not inherent in the framework; future work
can incorporate the necessary extensions.

II. A FRAMEWORK FOR EXTREME LOCOMOTION
PLANNING

Motivated by the form of the dominating constraints
inherent in the problem, we propose a simplification method
and corresponding hierarchical planning framework (see Sec-
tion II) that fundamentally plans for the momentum of the
robot using low-dimensional trajectory primitives. This sec-
tion defines the extreme locomotion problem and discusses
the framework. Subsequent sections (III–VII) describe each
component in more detail.

A. Problem Statement

Consider a floating-base rigid-body robot model R with
n internal degrees of freedom. We represent the state of the
robot as x = [q; q̇], with q the (n+6)-dimensional vector
consisting of the pose (i.e. Cartesian position and orientation)
of a root link and the n generalized internal joint coordinates,
and q̇ their velocities. The system’s evolution is controlled
by applying n internal joint torques τ , and through contact
forces from the environment.

Each of i ∈ {1 . . . nc} body-fixed contacts is described
by a rigidly-attached frame; the function yi(x) gives its
pose, and vi(x) gives its spatial (linear and angular) velocity.
Each contact has an associated set Yi of potential world-fixed
positions pre-selected in the environment. If yi(x)∈Yi with
vi(x) = 0, then the robot is in contact through ci, and a
spatial force fi can be transmitted from the environment to
the appropriate link. For example, the pose yf of a flat foot
may be described by a frame attached to its center, and Yi
would include all planar positions and orientations on a floor.

The dynamics of the system can be expressed as

M(q) q̈ + C(q, q̇) + g(q) = S τ +

nc∑
i=1

JTi (q) fi, (1)

with M(q) the mass matrix, C(q, q̇) the vector of Coriolis
and centripetal terms, g(q) the vector of gravity terms, S =
[06×n;En] the actuated-joint selection matrix, τ the vector
of joint torques, and Ji(q) the ith contact Jacobian.

The system’s evolution is subject to a number of con-
straints, which we classify as either internal or external.
Internal constraints include joint/actuator position, velocity,
and force/torque limits. External constraints consist of limits
on contact force, and account for ZMP and (potentially

990

Full-Dimensional
Problem Specification

Learned
Trajectory
Primitives

Simplified
Problem Specification

Graph
Search
Planner

Full-Dimensional
Solution

Trajectory
Optimizer

Sol 1

Best Solution

Sol 3

Sol 2 Sol 2

Sol 3

Momentum Equivalence
Simplification Full Body Mapper

Sol 1

Fig. 2. The hierarchical planning framework proposed here reduces the dimensionality of the motion planning problem to consider the momentum of the
robot. The SCA* algorithm produces a set of candidate solutions, which are then optimized and mapped back to the full-body robot.

unilateral) frictional constraints. These constraints can be
written as a set of inequalities linear in the contact force:

Bi fi(t)≥ bi if yi(t) ∈ Yi,vi(t) = 0
fi(t) = 0 otherwise. (2)

For example, the force constraints on a foot making contact
with a frictional surface can be approximated using the laws
of Coulomb friction as an n-sided polyhedral convex friction
cone. With the spatial force fi expressed in the local contact
frame at yf during contact, Bi is a constant basis for the
cone, and bi is the zero vector.

Fundamentally, we seek a control trajectory τ(t) for robot
R, and the associated state and contact force trajectories x(t)
and fi(t), to get from a starting state x(ts) = xs to a goal
state x(tg) = xg , subject to both the internal and external (2)
constraints.

B. Framework Overview

Figure 2 presents an overview of the framework. Each
component is briefly described here.

We postulate that in the case of extreme locomotion
problems, system momentum is of primary importance. When
planning for high-velocity maneuvers, the practitioner’s pre-
cise joint trajectories are largely unimportant. Instead, the
gross motion of the body, along with the evolution of the
contact state, is more relavent. Consequently, the external
contact constraints (2) dominate the planning problem. We
choose a dimensionality reduction that fully preserves the
relevant aspects of R with regard to these constraints.

Since system momentum is the invariant in the sim-
plification, we call the property momentum equivalence.
The simplified system R̂ has equivalent linear and angular
momentum to the full system. See Section III for details.

Once in the simplified space, we use a library of learned
trajectory primitives to find candidate trajectories for the sim-
plified robot R̂. Learned trajectory primitives are described in
Section IV. In our implementation, we use a novel heuristic-
based algorithm called Sampled Composition A* (Section V).

Because the library consists of single examples, the result-
ing trajectories may not be feasible. Therefore, a trajectory

optimizer is used to modify the parameters of each poten-
tial solution. Plans that are successfully optimized satisfy
the external contact constraints (2) and internal constraint
approximations. Note that this plan consists only of a center-
of-mass trajectory and the locations and timings of each
environment contact.

Once a plan is found, a second algorithm (described in
Section VII) attempts to find a full-body trajectory for R
that satisfies the full-body internal constraints.

C. Framework Limitations

As with any planning hierarchy, the framework cannot
guarantee that a given low-dimensional plan will be feasible
when passed to subsequent layers. We therefore produce a
set of different candidate trajectories in case some fail.

III. SIMPLIFICATION BY MOMENTUM EQUIVALENCE

Due to the high dimensionality of the full-body locomotion
planning problem described above, we must make significant
simplifications in order to successfully find solutions. Unfor-
tunately, the existing simplifications (e.g. enforced gaits or
quasistatic stability) do not allow for high-velocity planning
using multiple contacts.

In Section II, we differentiated between internal and exter-
nal constraints. We further postulated that for extreme loco-
motion, external constraints dominate the planning problem.
Therefore, it is important that our simplification preserves
those constraints exactly. We use the concept of momentum
equivalence as that simplification. Using this technique, we
can greatly reduce the dimensionality of the problem.

A. Contact Constraints and System Momentum

Recall the problem statement (Section II-A). In addition to
the general governing equation (1), the robot R as a system
also obeys Newton’s second law:

ḣ = fg +

nc∑
i=1

fi (3)

That is, the time-derivative of the robot’s spatial (linear and
angular) momentum h is a function only of the gravity force

991

fg and the external forces fi exerted at the contact points. It
is independent of its internal joint trajectories and torques.

B. System Simplification by Momentum Equivalence

We choose to approximate R with a simplified robot
R̂ consisting of a single rigid body with massless floating
contacts ĉi. The simplified state x̂ is then the pose and spatial
velocity of this body, along with the contact state. Because
the contacts are massless, their dynamics are ignored.

The rigid body R̂ is chosen to have the same total mass
and moment of inertia as does R in a default configuration.
The problem’s full-body start state xs is simplified to the
simplified state x̂s as follows (the goal state xg is simplified
in the same way). The linear position and velocity of the
center of mass of the rigid body R̂ is chosen to match that
of R. The orientation of the rigid body is chosen to match
that of the body of R that is selected as its orientation
analogue (e.g. a pelvis or torso). Its angular velocity is
selected such that the total angular momentum of the two
systems is identical.

In this way, under the same external forces,

hR(t) = hR̂(t), (4)

and the centers of mass of R and R̂ coincide. Note that
the orientation of R̂ will not implicitly match the orientation
of any body in R. When mapping back to the full robot
(described in Section VII), care must be taken to design a
trajectory of the internal joints of R to maintain the desired
orientation of the selected orientation analogue body.

Since the kinematic structure of R is no longer present,
position-based approximations are used to keep the contacts
ci within a reachability region relative to the rigid body R̂.
For example,

||yi(t)− ycom(t)|| ≤ di. (5)

Similarly, since R̂ has no internal joints, actuator limits
are also replaced with approximating constraints. For exam-
ple, joint velocity limits can be approximated by Cartesian
velocity limits on body-fixed contacts (e.g. feet or hands) via

||vi(t)|| ≤ vi,max. (6)

IV. TRAJECTORY PRIMITIVES

We use low-dimensional trajectory primitives to solve the
simplified planning problem. A trajectory primitive is a short,
time-indexed, feasible trajectory for the robot R̂ – that is, a
rigid-body position and orientation trajectory and a sequence
of active contacts that satisfies the contact constraints. The
optimal time scale and boundary characteristics for these
primitives are not considered here; for our examples, suitable
primitives were determined subjectively.

As a trajectory for R̂, each primitive m is annotated with
its a nominal pose and velocity at its start (m.rs, m.vs) and
the end (m.re, m.ve). Available primitives are assembled
into a library m ∈M for use in planning (see Section V).

(a) A “long jump” primitive designed from a
YouTube video.

(b) A “start to run” primitive taken from motion capture data.

Fig. 3. Examples of trajectory primitives taken from several sources.

A. Sources of Trajectory Primitives

Due to their low dimensionality, trajectory primitives are
intended to be easily learnable from a diverse array of
sources. For example, they can be inferred from video clips,
sketched through a computer interface, taken from motion
capture data, or even described verbally by an expert. Recent
advances in inexpensive joint-tracking depth sensors devel-
oped for video game consoles may allow an autonomous
robot to learn complex trajectory primitives from human
demonstrators.

In this paper, we used primitives of starts, stops, runs,
and jumps. These primitives were either taken from motion
capture data2 or manually designed from human running data
and video clips.3 For examples of primitives used here, see
Figure 3.

B. Trajectory Primitive Representation

Each primitive is split into segments around changes in
contact state. Therefore, each segment of a primitive has a
fixed active contact configuration.

We choose to represent the center-of-mass trajectory for
each segment as cubic Bézier curve. This representation has a
number of advantages: (a) smooth curves can be represented
compactly with nodes and handles, (b) flight phases with
constant vertical acceleration can be represented simply with
quadratic segments, (c) nodes present easy ways to split and
compose primitives, and (b) designing trajectories by humans
is easy due to their popularity in popular drawing software.

While the center-of-mass trajectory has continuous posi-
tion and velocity across segment boundaries, this representa-
tion does produce discontinuous jumps in acceleration. This
is reasonable because a new contact configuration leads to a
corresponding discontinuity in the constraints on the contact
forces.

2Motion capture data provided by the CMU Graphics Lab Motion Capture
Database, (http://mocap.cs.cmu.edu/).

3A video clip of a long jump taken from YouTube video amazing parkour
jump! (http://www.youtube.com/watch?v=LsJYxJuwU2w).

992

V. SAMPLED COMPOSITION A* PLANNER

We are now tasked with planning for the simplified robot
R̂ through an environment using our library of trajectory
primitives. Because the force of gravity is uniform across all
primitives, they are invariant to 4 dimensions of position and
orientation (i.e. x, y, z, and yaw). This allows a small library
of primitives to be composed to form longer paths. However,
each primitive has fixed, continuous-valued contact locations
and start and end states. Therefore, exact composition of
our finite set of primitives will generally be inadequate for
solving a locomotion problem.

One approach is to parameterize each primitive to allow
a volume of feasible start and/or end states and contact
locations around the nominal points. However, this approach
has disadvantages, including the increased complexity of the
primitives and the corresponding difficulty to design and/or
learn them. Therefore, we take a different approach. We
extend the heuristic-based A* graph search algorithm to
allow sampled composition of actions.

A. Description of Sampled Composition A*

The Sampled Composition A* algorithm (SCA*) is a
variant of the traditional A* heuristic-based graph search
planner applied to a continuous state space with a discrete set
of actions. The state represented at each node is augmented
with an additional real-valued sampling variance σ2. When
invoking the planner from a start state ss to a goal state sg ,
the open set is initialized with a single node n0 at the start
state with a zero variance:

n0.s← ss; n0.σ
2 ← 0. (7)

SCA* proceeds similarly to A*, with the addition
of a state sampling function SCASAMP(s, σ2), functions
that define the variance schedule SCAVARINC(σ2) and
SCAVARDEC(σ2), and a variance-increase edge cost func-
tion SCAVAREDGECOST(σ2). The node expansion function
(described in Function 1) is expanded to make use of these
new functions to sample new states and manage each node’s
augmented variance.

During each expansion, an additional child node nv is
added with the same state as the parent node, with an
increased variance (line 1). An adjusted state sa is sampled
from a distribution around the parent node’s state given
its variance (line 3). Each action is then considered when
appended to this new adjusted state (in the EXPANDNODE()
function, line 4). The variances of the child nodes at the new
post-action states are deceased. For a simple 1D example, see
Figure 4.

Edge costs are unaffected, with the exception of each edge
to an increased-variance node (as created in 1). These edges
are given a cost in relation to the variance increase across
the edge.

B. Search with Trajectory Primitives using SCA*

By using SCA*, we allow our planner to make inexact
compositions of trajectory primitives by sampling nearby
states. During planning, this manifests itself as discontinuous

0 0.2 0.4 0.6 0.8 1 1.2

0

0.02

0.04

State s

V
a

ri
a

n
c
e

 σ
2

0 0.2 0.4 0.6 0.8 1 1.2
−5

0

5

State s

0 0.2 0.4 0.6 0.8 1 1.2

0

0.02

0.04

State s

V
a

ri
a

n
c
e

 σ
2

0 0.2 0.4 0.6 0.8 1 1.2
−5

0

5

State s

Fig. 4. Two solutions to a simple 1D “run-and-jump” example problem
solved with Sampled Composition A*. There are two primitives: a run (blue)
and a jump (red). A gap is marked in red. The first two plots represent one
trial, and the second two show the result from a second run.

jumps in position and velocity at composition points. These
jumps incur cost in relation to their size, and our heuristic-
based graph search planner reasons about these costs during
planning. Once a plan is found, primitive endpoints are
manually adjusted to match, and an optimizer is used to
pursue feasibility (see Section VI).

We use simple definitions for SCA*:

� s: simplified robot R̂ pose and velocity x̂, along with
the most recent primitive used m

� SCASAMP(s, σ2): pose sampled from a normal distri-
bution with variance σ2

� SCAVARINC(σ2) = σ2 + δσ2

� SCAVARDEC(σ2) = max(σ2 − δσ2 , 0)
� SCAVAREDGECOST(σ2) = cδ

The function we use to compose primitives from a given
state is described in Function 2. From the parent state sa,
we consider all possible primitives M . We compose each

Function 1 Nc ← SCASTAREXPANDNODE(np)

1: nv.s← np.s; nv.σ
2 ← VARINC(np.σ

2)
2: Nc ← {nv}
3: sa ← SAMP(np.s, np.σ

2)
4: Sc ← EXPANDNODE(sa, np.σ

2)
5: for all s in Sc do
6: ni.s← s; ni.σ

2 ← VARDEC(np.σ
2)

7: Nc ← Nc ∪ {ni}
8: end for
9: return Nc

993

Fig. 5. SCA* search running on an example jump problem. Multiple
expanded nodes are shown at different sampled poses.

primitive m onto the adjusted parent rigid-body state sa.x̂.
If the resulting state discontinuity is beyond a variance-
dependent threshold with respect to metric Mx, the primitive
is not considered. Next, each requisite footstep is snapped to
its nearest environment location; if the requisite difference is
beyond a similar threshold with respect to Mf , the primitive
is not considered. If the composition is deemed acceptable,
it is added to the list of child states to be returned. For a
visual representation of SCA* search running, see Figure 5.

Function 2 Sc ← EXPANDNODE(sa, σ
2)

1: Sc ← {}
2: for all m in M do
3: mc = COMPOSE(m, sa)
4: if ||mc.x̂s − sa.x̂||Mx

> σ2 then
5: continue // skip this primitive
6: end if
7: if ||f.r − ENV(f.r)||Mf

> σ2 for any f ∈ mc.F
then

8: continue // skip this primitive
9: end if

10: si.x̂← mc.x̂e
11: si.m← mc

12: Sc ← Sc ∪ {si}
13: end for
14: return Sc

C. Enforcing Continuity of Composed Primitives

The SCA* planner finds a candidate sequence of trajectory
primitives from the start node to the goal. However, due to
the sampling nature of the primitive composition, there will
be discontinuities in the rigid-body trajectory.

The sequence of primitives found by SCA* is made
continuous by averaging the positions and velocities at each
discontinuity (see Figure 6). This eliminates discontinuities
in the trajectory. If newly-adjacent segments share an iden-
tical contact configuration (e.g. flight phase), these segments
are also merged together.

Fig. 6. Example of the joining procedure to produce a continuous plan
from a sequence of trajectory primitives.

VI. TRAJECTORY OPTIMIZER

While individual trajectory primitives may obey the nec-
essary external constraints (2), the sampling nature of SCA*
may cause segments of the composed plan to be infeasible.
We use a simple trajectory optimizer to ensure feasibility.
While success is not guaranteed, separately optimizing sev-
eral candidate solutions as described in Section I provides a
high likelihood of success.

The time-indexed trajectory ξ consists of states x̂ compris-
ing the motion of the rigid body and the locations and timings
of environment contacts. In our case, ξ is parameterized like
a trajectory primitive, as described in Section IV.

A. Instantaneous Cost Function

The instantaneous cost along the trajectory ξ at time t is
the sum of several terms: the contact force magnitude cost,
the contact force constraint cost, and the approximation costs
for internal constraints and reachability.

c(ξ, t) = cf (ξ, t) + ce(ξ, t) + ca(ξ, t) (8)

The cost cf (ξ, t) penalizes large contact forces. Each
contact-specific weighting matrix Wfi may be time-varying.
Each contact force fi is also time-varying, and is determined
below in Section VI-B.

cf (ξ, t) =
1

2

nc∑
i=1

fTi Wfi fi (9)

The cost ce(ξ, t) penalizes insufficient foot placement. It
acts if a given force distribution fi is unable to produce
the required contact force fc = ḣ − fg , from (3). Note the
discontinuity introduced by the constant ce0 which biases the
optimizer to exactly satisfy the constraint.

ce(ξ, t) =

{
0 if Σifi = fc

ce0 + 1
2 (Σifi−fc)TWe(Σifi−fc) otherwise

(10)

994

Fig. 7. Frames taken from a jump solution created by our planner. Here,
the figure is traveling from right to left. It lands from a jump, and takes
two steps while traveling at approximately 4 m/s.

The approximation cost ca(ξ, t) penalizes violations of the
corresponding constraints (e.g. 5).

B. Instantaneous Contact Force Distribution

Note that the cost components cf and ce are also functions
of the particular force distribution fi over the available
contacts. We use Quadratic Programming to minimize the
cost subject to the external constraints (2).

c(ξ, t) = min
fi

[
cf (ξ, t, fi) + ce(ξ, t, fi)

]
+ ca(ξ, t) (11)

C. Optimization

The parameterized trajectory ξ is then optimized with
respect to the full trajectory cost,

c(ξ) =

∫
t

c(ξ, t)dt. (12)

The optimizer is allowed to alter the full rigid-body trajectory
as well as the footstep locations and timings. We have
found that simple local search is sufficient to find a feasible
trajectory within a few minutes on modern hardware.

VII. MAPPING TO A FULL-BODY PLAN

Once we find a feasible trajectory ξ for the simplified
robot R̂ from x̂s to x̂g , we need to map this to a full-
dimensional trajectory from xs to xg . Due to the nature of
the simplification described in Section III, the difficult part
of the solution (finding a center-of-mass motion and feasible
contact locations) is already solved.

What remains is primarily a kinematic problem: how to
actuate the robot’s internal degrees of freedom to achieve
and maintain the body-fixed contacts ci in the necessary
locations, while simultaneously maintaining the correct full-
body orientation.

A. Regulating Full-Body Orientation

Recall from Section III that while momentum equivalence
guarantees that the linear position and velocity of the centers
of mass of R and R̂ will coincide, it makes no such
assurances of the orientations or angular velocities of bodies.

Here, we would like to actuate internal joints in order to
maintain a selected body b (e.g. a pelvis or torso) at the
same orientation as the simplified robot R̂.

The total system momentum h of R is the sum of the
momenta of the component bodies,

h =
∑
i

Iivi, (13)

with Ii the body’s spatial inertia matrix, and vi its spatial
velocity.

We write each body’s velocity vi relative to the selected
body’s velocity vb using a Jacobian and the internal joint
velocities q̇int,

h =
∑
i

Ii
(
vb + bJi q̇int

)
, (14)

∑
i

Ii
bJi q̇int = h−

∑
i

Ii vb. (15)

Therefore, given an instantaneous system momentum h and
a desired selected body velocity vb (both given by the
simplified trajectory ξ), (15) imposes the linear orientation-
regulating constraint.

B. Imposing Body-Fixed Contact Trajectories

The simplified plan ξ gives the locations and timings of
contact, but does not specify swing trajectories. We use a
simple interpolation function to generate these trajectories.
Each contact imposes an additional constraint on the space
of permissible internal joint trajectories,

bJci q̇int = vci − vb. (16)

C. Solving using Quadratic Programming

Along with the equality constraints (15) and (16), we can
also enforce joint/actuator position and velocity constraints
with linear inequalities on q̇int. While solving for a full-
body trajectory for R, we can also apply a quadratic cost
to ∆q̇int = q̇int − q̇int,last to effectively minimize joint
accelerations.

Fig. 8. An example solution of a jump produced by our planner. For an
overview of the planning and optimization process, see the attached video.

995

VIII. DISCUSSION AND FUTURE WORK

This paper presents a framework and algorithm for solv-
ing extreme locomotion planning problems using trajectory
primitives. The full-dimensional system is reduced by mo-
mentum equivalence to a simplified system. A heuristic-
based graph search planner (e.g. Sampled Composition A*)
is used to compose learned trajectory primitives for the
reduced system into a candidate path. The resulting trajectory
is then optimized to pursue feasibility, and subsequently
mapped back to the full-dimensional system.

Throughout the planning hierarchy, the framework does
not guarantee feasibility, either as primitives are composed
or as the resulting plan is mapped to the full-dimensional sys-
tem. While explicitly parameterizing primitives as discussed
in Section V may mitigate this problem, we have found
that simultaneously generating, optimizing, and mapping
multiple candidate solutions provides good results for the
problems we have considered. While this may appear costly,
it is inherently parallel, and therefore a good match for
modern computer hardware. A future extension to this work,
in common with other hierarchical planners, would be to
generate a set of sufficiently different plans and/or to allow
errors to be propagated to earlier planning stages.

We created an implementation of the SCA* planner, tra-
jectory optimizer, and mapper to a full-body dynamic model.
We tested the framework on several example jump problems;
solutions consisted of five to ten composed and adjusted
primitives. Running times for the planner and optimizer
are approximately 5 minutes each on modern hardware; we
anticipate that substantial speed improvements are possible
through parameter tuning, optimizer choice, and paralleliza-
tion.

Exploitation of sparse-searching or anytime variants of A*
(e.g. [23]) would improve the performance of the planner.
The planner’s domain can be extended by also consider-
ing task forces, time-varying environments, an energy-loss
impact model, and rolling/sliding contact. Algorithms for
obstacle avoidance (e.g. [24]) for generating body and swing
trajectories would also extend the domain.

The optimizer can also be extended to consider plan
robustness. While the plans generated by this framework
are physically feasible in simulation, more work is required
in the areas of state estimation and robustness in order to
approach a physical implementation.

The choice of planning horizon length is an important
aspect of this approach that should be considered in the
future. The framework as presented here considers the entire
problem, and plans for the full trajectory before execution.
The problems we’ve considered so far have solutions lasting
less than 10 seconds and with tens of footsteps. For longer
problems, this approach will become quickly intractable. In
contact, a purely reactive approach will necessarily suffer
poor performance, and in many cases be unable to find
solutions. Finding a suitable method for receeding horizon
planning is essential for solving a broader class of problems.

REFERENCES

[1] B. van Hoytema, “Parkour voor beginners,” Image from Flickr, Cre-
ative Commons BY-NC-SA 2.0 License.

[2] M. Vukobratović and D. Juričić, “Contribution to the Synthesis of
Biped Gait,” IEEE Transactions on Biometical Engineering, Jan 1969.

[3] M. Vukobratović, and B. Borovac, “Zero-Moment Point – Thirty Five
Years of its Life,” International Journal of Humanoid Robotics (2004),
1(1), pp 157173.

[4] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T.
Kanade, “Footstep Planning for the Honda ASIMO Humanoid,” 2005
IEEE International Conference on Robotics and Automation, April
2005.

[5] J. Buchli, J. Pratt, and N. Roy, “Special issue on Legged Locomotion,”
International Journal of Robotics Research, (30)2, Feb 2011.

[6] J. Chestnutt, “Navigation Planning for Legged Robots,” Ph.D. disser-
tation, Carnegie Mellon University, Pittsburgh, PA 15213.

[7] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast,
Robust Quadruped Locomotion over Challenging Terrain,” 2010 IEEE
International Conference on Robotics and Automation, pp 2665-2670,
May 2010.

[8] I. Mordatch, M. de Lasa, and A. Hertzmann, “Robust Physics-Based
Locomotion using Low-Dimensional Planning,” ACM Transactions on
Graphics, 29(4), 2010.

[9] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue,
“Dynamically-Stable Motion Planning for Humanoid Robots,” Au-
tonomous Robots, 12(1), pp 105-118, Jan 2002.

[10] S. Takao, Y. Yokokohji, and T. Yoshikawa, “FSW (Feasible Solution
of Wrench) for Multi-Legged Robots,” 2003 IEEE International
Conference on Robotics and Automation, 3, pp 3815-3820, Sep 2003.

[11] T. Bretl, “Multi-step motion planning: Application to free-climbing
robots,” Ph.D. dissertation, Stanford University, Stanford, CA, 2005.

[12] K. Hauser, “Motion Planning for Legged and Humanoid Robots,”
Ph.D. dissertation, Stanford University, Stanford, CA, 2008.

[13] K. Hauser, T. Bretl, and J. C. Latombe, “Non-gaited humanoid
locomotion planning,” 2005 IEEE-RAS International Conference on
Humanoid Robots, pp 7-12, Dec 2005.

[14] C. Collette, A. Micaelli, C. Andriot, and P. Lemerle, “Dynamic
Balance Control of Humanoids for Multiple Grasps and non Coplanar
Frictional Contacts,” 2007 IEEE-RAS International Conference on
Humanoid Robots, pp 81-88, 29 Nov 2007 - 1 Dec 2007.

[15] C. Collette, A. Micaelli, C. Andriot, and P. Lemerle, “Robust Bal-
ance Optimization Control of Humanoid Robots with Multiple non
Coplanar Grasps and Frictional Contacts,” 2008 IEEE International
Conference on Robotics and Automation, pp 3187-3193, May 2008.

[16] J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard, “Interactive
Control of Avatars Animated with Human Motion Data,” ACM Trans-
actions on Graphics, 21(3), July 2002.

[17] M. Choi, J. Lee, and S. Shin, “Planning Biped Locomotion using
Motion Capture Data and Probabilistic Roadmaps,” ACM Transactions
on Graphics, 22(2), pp 182-203, 2003.

[18] P. Reitsma and N. Pollard, “Evaluating Motion Graphs for Character
Animation,” ACM Transactions on Graphics, 26(4), art 18, Oct 2007.

[19] A. Safonova and J. Hodgins, “Construction and Optimal Search of
Interpolated Motion Graphs,” ACM Transactions on Graphics, 26(3),
July 2007.

[20] L. Liu, K. Yin, M. van de Panne, T. Shao, and W. Xu, “Sampling-
based Contact-rich Motion Control,“ ACM Transctions on Graphics,
29(4), 2010.

[21] A. Degani, “Minimalistic Dynamic Climbing,” Ph.D. dissertation,
Carnegie Mellon University, Pittsburgh, PA, 2010.

[22] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. B. Brown
Jr., D. McMordie, U. Saranli, R. Full, and D. E. Koditschek, “RHex:
A Biologically Inspired Hexapod Runner,” 2001 Autonomous Robots,
11(3), pp 207-213, Nov 2001.

[23] M. Likhachev and A. Stentz, “R* Search,” Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2008.

[24] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gradient
Optimization Techniques for Efficient Motion Planning,” 2009 IEEE
International Conference on Robotics and Automation, pp 489-494,
May 2009.

996

