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Abstract—We formulate and study the comprehensive
multi-root (CMR) planning problem, in which feasible
paths are desired between multiple regions. We propose
two primary contributions which allow us to extend state-
of-the-art sampling-based planners. First, we propose the
notion of vertex coloring as a compact representation of the
CMR objective on graphs. Second, we propose a method for
deferring edge evaluations which do not advance our objec-
tive, by way of a simple criterion over these vertex colorings.
The resulting approach can be applied to any CMR-agnostic
graph-based planner which evaluates a sequence of edges.
We prove that the theoretical performance of the colored
algorithm is always strictly better than (or equal to) that
of the corresponding uncolored version. We then apply the
approach to the Probabalistic RoadMap (PRM) algorithm;
the resulting Colored Probabalistic RoadMap (cPRM) is
illustrated on 2D and 7D CMR problems.

I. INTRODUCTION

Many real-world tasks require a robot to quickly
accomplish multiple subtasks without a prescribed or-
der. Consider a personal assistant robot clearing sev-
eral objects from a tabletop, or a manufacturing robot
performing several welds on a novel workpiece. Fur-
thermore, each subtask often permits multiple suitable
robot configurations such as grasps of an object or
orientations of a tool. Even if only one end effector pose
is valid, manipulator redundancy enables many feasible
configurations. We are interested in efficiently finding
feasible paths for such problems.

For example, consider the robot in Fig.1a. It is tasked
with using a handheld drill to tighten three bolts (blue)
during assembly of a truss structure. Each bolt permits
an entire manifold of permissible robot configurations
which would allow completion of the sub-task, many
of which may be either directly infeasible or difficult
to reach given the environment and other subtasks. We
call each of these configurations a root, and collect all
roots which satisfy a particular subtask into a root set.

The planning problem, then, can be formulated as
finding a diverse set of paths between these root sets.
We formalize this problem as the comprehensive multi-
root (CMR) planning problem (Sec. III) and ask the
question:

How can we efficiently maximize connections
between pairs of roots in different root sets?

Fig.1b illustrates a partial solution to a problem with
three root sets where 6 out of a total possible 27
connections have been discovered.

(a) This drilling task can be formulated as
a multi-root planning problem.

X1

X2 X3

(b) Three root sets each
containing four roots.

Fig. 1: The comprehensive multi-root (CMR) problem.

We focus our attention on graph-based planners (e.g.
the PRM [1]) which build an explicit graph approxi-
mating the free configuration space of the robot by in-
crementally evaluating (for collisions) an implicit graph
comprising edges between sampled vertices (Sec. IV).
This explicit graph is then queried to find feasible paths
between different roots.

We can abstract these algorithms as edge sources
which are emitting potential edges for evaluation. Our
key insight is to introduce a deferred edge queue which
postpones the evaluation of certain edges in order to
maximize the CMR objective during planning.

We do so by formally representing the CMR objective
in terms of vertex coloring. This naturally suggests an
evaluation criterion which we can use to prioritize some
edge evaluations over others (Sec. V). When applied
to any edge-evaluating algorithm, the resulting colored
algorithm is provably superior to the original (Sec. VI).

As an example of this approach, we implemented a
colored version of the PRM algorithm (Sec. VII), and
applied it to CMR problems in 2D and 7D.

Fig.2 shows the results of running both the uncolored
and colored versions of the forest-of-trees PRM on a
2D problem with two root sets (one at top, one at
bottom). Each algorithm works on the same set of
samples; since they share the same connection rule, this
induces the same set of potential edges. The remainder
of this section calls out the primary features of colored
algorithms by way of this example.

Fig. 2a and 2b compare the tree states of the al-
gorithms after having performed a collision check on
the same number of edges (86). Bolded edges show
the difference between the free-edge graphs built by
each algorithm. By this point, the colored algorithm



(a) PRM, 86 Edges Evaluated
(195 Edges Considered, 0 Pairs)

(b) cPRM, 86 Edges Evaluated
(344 Edges Considered, 1 Pair)

(c) PRM, 344 Edges Considered)
(125 Edges Evaluated, 8 Pairs)

(d) cPRM, 344 Edges Considered)
(91 Edges Evaluated, 8 Pairs)
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Fig. 2: A comparison between an uncolored (2a,2c) and colored (2b,2d) forest-of-trees PRM on the same sequence of edges. The latter algorithm
colors the graph according to root set connectivity as described in Section IV. Plot (2e) shows the evolution of edges in both algorithms as
they progress as outlined in the introduction, and plot (2f) shows the number of between-rootset pairs found by each.

has found its first connection between the two root
sets (at right, shown in violet), whereas the uncolored
algorithm has yet to find a connection. This is possible
because the colored algorithm has chosen to defer
evaluation of many edges (shown in light grey).

Fig. 2c and 2d show a different comparison. In this
case, the tree states are compared after each algorithm
has finished considering the same number of edges
(344). Here, both algorithms have achieved the same
objective by connecting the same number of pairs (8).
However, the tree built by the colored algorithm is
a subset of that built by the uncolored one; it has
therefore performed fewer edge evaluations (91 to 125).

Fig.2e shows the evolution of edges for each algo-
rithm. When the uncolored algorithm considers each
edge, it is either evaluated for collision (below the black
line) or skipped in order to maintain a forest of trees
(above the black line). The colored algorithm addition-
ally maintains a queue of deferred edges (pattern). This
allows it to perform fewer edge evaluations (below the
green line) for a given input edge. In Section VI, we
prove that these deferments do not affect the CMR
objective. The tree state comparisons discussed above
are called out in blue. Each edge evaluation which
results in additional connected pairs is additionally
denoted with a black circle.

Fig.2f shows the number of connected inter-root pairs
as a function of the number of edges evaluated. The
colored algorithm finds its first pair earlier than the
uncolored algorithm (86 vs 125). Once the colored
algorithm finds one pair, it quickly finds others. Again,
the tree state comparisons are called out in blue.

II. RELATED WORK

While our formulation of the CMR problem itself
is newly introduced, so that no existing planners are
explicitly tailored for it, it is intimately related to several
classes of well-studied motion planning problems.

The classical FindPath or mover’s problem [2], [3]
concerns finding a path between two single states.
However, many approaches are designed to handle
connections between multiple starts, goals, or both. A
problem with multiple starts and goals can be repre-
sented as a CMR problem with N = 2 root sets.

For example, the original A* algorithm [4] searched
for a path between a single start state and multiple goal
states. While single-query sampling-based algorithms
such as the RRT [5], [6] generally consider a single
start and goal state, extensions [7] have allowed such
planners to consider both multiple starts and multiple
goals. Trajectory optimization can also be applied to the
motion planning problem; while typically considered
for single start and goal states, recent generalizations
[8], [9] have extended them to sets of starts or goals.

However, even those approaches that handle start
and/or goal sets typically terminate once a single path
is found, and do not attempt to find multiple diverse
connections between different root sets.

To accomodate more than two root sets, approaches
for multi-query planning (e.g. [1]) may appear better
suited for finding multiple diverse connections. For
example, they have been used for efficiently solving the
single-object manipulation problem [10].

Additionally, some approaches perform similar de-
ferment on edge evaluations to our approach. For ex-



Algorithm 1 Edge Evaluation (graph or forest)

1: procedure EVALUATE(g, va, vb)
2: if va and vb in same connected component then
3: return . Optional, for forest
4: if EDGEFREE(va, vb) then
5: g.E← g.E ∪ {(va, vb)}

ample, so-called “lazy” algorithms, such as [11], [12]
defer collision checking until edges are to be used.

Other recent work has married symbolic and geo-
metric planning for multiple subtasks with multi-modal
planning [13], temporal logic [14], or hierarchical or
bridged representations and interfaces [15], [16], [17].

III. THE COMPREHENSIVE MULTI-ROOT PROBLEM

We work with the robot’s configuration space X and
its collision-free subset X f ree. We consider the general
problem with N root sets in this space {X1, . . . , XN}. We
seek a diverse set of feasible paths between root sets –
that is, we want to maximize the number of connected
roots between sets. We call this the comprehensive multi-
root (CMR) planning problem.

We track progress via the r-score:

r =
∣∣{PATH(xa, xb) | xa, xb in different root sets}

∣∣. (1)

For example, the solution illustrated in Fig.1b has an
r-score of 6 out of a maximum of 27. Our objective is
to maximize the r-score as quickly as possible. We define
this more formally next.

IV. THE CMR PROBLEM ON GRAPHS

We focus on motion planning approaches where X f ree
is approximated by a graph g. For example, in a search-
based planning approach such as A∗ [4], g is a state-
lattice, whereas in a sampling-based planning approach
such as the PRM [1], g is a random geometric graph.

A key feature of these approaches is that the graph g
is implicit, i.e. incrementally discovered and/or evalu-
ated as the search progresses. For example, in a PRM, a
sample is drawn at random from X f ree, all of the local
paths to its neighbors on g are evaluated for collisions
(using a function like Algorithm 1) and collision-free
paths are incrementally added to g as edges.

However, for applications we’re interested in, edge
evaluations are expensive [3] because they require sev-
eral collision checking queries between complex geome-
tries. We therefore want to maximize our objective (1)
while minimizing the number of edges to be evaluated.
To accomplish this, we return to our CMR objective.

V. A GENERAL TECHNIQUE FOR FAST
CMR PLANNING ON GRAPHS

We use the structure of the CMR problem to motivate
a new class of algorithms. We do so by redefining
our objective in terms of the graph’s structure, and
then describing the two insights which characterize our

approach: coloring vertices and deferring edges. We then
show how an algorithm can be extended to include
these features.

A. Viewing our Objective with Vertex and Graph Colorings
Consider a graph g in X f ree applied to a CMR prob-

lem. Here, we show how we can succinctly represent
our objective (1) with respect to this graph.

We define the coloring c(v) of vertex v as

c(v) =

 c1
...

cN

 with ci =
∣∣{PATH(v, x) | x ∈ Xi}

∣∣. (2)

The coloring1 of a vertex is an N-vector, with each
element ci the number of reachable roots in the cor-
responding root set Xi w.r.t. the graph.

Further, we define the colored norm || · || as

||c(v)|| = ∑ cicj for i < j. (3)

The colored norm counts the number of pairs of roots in
different root sets that are connected through the vertex.

Proposition 1: Every vertex in a given connected com-
ponent k has the same coloring ck.

Proof By definition, every vertex in a connected com-
ponent has a PATH to every other vertex; therefore the
color of all constituent vertices is equal. �

We now define the colored norm of a connected
component as the colored norm of any of its constituent
vertices.

Finally, we define the colored norm of a graph g as
the sum of the colored norms of all of its connected
components:

||g|| = ∑
k
||ck|| (4)

For a graph solving a CMR problem, the colored norm
of the graph (4) is equal to the CMR objective (1).

B. Prioritizing Edges via the Graph’s Colored Norm
Due to the expense of evaluating edges as mentioned

in Sec. IV, we endeavor to maximize the CMR objective
(4) while minimizing the number of edges evaluated.
The reformulation of the objective in terms of graph and
vertex coloring suggests a method to prioritize certain
edge evaluations over others.

We first consider the myopic criterion shown in Al-
gorithm 2. When a potential edge between two vertices
va, vb is considered, we determine whether the inclusion
of this edge in our graph g would immediately improve
our objective. If so, we proceed to evaluate the edge.

However, when initialized with a graph consisting of
only roots, this criterion will only allow edges which
connect directly between roots of different root sets.
In complex problems, the probability that such edges

1Our use of the term “coloring” with respect to graph vertices is
not to be confused with the proper graph color assignment problem.



Algorithm 2 Myopic and Balanced Edge Criterions
1: function MYOPICCRITERION(g, va, vb)
2: g′.V ← g.V
3: g′.E← g.E ∪ {(va, vb)}
4: if ||g′|| > ||g|| then . Check objective
5: return True . Evaluate edge
6: else
7: return False . Do not evaluate edge
8: function CRITERION(g, va, vb) . Balanaced
9: g′.V ← g.V

10: g′.E← g.E ∪ {(va, vb)}
11: if ||g′|| > ||g|| then . Check objective
12: return True . Evaluate edge
13: else if exatly one of c(va), c(vb) is 0 then
14: return True . Evaluate edge
15: else
16: return False . Do not evaluate edge

are feasible is quite low – the purpose of intermediate
vertices is to find a path within complex X f ree spaces.

Therefore, we propose a balanced criterion which
allows for exploration of X f ree. This approach addition-
ally evaluates edges which would provide an uncolored
vertex (i.e. with c(v) = 0) an initial coloring.

C. A Compact Depiction of Vertex Coloring

Note that in the graph colored norm test ||g′|| > ||g||,
the new graph g′ differs from g by a single new
edge (va, vb). In the case that va and vb are already
in the same connected component, the additional edge
trivially has no effect on the colored norm, and the test
fails. Otherwise, the test can be restated as

||g′|| > ||g|| iff ||ca + cb|| > ||ca||+ ||cb||. (5)

By definition of the colored norm, taking for brevity
cx = [x1, . . . , xN ]

>, we can express the inequality in
terms of the coloring’s vector components as:

∑
i<j

(ai + bi)(aj + bj) > ∑
i<j

aiaj + ∑
i<j

bibj (6)

∑
i<j

aibj + ∑
i<j

biaj > 0 (7)

or simply

||g′|| > ||g|| iff ai, bj nonzero for some i 6= j. (8)

Thus, the result of our criterion for an edge (va, vb) is
dependent only on the distribution of nonzero entries
of each coloring ca and cb. Therefore, in our examples,
we depict an N-coloring by simply assigning a primary
color to each vector component, e.g.

c :
[

2
0

]
7→ Red, c :

[
0
1

]
7→ Blue, or c :

[
4
5

]
7→ Violet.
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(a) The edge queue acts as a prioritized buffer which only dequeues
edges which meet the given criterion ( ) by indefinitely deferring
failing edges ( ).
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(b) The edge source can generate a batch of edges; the edge queue
then processes until no more can be dequeued.
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(c) The edge source and edge queue can be interleaved so that edges
are generated in just-in-time fashion.

Fig. 3: Illustration of the edge queue. Edges which pass the criterion
(shown in solid green) are dequeued in first-in-first-out order; others
(shown in striped grey) remain in the queue. The algorithm produces
identical results in either batch or interleaved operation. The exam-
ples from (3b,3c) are from the problem described later in Fig.4.

D. Deferring Edges

While a considered edge may fail our criterion early
in the planning process, because the criterion depends
on the state of the graph, the failed edge may eventually
pass once the graph has grown. Therefore, instead of
overlooking a failed edge entirely, we instead defer it
until subsequent iterations. To support this, we propose
the introduction of a deferred edge queue. The mechanics
of this queue are illustrated in Fig.3.

The edge queue can be implemented as a priority
queue with binary priority {low, high} such that (a)
only elements with high priority are dequeued, (b)
elements with the same priority are dequeued in FIFO
order, and (c) element priorities can be changed.

Such an edge queue can be introduced into any
incremental graph construction algorithm. In the case
that the edge adjacency rule for each considered edge is
independent of past edge evaluations, the proofs in Sec-
tion VI provide theoretical guarantees on performance
as a result of the introduction of the queue.

An example of introducing the colored edge queue
into a generic algorithm is shown in Algorithm 3. The
GETNEXTEDGE implements any desired graph con-
struction rule, such as an r-disk or k-nearest PRM. Note



Algorithm 3 Converting a Generic Algorithm to Use the Colored Edge Queue
1: procedure GENERICALGORITHM
2: g.V ← ∅; g.E← ∅
3:
4: loop
5: (va, vb)← GETNEXTEDGE()
6: EVALUATE(g, va, vb) . graph or forest

1: procedure GENERICCOLOREDALGORITHM
2: g.V ← ∅; g.E← ∅
3: Qedge ← ∅ . Initialize an empty edge queue
4: loop
5: (va, vb)← GETNEXTEDGE()
6: CONSIDER(g, Qedge, va, vb) . Instead of EVALUATE

1: procedure CONSIDER(g, Qedge, va, vb)
2: Qedge.PUSH((va, vb))
3: while (va, vb) = Qedge.POPFILTERED() using CRITERION(g, ·) do . Dequeue first edge meeting criterion
4: EVALUATE(g, va, vb) . graph or forest

that while the edge source and queue processing can be
batched, we show the interleaved case for convenience.
During queue processing, each edge (in the order it was
enqueued) is considered via our criterion (line 3). If the
edge passes this check, it is dequeued for evaluation;
otherwise, it is deferred until later, remaining in the
queue. The dequeued edge is then evaluated according
to the traditional EVALUATE rule (e.g. forest-of-trees).

The introduction of the deferred edge queue based
on our criterion produces the behavior seen in Fig.2. A
more illuminating example is shown in Fig.4.

VI. ANALYSIS

Here, we analyze and compare a generic forest-of-
trees (i.e. forest) algorithm with its colored variant
(as shown in Algorithm 3). The proofs in this section
depend on two lemmas which we investigate in turn.

A. Criterion Failure Transitivity
Lemma 1: Given a graph g and three of its con-

stituent vertices va, vb, and vc, if CRITERION(g, va, vb)
and CRITERION(g, vb, vc) both evaluate to False, then
CRITERION(g, va, vc) also evaluates to False.

Proof If the criterion evaluates to False for both (va, vb)
and (vb, vc), then it implies two propertices of their
colorings ca, cb, and cc. First, either they are all zero
or they are all nonzero. Second, from (8) it holds that
that aibj = 0 ∀ i 6= j and bjck = 0 ∀ j 6= k.

In the case that they are all the zero coloring, then
CRITERION(g, va, vc) is trivially False.

If they are all nonzero, there must be some nonzero
element bj in cb. It therefore holds that ai = 0 ∀ i 6= j
and ck = 0 ∀ k 6= j. Thus, aick can only be nonzero if
i = j = k, implying that aick = 0 ∀ i 6= k. By (8), this
shows that CRITERION(g, va, vc) evaluates to False. �

B. Comparative Analysis via a Composite Algorithm
For the purpose of comparing the uncolored and

colored forest algorithms, we consider the behavior
of both algorithms considering the same sequence of
edges {e1, e2, . . . }. When a new edge in the sequence
is considered, the composite algorithm first allows the
uncolored version to update, and then allows the col-
ored version to update. While the algorithms evolve
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Fig. 4: A very small problem as an example. Edges are considered
by both algorithms in order A,B,C. The colored algorithm achieves a
higher r-score earlier by deferring edge B. Fig.4c shows that while the
uncolored algorithm (black) evaluates each edge as it is considered,
the colored version (green) defers an edge evaluation. Fig.4d shows
that the colored algorithm connects its first pair after two evaluations.

independently, we can directly compare their behavior
because they share the same set of potential edges.

We track the state of each algorithm by assigning one
of four labels to each considered edge:

Q in the queue
F evaluated and collision-free
C evaluated and in collision
S skipped due to forest constraint

To compare the progress of the uncolored and colored
algorithms, each considered edge is tagged using a pair
of these labels. For example, an edge labeled FQ has
been evaluated to be collision-free by the uncolored
algorithm, but is still in the queue of the colored
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Fig. 5: Possible composite label transitions. Section VI-B proves that
the red states can never be reached.

algorithm. There are sixteen possible composite labels.
The proofs in this section rely on a proposed invari-

ant over these composite labels. Once we have shown
that the invariant holds, we can use it to prove relations
between the trees built by each algorithm.

Invariant 1: Every composite label for a considered
edge is in {QQ, FQ, CQ, SQ, FF, CC, SS}.

Lemma 2: Invariant 1 holds throughout the compos-
ite algorithm.

Proof To prove Lemma 2, we show that it is true at
the start of execution, and then show inductively that
it is maintained throughout execution of the compos-
ite algorithm. See Fig.5 for an illustration of allowed
transitions that we demonstrate here.

Base case: When the composite algorithm begins, no
edges have yet been considered, so the invariant is
trivially true.

When a new edge is considered, it is placed in both
queues with label QQ (and the invariant holds).

Next, the uncolored algorithm updates. Since edges
in its queue are always immediately considered, the
edge is dequeued and evaluated. Depending on the
connectivity of the space and the existing graph, each
transitions to one of {FQ, CQ, SQ} (and the invariant
holds). When finished, the uncolored queue is empty,
and so no edges remain as QQ.

Next, the colored algorithm updates. Zero or more
edges are iteratively dequeued because they satisfy the
CRITERION. Each edge dequeued is initially labeled as
one of {FQ, CQ, SQ}. We consider each case in turn.

If the dequeued edge ei (connecting va and vb) is
labeled FQ or CQ, we first show that it cannot transition
to FS and CS, respectively. Imagine that it did get
skipped by the colored algorithm. That would imply
an existing path P through the colored graph between
va and vb consisting of edges of type XF. Due to our
invariant, such existing edges must be FF. But, then,
the uncolored algorithm would have also skipped it.
Therefore, dequeued edges having FQ or CQ cannot
transition to FS and CS, respectively.

Furthermore, FQ cannot transition to FC, since that
would imply that the two algorithms evaluated the
same edge yielding a different result. Similarly, CQ
cannot transition to CF. Therefore, FQ must transition
to FF and CQ to CC, and the invariant holds.

Last, we consider the case that the dequeued edge ei
is labeled SQ. Since it was skipped by the uncolored

algorithm, it must have been in the same connected
component w.r.t. the uncolored graph at the time it
was considered. Therefore, there must be a path P of
edges (ep1 , ep2 , . . . ) consisting of earlier edges (i.e. pj < i)
through X f ree, such that each edge ep1 is labeled FX for
some colored label X. In fact, due to our invariant, each
edge must be either FQ or FF.

We now show that it is impossible for any edge in
P to be FQ. For a moment, consider that one or more
edges in P are FQ. Since all edges in P are earlier than
ei, all that are FQ must not satisfy the CRITERION, or
they would have been dequeued before ei. By Lemma 1,
the endpoints of P must therefore also fail CRITERION.
However, since edge ei was dequeued, its vertices va, vb
must simultaneously satisfy CRITERION. Due to this
contradiction, we know that no edges on P are FQ.

Therefore, all edges in P must be FF, and ei will be
skipped by the colored algorithm because both va and
vb are in the same connected component. Therefore, ei
will receive SS, and the invariant holds. �

C. Theoretical Proofs

Theorem 1: For the same sequence of edges, the free-
edge graph built by the uncolored forest algorithm is a
subset of that built by the colored forest algorithm.

Proof To prove Theorem 1, it is sufficient to show that
no edge is non-free in the uncolored algorithm and free
in the colored algorithm. Under our labeling, such an
edge would have a label in {QF, CF, SF}. Lemma 2
asserts that such a labeling is impossible. �

Theorem 2: For the same sequence of edges, every
edge evaluated by the colored forest algorithm is also
evaluated by the uncolored forest algorithm.

Proof To prove Theorem 2, it is sufficient to show that
no edge is both unevaluated by the uncolored algo-
rithm and evaluated by the colored algorithm. Such an
edge would have a label in {QC, QF, SC, SF}. Lemma 2
asserts that such a labeling is impossible. �

Theorem 3: For the same sequence of edges, after both
algorithms have finished processing, the graph built by
the colored forest algorithm has the same colored norm
||g|| as that built by the uncolored forest algorithm.

Proof To prove Theorem 3, we show that the value
of the colored norm of the graph built by the colored
algorithm ||gc|| can be neither greater than nor less than
that built by the uncolored algorithm ||gu||.

First, since we have shown in Theorem 1 that the
colored free-edge graph is a subset of the uncolored
free-edge graph, it follows directly that every pair of
roots connected by gc must be also connected by gu.
Therefore, ||gc|| must not be greater than ||gu||.

Next, we suppose that ||gc|| is less than ||gu|| after
both algorithms have processed their queues. In such a
case, there must exist a pair of roots va, vb in different
root sets that are connected through gu, but not through



Algorithm 4 Colored PRM

1: procedure COLOREDPRM({X1, . . . , XN}) . Algorithm initialized with N root sets
2: g.V ← ∅; g.E← ∅ . Initialize with empty graph
3: Qedge ← ∅ . Initialize edge queue
4: while CONTINUE(g) do . Run until termination
5: if all roots not added then
6: vnew ← NEXTROOT({X1, . . . , XN}) . Initially add each root to the graph
7: else
8: vnew ← SAMPLEFREE() . Sample a vertex in free space
9: g.V ← g.V ∪ {vnew} . Add vertex to graph

10: for vnear ∈ NEARBY(g, vnew) do . Consider all existing nearby vertices
11: CONSIDER(g, Qedge, va, vb)

gc. Consider such a path P connecting va and vb;
since it connects through gu, it must be composed of
composite edges labeled FQ or FF due to Lemma 2.
Since the colored queue has finished processing, every
edge labeled FQ must fail CRITERION. By Lemma 1,
the endpoints of P must therefore also fail CRITERION.
However, because va and vb are in different root sets,
they must satisfy CRITERION. This contradiction proves
that ||gc|| must not be less than ||gu||. �

D. Conclusion
Due to Theorems 2 and 3, we have shown that after

each iteration, the colored forest algorithm achieves the
same CMR objective score as the uncolored algorithm,
while performing fewer (or equal) edge evaluations.

VII. THE COLORED PRM ALGORITHM

To illustrate the performance of the coloring ap-
proach, we applied it to the PRM. The resulting
algorithm, the COLOREDPRM, is shown in Algo-
rithm 4. Note that we commit to neither a particular
termination criterion CONTINUE, a sampling proce-
dure SAMPLEFREE, nor an edge evaluation function
EDGEFREE. Note that we also don’t specify NEARBY; in-
deed, the colored queue can be introduced into any al-
gorithm which searches over edges of an incrementally-
constructed implicit graph (e.g. classical PRM, r-disk
PRM, etc) in any order (e.g. nearest first, etc).

The algorithm begins with an empty edge queue
(line 3). Each iteration proceeds as a classical PRM; a
new vertex is sampled from X f ree and added to the
graph (lines 5-9), and we iterate over a subset of existing
vertices (e.g. within a radius) in some order (e.g. by
increasing distance) (line 10). Whereas a classical PRM
would immediately evaluate each edge, we instead call
CONSIDER as defined in Algorithm 3 (line 11). This
enqueues the edge and then processes the queue.

A. Qualitative Behavior
The forest-of-trees COLOREDPRM evolves similarly

to its uncolored variant, with two exceptions. First,
edges between the same root set are initially deferred.
Second, edges that are in unreached portions of the

(a) PRM, 434 Evaluated
(1570 Considered, r = 0)

(b) cPRM, 434 Evaluated
(3357 Considered, r = 1)

(c) PRM, 3357 Considered
(738 Evaluated, r = 100)

(d) cPRM, 3357 Considered
(452 Evaluated, r = 100)
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Fig. 6: The cPRM indefinitely defers edges in unreachable regions.
Fig. 6b shows the colored algorithm just as it finds its first connected
pair; no other roots are yet connected yet, as potential connecting
edges have been deferred. Once the first connection is made, the
colored algorithm quickly connects all roots, from (b) to (d).
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Fig. 7: Edge evolution for the HERB drilling problem. Black circles
denote additional pairs connected.

state space are entirely deferred. This is most clearly
exemplified in Fig.6. This tends to induce behavior
reminiscent of a multi-directional RRT.

B. Complex 7-DOF Manipulator Drilling Problem
We applied the COLOREDPRM to a drilling problem

on the HERB robot [18], shown in Fig.1a. Drill poses
and manipulator inverse kinematic solutions for the 7-
DOF arm were discretized and tested for collision; the
resulting root sets contained 25, 112, and 142 roots. To-
gether with the single starting configuration comprising
its own root set, the problem consisted of four root sets
with a total of 280 roots. Both the uncolored and colored
variants of the PRM were run with the same set of
samples with an r-disk radius of 3.0 rad and collision
checking resolution of 0.02 rad.

The results are shown in Fig.7. The first pair
was found after 3572 edge evaluations (5802 collision
checks) The four root sets were fully connected after
5310 evaluations (23627 checks). For the uncolored
PRM, this compares to 5675 evaluations (15493 checks)
until the first pair was found, and 7314 evaluations
(32861 checks) until the sets were fully connected.

VIII. DISCUSSION

We formulated the comprehensive multi-root (CMR)
planning problem, and by representing its objective
over a graph using vertex coloring, we motivated the
introduction of a deferred edge queue into incremental
graph building algorithms. We proved that the result-
ing colored algorithms are superior to their uncolored
counterparts for the CMR problem, and showed exam-
ples in both 2D and 7D spaces.

In this paper, we did not consider optimality of the
solution, opting instead to focus on the forest-of-trees
approach to graph building. We note, however, that our
criterion applies equally well to full graphs; indeed it

induces similar behavior to a forest-of-trees approach
for all unconnected roots.
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