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Abstract— Modular robotic systems with no fixed mechanical
contacts have the ability to adopt and reconfigure very rapidly,
but are very difficult to control dynamically. Moving module
solely with electro-magnetic or -static forces can lead to un-
wanted slipping or even loss of contact. This paper presents
a strategy to design controller for such modules based on the
limits derived by combining the contact constraints and the
actuator saturation. We demonstrate the design of a simple but
effective controller for two module motions. We also present
guidelines for the design of the modules based on the controller
limitations.

I. INTRODUCTION

A metamorphic system is comprised of an ensemble of
modular units that are connected to one another. Mod-
ules are usually capable of motion relative to each other,
thereby moving the entire system. Metamorphic systems
are especially attractive due to this modular construction
as they can achieve a rich set of complex motions by the
collective actuation of the individual simple modules. Since
reconfiguration of the entire system is achieved by the local
motion of numerous individual modules about each other, the
design of robust mechanisms and algorithms for local motion
are crucial for the function and efficiency of the system.

Physical interactions between modules are threefold: when
not moving, individual modules need to stay connected to
each other; modules must exert forces on each other to cause
motion; and modules in motion must eventually stop and
latch onto other modules. Traditionally, these interactions
have been realized by means of latches which comprise
of mechanical structures that are actuated to engage and
disengage modules, such as the MTran [11], ATran [6],
CORNO [8] and Polybot [18] systems. Latching mechanisms
have the advantage of a guaranteed strong mechanical lock
once engaged. However, they suffer from a few problems.
First, latches comprise of, sometimes intricate, moving parts
that need to be manufactured and assembled for each module.
Second, repeated actuation can lead to wear and tear and
eventual failure of the latches. Third, latches merely connect
and disconnect thus needing additional mechanism to actuate
module movements.

Claytronics [4] envisions million-module self reconfig-
urable robot ensembles capable of reproducing moving,
physical 3-D shapes. To facilitate module manufacturing
and speedy reconfiguration, this system uses modules which
bond to each other without engaging any mechanical latches
or hooks [9]. At a macro-scale Claytronic modules, called
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catoms, employ a number of electromagnets arranged around
the spherical or cylindrical module as depicted in Figure 1(a).
At the micro-scale we envision actuation using a similar
arrangement of electrostatic actuators. Latch-less systems
offer numerous advantages. First, the latching mechanism
has no moving parts as engagement and disengagement are
achieved by just changing the polarity of the electromagnets.
Second, ‘Force-at-a-distance’ mechanisms are used not only
to adhere but also to actuate the modules by using adjacent
electromagnets. Third, each electromagnet provides a con-
tinuous area of contact points between modules.

The price paid for all of the above advantages is in
algorithmic complexity. The lack of fixed contact between
the modules poses the challenging problem of modules
much more likely to slide past each other, or worse, lose
contact and disengage as they move. Successful motion, thus,
requires the careful orchestration of electromagnetic forces at
multiple contacts, in addition to motion planning challenges.
Another issue with latch-less, cylindrical, magnetic modular
robots is that we do not have the luxury of velocity-controlled
mechanical joints, independent module actuation, or self-
limiting step-wise actuation mechanisms, and must consider
dynamics in all actuation.

In this paper we present a methodology to design control
strategies to achieve desired module motions without slip
or loss of contact. There are three important goals of this
paper. First, we demonstrate a strategy to combine the contact
constraints, namely, no-slip or no loss of contact condition
and the actuator limits, namely, the strength of magnets to de-
termine the limits for controller design. Secondly, we demon-
strate design of a simple but effective controller using these
limits. And finally, we demonstrate how different design
choices affect these controller limits and thus lead to useful
design guidelines. Tools exist in the mobile robotics [3] and
the manipulation [17] literature for control synthesis under
dynamic contact constraints such as slip and loss of contact.
In this paper we present the adaptation of these tools to
metamorphic systems. Specific challenges such as modeling
the magnetic forces, modeling the ground friction forces are
addressed here.

We focus our discussion on the reconfiguration of an
ensemble of cylindrical modules in a planar lattice. Here,
a module moves from one lattice position to an empty
position by rolling against a neighbor. This is an important
class of movement is used as the base motion primitive
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for a variety of scalable, distributed shape reconfiguration
and planning algorithms, including hole motion [13] and
templated hierarchical planning [2] as shown in Figure 3.
To make the analysis of a catom rolling against a large
ensemble tractable, we use a two catom model, fixing one
as immovable, closely approximating the neighbor attached
to a large mass of other catoms (Figure 1). We separately
analyze the stopping condition when a moving catom comes
to rest against neighbors in its new lattice position, ensuring
the impact does not cause slipping or loss of contact at the
moving interface. These analyses fully define the dynamics
of lattice-style reconfiguration of planar, cylindrical catoms
employing force-at-a-distance actuation and no mechanical
latching mechanisms.

magnets

Electromagnets Stator /" Rotor

(a) An overhear view of two
Catoms

(b) Sketch of two interacting
Catoms

Fig. 1. Two interacting Catoms: a stator Catom fixed to ground and a
rotor Catom revolving around stator.

Fig. 2. Catom flies off: as we try to control the rofor motion around the
stator, the rotor flies off at high velocity.

(a) Sketch of hole motion with
catoms [13]

(b) Sketch of kinematic plans
with catoms [2]

Fig. 3. Examples of catom motion plans.

In Section II we present the detailed model of two in-
teracting catoms including the magnetic force model. We
also present a mathematical condition to check for the
slipping between two catoms. In the same section we also
present a simple control strategy for two interacting catoms
which does not give good results. In Section III we present
a methodology to combine the friction cone limits with
magnetic force limits and we also present control strategies
based on the combined limits. In Section III-D we present a
simple but effective controller for two catom motion based
on the strategies presented in III. In Section IV we present
some general design guideline based on the controller limits.
Finally, in Section V we conclude and present ideas for future
work.

II. TWO INTERACTING CATOMS

Figure 1(a) shows the hardware of two interacting catoms
and Figure 1(b) shows the corresponding cartoon. The catom
motions are achieved by modulating the strength of the
magnets around the periphery of the catoms. For the purpose
of our analysis, we assume that the magnets are at a depth
of d,, from the catom surface.

The analysis of the motion of one catom in the ensemble
can be simplified by assuming that the ensemble is suffi-
ciently large so that it does not move in response to the
motion of the single catom. In that case, the problem can
be simplified to that of two interacting catoms with one of
the catoms fixed to ground (representing the ensemble) and
other other catom free to move in the plane. We want to
design a control strategy to get the moving catoms (rotor)
revolve around the fixed catom (stator) by a desired angle.

Since there is no latching mechanism that secures the two
catoms to each other, there is a possibility of slip between
the catoms, which is undesirable as it leads to misalignment
between the magnets, or worse, there is a possibility of
loss of contact between the catoms. We want to design a
controller to rotate the rofor around the stator without slip
or loss of contact.

A. Dynamics of Two catoms

We derive they dynamic equations of planar motion of two
interacting catoms. We assume a Coulomb friction model at
the contact between the two catoms and also at the surface
contact between the ground and the rotor. We also assume
that the catoms are aligned at the start of motion. Our goal
is to keep them aligned throughout the motion.

The physical parameters for the catoms are based on the
hardware system and they are: mass, m = 0.2Kg, catom
radius, R = 2cm, magnet radius, R,, = 0.8R, gravity, g =
9.8m/s2, number of magnet, n,, = 18, coefficient of friction
between the rolling catoms, p. = 0.5, coefficient of friction
between the ground and the catom p, = 0.5, angular distance
between the magnets, ¢ = 3—1

The condition that the catoms must not slip or lose contact
can be expressed in terms of a friction cone constraint. This
idea is used previously by Srinivasa et al. [16] for robotic
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Fig. 4. Force vectors in the system two interacting catoms. Zoomed-in
view shows two active pair of magnets: the normal force and the tangential
force are at the point of contact C and angle is 6.

manipulation problem and also by Deshpande and Luntz [3]
for mobile robot applications. The basic principle is that,
to avoid slipping, the resultant contact force, at the point of
contact C between the catoms, must lie inside a cone defined
by angle @ where o = arctan(u.); p. is the coefficient of
friction between the rolling catoms.

The system of two interacting catoms with one catom
fixed to ground has one degree of freedom (DOF) and we
can define it as the angle @ that the line joining the two
centers makes with the horizontal. To check for the no-slip
condition we need to determine the contact forces between
the two catoms and these forces depend on the applied
magnetic forces as well as the dynamics of catoms. One
way to bring these forces into the analysis is to introduce
extra degrees of freedom in analysis and then constrain
these extra degrees of freedom. This is similar to the idea
of Lagrange Multiplier [5] or the idea of pseudo robots
introduced by [3]. Since we want to determine the normal
and the tangential forces at the point of contact, to check for
friction cone constraint, we introduce two extra degrees of
freedom: x and y: which are the x-location and the y-location
of the center of mass of the rofor, respectively. Thus the
set of generalized coordinates is: q = [z, y,0]". We derive
the equations of motions of this system using the Kane’s
dynamics methods[7] and they are:

Mq - Gcfc + Gele + GGQFm (1)

subject to the rolling contact constraint:
GT'q = 0

or 10

0 1

2R sin(0)
—2Rcos(0) |’ 2)

and f, is the contact force matrix f. = [N,, F.]T. We have
defined a rotating frame A with unit vectors a1, a2, &3 such
that &; is aligned with the line joining the two centers. Thus,
a; = cos(f)i + sin(A)j and ay = — sin(6)i 4 cos(#);. The
contact force vectors are: No = N.a; and F. = F.ay. Fyq
is the reaction force as the rotor slides along the ground. We
model it as a force applied at the center of the rotor, with
magnitude Fy = ugSz’gn(é)mg, in the direction opposite to
the direction of motion: Fq = Fya;. M is the mass matrix
as defined below:

m 0 0
M=|0 m 0 |, 3)
0 0 mR?

G, is the grasp map of the contact forces

cos(f) —sin(0)
Gc= |sin(f) cos(d) |, 4)
0 R
and, Ge; and Geq are as follows:
sin(0)
Gey = [ —cos(9) | , 5)
0
cos(0) cos(0)
Ges = sin(6) sin(6) | . (6)
Ry, sin(¢p — 0) Ry, sin(0)

1) Magnetic Force Model: Our magnetic force model is
based on the assumption of two point charges generating
the magnetic field. We model the magnitude of the magnetic
force between two magnets of the two catoms as inversely
proportional to the cube of the distance between the magnets
and the direction of the force along the line joining the two
magnets. If r is the vector connecting two magnetic points,
then

Ko Kec,
_mart T4
[T

, where K,,,, is a magnet constant and for our hardware
system is equal to 107 N-m3 and K. is the control
parameter for controlling the magnet force. Figure 4 shows
the magnet forces at point ai, as, by and bs. The dotted
vectors represent the forces between the cross magnet pairs.
The vectors of these forces F,, are derived as follows:

Fu, = Fm;t; =

(N

r11 = d(a1b1)a; = 2R — 2R, cos(¢ — 0))ay,

riz = d(albg)a{bz =[2R — 2R, cos(¢ — 9)]a11)2,
rip = d(albl)agAbl = [2R — 2R, cos(¢ — 9)]a2})1,
ro2 = d(agb2)a; = [2R — 2R, cos(f)]ay,
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Fm = |:F ;:| = Dmathata (8)
where,
Kmazx Kmazx
Dinat = ld%’;z'” d%’;z“ﬂ ;
d(azbo)[F Tid(azba)°
Kc
Kopat {KC;]. ©)

III. CONTROL SYNTHESIS FOR CATOM MOTION

Based on the model of motion dynamics for two catoms
we want to design controllers to achieve desired motion
of the rotor from the initial state to the final state. While
following the motions we want to make sure that catoms
do not lose contact and do not slip. These conditions can
be represented in terms of kinematic constraints (given by
Equation 2) and constraints on the contact forces at point
C. Introduction and constraining of degrees of freedom as
shown in the earlier section does allow for determination the
contact forces f. under the dynamic conditions.

One strategy for designing controller is to design feedback
control law for the desired angle of revolution of the mover
and then employ a check in terms of kinematics and contact
cone constraints for each time step. We employed such
strategy with a simple PID controller but it failed to a keep
the contact forces inside the friction cone limit. We believe
that the reason for the failure of such a control strategy is that
we only react when cone constraints are close to be violated
and there is no consideration for the speed at which cone
constraint limits are approached.

To this end we propose a novel strategy. Our idea is
to combine the kinematics constraints and contact force
constraints, determine a set of allowable motions based on
the combined constraints and then design a control law that
executes desired motions from the allowable motions. This
idea is adapted from the analysis presented by Srinivasa et
al. for the robotic manipulation problems [16], [17] and by
Deshpande and Luntz for the mobile robot applications [3].

In this section we start out by showing a strategy to com-
bine kinematic and contact force constraints. We combine
the constraints by first transforming all the constraints in the
catom acceleration space. This results in a allowable motion
region represented in the catom ‘angle - angular velocity -
angular acceleration’ space. Lets consider the equation of
motion of the system:

Mg = Gfe+ GoFa+ GeoFrm. (10)

We can re-write it as:

g = M 'Gfe+ M 'GaFq+ M 1GuFm. (11)
The kinematic constraints for this system are: GT¢ = 0.
Taking the time derivative of the kinematic constraints give:

GTq+G"4=0
Substituting g from 11 gives:
GTq+GT(M'Gefe + M G Fa + M 'GeaFim) = 0

GTq+G" MG Fq
+GTM_1G62Dmathat = _GTM_IGcfc (12)

Equation 12 gives the relationship between the contact forces
f. and actuation forces defined by [Kc1, Kco]? for a given
{q,q}. Lets define G := GTM~'G, and we can re-write
Equation 12 as':

G HGTq+ GT MG Fq +

GT'M ™' G 2Dt Kmat) = fe (13)

So far we have combined the kinematic constraints on the
catoms with the dynamics of the catoms and we have f,
explicitly appearing in Equation 13. Now we can impose the
‘no slip’ and ‘no loss of contact’ conditions by constraining
f. determined as above. As mentioned earlier we set up a
friction cone constraint which says that is that f. must lie
inside the friction cone defined by the coefficient of friction,
and represented by F, at the point of contact C i.e. f. € F.
This constraint can be represented mathematically as follows.

A. Representation of Friction Cone Constraint

The cone condition can be specified mathematically as
what is called the ‘face normal representation’. The 2D
version of this representation utilized two unit vectors nj
and ng each normal to one edge of the 2D friction cone.
The friction cone satisfaction condition for a contact force
vector (e.g. g) is then set up as follows:

n,]"}

Thus the friction cone condition f. € F can be written as
N.f. <0, where

F={g:Ng<0,N=[n (14)

—sin(a)
— sin(a)

cos(a)

N = — cos(a)

a = arctan(p.), and p. is coefficient of friction at the
contact point C.

B. Limits on Kcs and 0

We can incorporate the face normal representation of the
friction cone condition, N.f. < 0, with Equation 13 as
follows:

NG HGTq+ G M G Fq +

GTM_lGeQDmathat) S 0 (15)

Above equation gives us the linear inequalities in terms of
Kec; and Kcy corresponding to the friction cone condition.
We can combine these with the min-max limits on K ¢; and
Kcs to determine the region of allowable values. Figure 5
shows intersection of the min-max limits of Kecs with
inequalities represented by lines L1 and L2 for § = 0.2
rad, 0 = 1 rad/sec. The shaded polygon in the figure is the
allowable region of the Kc; and K¢y values.

INote that it is proved that under the condition of no internal forces,
which is true in our case, (G is invertible [15].
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Fig. 5. Combining min-max Kc limits with limits from friction cone
constraint,for # = 0.2 rad, 6 = 1 rad/sec. Vertices give the extreme values.

Srinivasa [15] has proved that such a region must be
convex and hence the extremities, Kccyireme, Of this region
are at the vertex points of the shaded polygon as shown by
the black dots in Figure 5. We can determine the allowable
region polygon and the extremities of the allowable region:
Kcertreme, for the range of interest of {q,q}. Once we
know Kceztreme then we can determine fceyireme using
Equation 13 and then can determine (eztreme USing Equa-
tion 10 for the range of interest of {q,q}. Figure 6 shows
the plot of the upper and lower limits on 0 for range of
values of @ and 6. Since these regions are determined by
incorporating kinematic constraints, contact force constraints
and the actuator limits any value of {6, 0, 9} inside the region
encompassed by the two surfaces is a feasible motion for the
system.
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Fig. 6. Limits on acceleration (6) based on the actuator limits .and no-slip
condition at various values of rotation angle (6) and velocity ().

C. Limits on 6 and Control Synthesis

Determination of limiting surfaces as shown in Figure 6
is extremely useful because based on these limiting surfaces
the controller design can be carried out in two stages:
design of a trajectory from the start to the goal inside the

allowable region, and then design of a feedback controller
to follow such trajectory. Optimal control design techniques
such as Dynamic programming [1] can be employed to
design optimal trajectories going from the start to the goal
in the allowable region in the {6, 6,0} space.

Also these limiting surfaces can be pre-computed for the
given design parameters of the catoms and can be pre-
fed in the catom controllers. This will drastically reduce
the algorithmic complexity which would otherwise arise if
we tried to incorporate the dynamics of the catoms in the
controller design.

1) Feasibility of a Trajectory: Determination of feasibility
of a trajectory from a start location to an end location in
6-6-6 space under the combined constraints represented by
the limiting surfaces as shown in Figure 6 is an interest-
ing problem. Many researchers have presented methods to
determine feasibility of trajectories from start to goal under
constraints in 2D and 3D spaces [10], [12], [14]. For the
sake of simplicity we use a sufficiency test for our example.
We initiate a trajectory from the start location (6, ég) with
maximum allowable émam at that location. And we initiate
a backward trajectory from the goal with negative minimum
allowable _émin at that location. If these two trajectories
intersect, while satisfying the combined constraints repre-
sented by émm-émaz surfaces, then we know that there is at
least one trajectory that reaches from start to goal. Figure 7 a
sketch of phase plot with start and goal locations. The arrows
at each location represent the acceleration limits based on
combined constraints. Figure shows a trajectory starting
from start with maximum allowable acceleration and another
trajectory from reverse of minimum allowable acceleration.
These trajectories satisfy min-max acceleration constraints
by staying within the bounds represented by the arrows and
intersect, which is a sufficient condition for existing of a
feasible trajectory.

Velocity

Fig. 7. Determination of feasibility of a trajectory from start to goal under
acceleration constraints.

D. Controller Design and Simulation Results

We have designed a simple control strategy for the two
interacting Catom model using the 0 limit plot. As mentioned
earlier, once we have the @ limit plots the controller design
can be divided into two parts: design of a feasible trajectory
and then design of a controller to follow this trajectory. We
want to design a controller to revolve the rofor from one
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Fig. 8. Performance of a simple feedback controller which is designed
using the allowable volume in the phase space. Controller tried to follow a
trajectory given by 8(a). Figure shows good tracking performance and also
satisfaction of combined constraints

pair of magnets to the next pair, that is, by = 27 radians. To

determine a trajectory, we forward simulate from the start
{6 =0, § = 0} with Omas at the start and we simulate
backward from the goal {6 = 3” 0= 0} with Opmin at the
goal. Our trajectory then is the forward trajectory from the
start and then switch over to the trajectory from the goal at
the point of intersection. Figure 8(a) shows the trajectory.
We then design a simple PID controller based only on the
angle feedback to follow along this trajectory.

Figure 8(b) and 8(c) the tracking performance of ¢ and 9
respectively. Figure 8(d) shows variation of ¢ and 6 min-max
limits as @ and 0 values vary. Note that 0 stays well within
the min-max limits thus showing that such controller will
work under the given actuator limits as well as the no-slip
condition. The goal of this control design exercise is not to
present an optimal controller but to demonstrate that once
we have the 6 limits from the combined constraints then the
controller design can simplified drastically.

E. Stopping Conditions

As a catom moves around an ensemble it may encounter
another catom in its path which will result in an impact. We
can check for no slip and no loss of contact conditions under
impact by adding the a term representing the impact force in
Equation 10. Then we can carry out the analysis as shown
above and friction cone condition at contact points between
the collided catoms and the ensemble.

IV. DESIGN GUIDELINES BASED ON COMBINED
CONSTRAINTS

Another important advantage of combining constraints and
representing the constraints in the form of min-max surfaces
as shown in Figure 6 is that we can use these constraints
to derive general guidelines for the catom design. The shape
and the size of the 0 plot depends on the physical parameters
of the catoms such as the radius, mass, number of magnets,
magnet strength etc. and in this section we present some
interesting dependencies of 0 limits on the parameter values.
Although we do not have analytical relationships for such
dependencies we can still determine few useful trends based
variations in the 6 limit plots.

Only the volume inside the two surfaces in 0 limit plot is
allowable under the no-slip and actuation constraints. Hence,
in general, the bigger the volume the better it is for catom
motion planning. Figure 9 shows 0 limit plots as we vary
the number of magnets and the magnet strength.

e One of the most interesting observations is that as
we increase the number of magnet on the catoms the
allowable volume increases at first but after a certain
value of n,, the volume goes down again. This is
because there is a trade-off between requirement of
normal force and requirement of torque on catoms. This
leads to a ‘sweet spot’ in terms of number of magnets
for best catom performance.

o As we reduce the magnet strength the min-max surfaces
move closer and at high values of 0 start to crop into
each other thus reducing the allowable speed. Thus there
is a maximum allowable § associated with given n,, and
Kmam~

e At n,, = 6 and at low value of magnet strength (
Kopar < 1076 N-m3) the min-max surfaces close in,
so much so that there is no feasible value of 6 at § = 0
and 0 = 3—1 Thus it is impossible to move from one
magnet pair to the next without loosing contact. This
sets a critical lower limit on the number of magnets.

This preliminary analysis shows that our method can be
useful to determine the relation between the design parame-
ters to the control limitations. Currently, we are working with
hardware development team to use these design guidelines
for the design of newer versions of the catoms.

V. CONCLUSIONS

In summary, we present a technique for combining the
magnet, friction and dynamics constraints in a metamorphic
system. The result of the technique is a feasible volume in
phase space which encapsulates all of the constraints. We
have shown that this volume can be used both to construct
motion controllers for the motion of the modules, as well
as to compute limits of the design parameters within which
feasible motion controllers for the modules must exist.

Furthermore, since this volume, or a parametric represen-
tation of the maximal and minimal surfaces, is identical for
each module (if the modules are identical), it can be stored
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Fig. 9. Plots showing acceleration limits (6) for different as angle (0) and velocity (0) are varied. The plots show interesting trends in response to change
in nm and Kmqe values and some general design guidelines can be established based on these trends.

within each module, providing a compact representation of
all of the constraints. This representation can be used both for
control and for the generation of online dynamically feasible
plans.

In the future, we would like to extend our controller
design to include robust disturbance rejection, as well as a
tolerance to parameter variation. We would also like to relax
the assumption of full state observability to a model where
the module can only sense a part of its state, for example,
its orientation or some coarse measure of it. Furthermore,
our controller is designed to provide fairly simple clockwise
or counterclockwise rotations to the module, which can be
concatenated to construct a dynamic plan. In the future, we
would like to incorporate a richer set of possible actions, like
the throwing, catching and sliding of modules to construct a
wider variety of dynamic plans.
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