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Abstract—Anytime almost-surely asymptotically optimal planners,
such as RRT#, incrementally find paths to every state in the search
domain. This is inefficient once an initial solution is found as then only
states that can provide a better solution need to be considered. Exact
knowledge of these states requires solving the problem but can be
approximated with heuristics.

This paper formally defines these sets of states and demonstrates how
they can be used to analyze arbitrary planning problems. It uses the
well-known L2 norm (i.e., Euclidean distance) to analyze minimum-
path-length problems and shows that existing approaches decrease
in effectiveness factorially (i.e., faster than exponentially) with state
dimension. It presents a method to address this curse of dimensionality
by directly sampling the prolate hyperspheroids (i.e., symmetric 7-
dimensional ellipses) that define the L2 informed set.

The importance of this direct informed sampling technique is demon-
strated with Informed RRT#*. This extension of RRT* has less theoretical
dependence on state dimension and problem size than existing techniques
and allows for linear convergence on some problems. It is shown experi-
mentally to find better solutions faster than existing techniques on both
abstract planning problems and HERB, a two-arm manipulation robot.

Index Terms—path planning, sampling-based planning, optimal path
planning, informed sampling.

I. INTRODUCTION

HERE are many powerful path planning techniques in robotics.
Popular approaches include graph-based searches, such as
Dijkstra’s algorithm [1] and A* [2], and sampling-based methods, such
as Probabilistic Roadmaps (PRM) [3], Expansive Space Trees (EST)
[4], and Rapidly-exploring Random Trees (RRT) [5]. While sampling-
based methods avoid the challenges of a priori discretizations, their
stochastic nature limits their formal performance. They are said to
be probabilistically complete if the probability of finding a solution,
if one exists, approaches unity with an infinite number of samples.
They are also said to be almost-surely asymptotically optimal if the
probability of converging asymptotically to the optimum, if one exists,
approaches unity with an infinite number of samples (e.g., RRT* [6]).
RRT searches a planning problem by incrementally building a tree
through free space. RRT* extends this procedure to incrementally
rewire the tree during its construction. This rewiring locally optimizes
every vertex in the tree and allows the algorithm to almost-surely
converge asymptotically to the optimal path to every state in the
problem domain. This is an inefficient way to find the optimal solution
to a single planning query.

The only states that need to be considered in single-query scenarios
are those that can provide a better solution [7]. While exact knowledge
of these states requires solving the planning problem, they can often be
approximated with heuristics (Fig. 1). These heuristics have previously
been used to focus almost-surely asymptotically optimal search [8, 9]
but can also provide insight into the optimal planning problem.
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Fig. 1. An illustration of how the set of states that can improve solution length
shrinks as better solutions are found. Common estimates of this omniscient
set are illustrated as informed sets. The L? informed set always contains
the entire omniscient set (i.e., 100% recall) and shrinks along with it as a
function of the current solution (i.e., high precision). It is exactly equal to the
omniscient set in the absence of obstacles and constraints (i.e., 100% recall
and precision). This paper shows that direct sampling this L? informed set
is a necessary condition for almost-surely asymptotically optimal planners to
scale effectively to high state dimensions. This technique is demonstrated with
Informed RRT*.

This paper uses the set of states that can provide a better solution
to analyze incremental almost-surely asymptotically optimal planning.
It formally defines this shrinking set as the omniscient set and shows
that sampling it is a necessary condition for RRT*-style planners to
improve a solution. It defines estimates of this set as informed sets and
provides metrics to quantify them in terms of their compactness (i.e.,
precision) and completeness (i.e., recall). It uses these results to bound
the probability of improving a solution to a geometric planning prob-
lem by the probability of sampling an informed set with 100% recall.

The L? norm (i.e., Euclidean distance) is a well-known heuristic for
problems seeking to minimize path length. It describes the omniscient
set exactly in the absence of obstacles and constraints (i.e., it is
sharp') and always contains the omniscient set of a problem (i.e., it
is universally admissible). This paper uses it to analyze the minimum-
path-length problem and shows that existing focusing techniques (e.g.,
[8, 9]) are ineffective in high state dimensions. It is proven that
these rejection-sampling approaches have a probability of improving
a solution that goes to zero factorially (i.e., faster than exponentially)
as state dimension increases.

This paper demonstrates how this minimum-path-length curse of
dimensionality can be reduced by directly sampling the symmetric n-
dimensional ellipse (i.e., prolate hyperspheroid), the L? informed set.
The presented direct sampling approach always finds states that are
believed to belong to a better solution regardless of the relative size
of the L? informed set. It outperforms existing focusing techniques
by orders of magnitude as state dimension increases.

The informed search approach is demonstrated with Informed
RRT*. This extension of RRT* uses direct informed sampling and
admissible graph pruning to focus the search for improvements. It
is shown analytically to outperform existing techniques in terms of
convergence rate, especially in high state dimensions, and to result in
linear convergence on some problems. It is probabilistically complete
and almost-surely asymptotically optimal. When the L? heuristic does

' A bound or estimate is said to be sharp if it is exactly equal to the true
value (i.e., has perfect precision and recall) in at least one case.
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not provide additional information (e.g., small planning problems
and/or large informed sets) it is identical to RRT*. A version of
Informed RRT* is publicly available in the Open Motion Planning
Library (OMPL) [10].

Informed RRT* is evaluated experimentally on abstract problems
and on the CMU Personal Robotic Lab’s Home Exploring Robot Butler
(HERB) [11], a 14-degree-of-freedom (DOF) mobile manipulation
platform. These experiments show that it outperforms existing focusing
techniques as state dimension increases, especially in problems with
large planning domains.

This paper is organized as follows. Section II defines omniscient
and informed sets and their associated precision and recall in
preparation for the literature review presented in Section III. Section IV
presents a direct informed sampling technique for problems seeking to
minimize path length which is demonstrated with Informed RRT* in
Section V. Section VI analyzes the expected convergence rate of RRT*
algorithms and Section VII demonstrates the practical advantages of
this improvement on abstract and simulated problems. Section VIII
finally presents a closing discussion and thoughts on future work.

A. Statement of Contributions

This paper is a continuation of ideas first published in [12] and
associated technical reports [13, 14] and makes the following specific
contributions:

o Formally defines omniscient and informed sets (Definitions 3 and
7) and demonstrates how precision and recall can be used to quan-
tify the performance of informed sampling (Definitions 8 and 9).

« Provides upper bounds on the probability that an incremental
sampling-based planner improves a solution to a geometric
planning problem (Theorems 6 and 13).

« Bounds the expected next-iteration cost for RRT* algorithms
on any minimum-path-length planning problem (Lemma 17)
and shows that existing formulations of these algorithms for
geometric planning have a probability of improving a solution
that decreases factorially with state dimension (Theorem 14).

« Develops a method to reduce this minimum-path-length curse of
dimensionality by directly sampling the ellipsoidal L? informed
set defined by a goal or countable set of goals and the current
solution (Algs. 1-5).

« Proves that the resulting planning algorithm, Informed RRT*,
has better theoretical convergence (Theorems 18-20) and
experimental performance than existing focused planning
algorithms on geometric problems.

II. OMNISCIENT AND INFORMED SETS

A formal discussion of the optimal planning problem is presented
in support of the literature review. It includes definitions of the states
that can provide a better solution, the omniscient set (Definition 3),
and estimates of this set, informed sets, quantified by precision and
recall (Definitions 7-10). These sets provide theoretical upper bounds
on the probability of improving a solution to a geometric problem that
are used throughout the remainder of the paper (Theorems 6 and 13).

Finding the optimal path from a start to a goal is formally defined
as the optimal planning problem (Definition 1). The given definition
is similar to [6].

Definition 1 (Optimal planning). Let X C R™ be the state space of
the planning problem, Xons C X be the states in collision with ob-
stacles, and Xtree = ¢l (X \ Xobs) be the resulting set of permissible
states, where cl (-) represents the closure of a set. Let Xstart € Xfree
be the initial state and Xgoa1 C Xiree be the set of desired goal states.
Let o : [0,1] = Xtree be a sequence of states through collision-free

Fig. 2. An example of how RRT* almost-surely converges asymptotically to the
optimum by incrementally building and rewiring a tree through the entire prob-
lem domain. RRT* incrementally expands the tree into the problem domain and
improve its connections. By continuing this process indefinitely, it almost-surely
converges asymptotically to the optimal solution by asymptotically improving
every path in the tree. This is inefficient in single-query planning scenarios.

space that can be executed by the robot (i.e., a collision-free feasible
path) and ¥ be the set of all such nontrivial paths.

The optimal planning problem is then formally defined as the
search for a path, o* € X, that minimizes a given cost function,
c: X — Ry, while connecting Xstart 10 Xgoal € Xgoal,

o" =argmin{c (o) | (0) = Xstart, 0 (1) € Xgoal },
cEXD

where R>q is the set of non-negative real numbers.

Many sampling-based planners, such as RRT*, probabilistically
converge towards the optimum of these problems. Such planners are
described as probabilistically complete and almost-surely asymptoti-
cally optimal (Definition 2).

Definition 2 (Almost-sure asymptotic optimality). A planner is said to
be almost-surely asymptotically optimal if, with an infinite number of
samples, the probability of converging asymptotically to the optimum
(Definition 1), if one exists, is one,

P (limsupc(oq) = c(a*)) =1,
q—0o0

where q is the number of samples, o4 is the path found by the planner

from those samples, o™ is the optimal solution to the planning problem,

and c (-) is the cost of a path.

Once any solution is found, the set of states that can provide a
better solution can be defined as the omniscient set (Definition 3).

Definition 3 (Omniscient set). Let g (x) be the cost of the optimal
path from the start to a state, x € X, the optimal cost-to-come,
9(0) = min{c(0) | 0(0) = Xeari, (1) = x},

and h (x) be the cost of the optimal path from X to the goal region,
the optimal cost-to-go,

h(x) = 1;(161% {c(o) | 0(0) =%, (1) € Xgour} -

The cost of the optimal path from Xstart t0 Xgoal constrained to pass
through x is then given by f (x) = g (x) + h (x). This defines the
subset of states that can belong to a solution better than the current
solution, c;, as

X;p={x € Xpree | f(X)<eci}. M

Exact knowledge of X y requires exact knowledge of the entire planning
problem so we refer to it as the omniscient set.

RRT* builds a tree by incrementally adding states from the problem
domain (Fig. 2). A necessary condition for it to improve a solution is
that the newly added state belongs to the omniscient set (Lemma 4).
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Lemma 4 (The necessity of adding states in the omniscient set).
Adding a state from the omniscient set, Xnew € Xy, is a necessary
condition for RRT* to improve the current solution, c;,

Cit1 < Ci = Xnew € Xy.

This condition is necessary but not sufficient to improve the solution
as the ability of states in Xy to provide better solutions at any iteration
depends on the structure of the tree (i.e., its optimality).

Proof. The proof of Lemma 4 appears in Appendix A-A. O

The state added by RRT* at each iteration, Xnew, iS generated from
a randomly sampled state, X;and, and the nearest vertex in the existing
tree,

Vnearest +— arg min {”Xrand - V||2} ’ (2)
vev

through expansion and differential constraints (i.e., the Steer func-
tion). Absent any constraints (i.e., in geometric planning) this takes
the form

Xnew = arg min { [ Xeand — ¥lly | |y — Vaearestll, <0}, (3)
yeXx

where 7 is a user-selected maximum edge length.

The number of tree vertices in the problem domain increases
indefinitely with RRT* iterations. With an infinite number of iterations,
eventually all reachable states will be no more than 7 away from
the nearest vertex in the tree. After these « iterations, sampling
the omniscient set is a necessary condition to add a state from the
omniscient set and improve the solution (Lemma 5).

Lemma 5 (The necessity of sampling states in the omniscient set in
geometric planning). Sampling the omniscient set, Xyand € Xy, is a
necessary condition for RRT* to improve the current solution to a
geometric problem, c;, after an initial k iterations,

Vi 2 Ry Ci4+1 < €¢; = Xrand € Xf7

for any sample distribution that maintains a nonzero probability over
the entire omniscient set.

This statement is limited to geometric planning for simplicity but
with appropriate assumptions it can be extended to specific constraints.

Proof. The proof of Lemma 5 appears in Appendix A-B. O

This result provides an upper limit on the probability of RRT*
improving a solution at any iteration (Theorem 6).

Theorem 6 (An upper bound on the probability of improving a
solution to a geometric planning problem given knowledge of the
omniscient set). The probability that an iteration of RRT* improves
the current solution to a geometric problem, c;, is bounded by the
probability of sampling the omniscient set, Xy,

Vi > Kk, P(cit1 < ¢;) < P (Xrana € X5),

for any iteration, 1, after a sufficient vertex density is achieved in the
initial K iterations.

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. Proof of Theorem 6 follows directly from Lemma 5. Sampling
a state in X is a necessary but not sufficient condition to improve
the solution after x iterations; therefore, the probability of sampling
such a state bounds the probability of improving the solution. O

Knowledge of an omniscient set requires solving the planning
problem; however, these results can be extended to estimates of the
omniscient set defined by solution cost heuristics (Definition 7).

Xy

<

Al X NX

" )

Precision (Xf) = A{T = DEI
Recall (XfA) = A(f(f;:;f> = DED

Fig. 3. An illustration of the precision and recall of estimating an oblong
omniscient set, X 1o with a rectangular informed set, X ~ The informed set
is coloured to highlight where it is correct (light grey) incorrect (dark grey)
or missing the omniscient set (white). Precision is the likelihood of correctly
sampling the omniscient set by sampling the informed set. Recall is the
coverage of the omniscient set by the informed set. For uniform distributions,
both these terms are ratios of Lebesgue measures.

Definition 7 (Informed set). Ler f (x) represent a heuristic estimate
of the solution cost constrained to go through a state, x € X. A
heuristic estimate of the omniscient set can then be defined as

Xp= {XEX ’ %) <ci}.
Such a set will be referred to as an informed set.

There are an infinite number of potential informed sets for any
planning problem and choosing the ‘best’ set requires methods to
quantify their performance. In binary classification, estimates are
evaluated in terms of their precision and recall (Fig. 3). Analogue
terms can be defined in sampling-based planning to quantify the ability
of informed sets to estimate the omniscient set (Definitions 8 and 9).

Definition 8 (Precision). The precision of an informed sampling
technique is the probability that random samples drawn from the
informed set could also be drawn from the omniscient set (e.g., the
percentage of states drawn from the informed set, X 7 that belong
to the omniscient set, X ). For uniform sampling of an informed set,
this is a ratio of measures,

A (X7 x;)

Mxp)

Any informed set with nonzero sampling probability that is a subset
of the omniscient set will have 100% precision.

Precision (Xf) =

Definition 9 (Recall). The recall of an informed sampling technique
is the probability that random states drawn from the omniscient set
could also be sampled from the informed set (e.g., the percentage of
states that belong to the omniscient set, X ¢, with a nonzero probability
of being sampled from the informed set, X f). For uniform sampling
of an informed set, this is a ratio of measures,

NEa)
A(Xy)

Any informed set with nonzero sampling probability that is a superset
of the omniscient set will have 100% recall.

Recall (X f) =

Informed sets with 100% recall (Definition 10) are important in
almost-surely asymptotically optimal planning as less-than-perfect
recall may exclude the optima to some problems.
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Definition 10 (Admissible informed set). A heuristic is said to be
admissible if it never overestimates the true value of the function,

vx € X, f(x) < f(x).

Any informed set defined by such an admissible heuristic will contain
all possibly better solutions and have 100% recall, i.e., X 72 Xy.
This set will be referred to as an admissible estimate of the
omniscient set, or an admissible informed set. If the heuristic is
an admissible estimate of the cost function for all possible problems
then the set will be referred to as a universally admissible informed set.

These results allow the probability of improving a solution to a ge-
ometric problem to be bounded by the probability of sampling any ad-
missible informed set (Lemmas 11 and 12 and Theorem 13). The tight-
ness of this bound will depend on the precision of the chosen estimate.

Lemma 11 (The necessity of adding states in an admissible informed
set). Adding a state from an admissible informed set, Xpew € X 7 )
Xy, is a necessary condition for RRT* to improve the current solution,
Ci,

Cit1 < € = Xnew GXfQXf.

Proof. Lemma 11 follows directly from Lemma 4 as X7 2 X;. O

Lemma 12 (The necessity of sampling states in an admissible
informed set in geometric planning). Sampling an admissible informed
set, Xrand € X 7 D Xy, is a necessary condition for RRT* to improve
the current solution to a geometric problem, c;, after an initial Kk
iterations,

\ 2 Ry Ci+1 < ¢ = Xrand € XfAQ Xf7

for any sample distribution that maintains a nonzero probability over
the entire informed set.

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. Lemma 12 follows directly from Lemma 5 as X 7 DXy O

Theorem 13 (An upper bound on the probability of improving a
solution to a geometric planning problem given knowledge of an
admissible informed set). The probability that an iteration of RRT*
improves the current solution to a geometric problem, c;, is bounded
by the probability of sampling an admissible informed set, X 72 Xy,

Vi > R, P(Ci+1 < Ci) < P(xrand S Xf) < P (Xrand S Xf) )

for any iteration, i, after an initial K iterations.
This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. Theorem 13 follows directly from Theorem 6 as X F2 Xy.
O

III. PRIOR WORK ACCELERATING RRT* CONVERGENCE

A review of previous work to improve the convergence rate of
RRT* is presented using the results and terminology of Section II. All
these techniques attempt to increase the real-time rate of searching
the omniscient set by exploiting additional information. Most can be
viewed as versions of sample biasing, sample rejection, and/or graph
pruning (Sections III-A-III-D).

<

Xy Xy

(a) Path biasing (c¢) L? informed set

(b) Bounding box

Fig. 4. A illustration of the precision and recall of informed sampling
techniques on the omniscient set depicted in Fig. 1(b). The informed sets
are coloured to highlight where they are correct (light grey), incorrect (dark
grey), or missing the omniscient set (white). Path biasing, (a), generally
has high precision but low recall, especially in the presence of multiple
homotopy classes Global or bounded sampling, (b), generally has full recall
but low precision, especially in large relative planning problems or high state
dimensions. Direct sampling of the L2 informed set, (c), has full recall and
high precision, regardless of the size of the omniscient set and is exactly equal
to the omniscient set in the absence of obstacles and constraints.

A. Sample Biasing

Increasing the likelihood of sampling an informed set improves
RRT* performance. This sample biasing creates a nonuniform sample
distribution that will increase exploration of the informed set but
invalidates the assumptions used to prove almost-sure asymptotic opti-
mality. One method to maintain these formal performance guarantees
is to calculate the random geometric graph (RGG) connection limit
from a subset of samples that are uniformly distributed [15]. This
maintains almost-sure asymptotic optimality but increases the required
number of rewirings.

It is common to bias sampling around the current solution. This path
biasing increases the likelihood of sampling a state that can improve
the current solution but reduces the likelihood of finding solutions
in other homotopy classes (i.e., it increases precision by decreasing
recall; Fig 4a). The ratio of path biasing to global search is frequently
a user-chosen parameter that must be tuned for each problem.

Akgun and Stilman [8] use path biasing in their dual-tree version
of RRT*. Once an initial solution is found the algorithm spends a
user-specified percentage of iterations refining the current solution.
It does this by explicitly sampling near a randomly selected state on
the current path. This increases the probability of improvement at
the expense of decreasing the exploration of other homotopy classes.
Their algorithm also employs sample rejection in exploring the state
space (see Section III-B).

Nasir et al. [16] combine path biasing with smoothing in their
RRT*-Smart algorithm. Solution paths are simplified and then used as
biases for further sampling around the solution. Their path smoothing
rapidly improves the current solution but the path biasing decreases
the likelihood of finding a solution in a different homotopy class.

Kiesel et al. [17] use a two-stage sampling process in their f-biasing
technique. Samples are generated by randomly selecting a region of
the planning problem and then uniformly sampling it. The probability
of selecting a region is calculated by solving a simple discretization
of the planning problem with Dijkstra’s algorithm [1]. The regions
along the discrete solution are given a higher selection probability
but all regions maintain a nonzero probability to compensate for
the incompleteness of the discretization. This technique provides a
sampling bias for the entire RRT* search but once a solution is found
it continues to sample states that cannot provide a better solution. It
is stated that almost-sure asymptotic optimality is maintained but it
is not discussed how to modify the rewiring neighbourhood to do so.

Kim et al. [18] also use a two-stage sampling process in their Cloud
RRT* algorithm. They generate uniform samples from a series of
collision-free, possibly overlapping, spheres defined by a generalized
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Voronoi graph [19]. New spheres are added on solution paths and
the probability of selecting them is updated so that samples from
the homotopy class of the solution are biased around the path while
maintaining the probability of sampling other homotopy classes. Cloud
RRT* successfully finds better solutions faster than other algorithms
but continues to sample states that cannot improve the solution and
its effect on almost-sure asymptotic optimality is not discussed.

Unlike sample biasing methods, the direct informed sampling used
by Informed RRT* does not consider states that are known to be
unable to improve a solution. It does result in a nonuniform sample
distribution over the problem domain but it is still almost-surely asymp-
totically optimal as it has a uniform distribution in the informed set.

B. Sample Rejection

Ignoring samples outside an informed set improves RRT* perfor-
mance. This sample rejection decreases the computational cost of states
that cannot improve a solution but does not increase the probability
of finding ones that can. If this probability is low (i.e., if the informed
set is small relative to the sampling domain) then convergence will
not be improved (Fig. 4b). It is shown that this probability decreases
factorially with state dimension (i.e., faster than exponentially) in
existing formulations of the geometric minimum-path-length problem
(Theorem 14).

Akgun and Stilman [8] use global rejection sampling in addition to
sample biasing in their dual-tree algorithm. As samples are drawn from
the entire problem domain, performance will decrease rapidly as the so-
lution improves and/or in large or high-dimensional planning problems.

Otte and Correll [9] use adaptive rejection sampling in their
parallelized Coupled Forest of Random Engrafting Search Trees
(C-FOREST) algorithm. Samples are generated from a rectangular
subset of the planning domain that bounds the ellipsoidal L? informed
set and rejected using the L2 heuristic. This increases sampling
precision and improves performance in large planning problems
but its effectiveness still decreases factorially with state dimension
(Theorem 14).

Arslan and Tsiotras [20, 21] combine global rejection sampling and
incremental graph search techniques with Rapidly exploring Random
Graphs (RRG) [6] in their RRT* algorithm. This focuses the search
but its performance will also decrease rapidly as the solution improves
or when used on large or high-dimensional planning problems. Some
of the rejection criteria also use the current cost-to-come of vertices,
an inadmissible estimate of the optimal cost-to-come that may reject
samples that could later improve the solution.

Unlike sample rejection methods, the direct informed sampling used
by Informed RRT* maintains high precision and 100% recall regard-
less of the relative sizes of the informed set and problem domain. It fo-
cuses its search in response to solution improvements and does not de-
crease in effectiveness in large planning domains. It scales more effec-
tively than existing approaches to high-dimensional planning problems

C. Graph Pruning

Limiting the tree to an informed set improves RRT* performance.
This graph pruning removes states that can no longer improve
the existing solution and reduces the computational cost of basic
operations (e.g., nearest neighbour searches). It can also be used
to reject potential new states subject to constraints, e.g., (3). After
a sufficient number of iterations, this is equivalent in geometric
planning to rejection sampling (Lemma 12) but with the additional
computational costs of expanding towards the sample.

Karaman et al. [22] use graph pruning to implement an online
version of RRT* that improves solutions during path execution. They

remove vertices whose current cost-to-come plus a heuristic estimate
of cost-to-go is higher than the current solution. As current cost-
to-come overestimates a vertex’s optimal cost-to-come (i.e., it is an
inadmissible heuristic), this approach may erroneously remove vertices
that could provide a better solution.

Unlike graph pruning methods, the direct informed sampling used
by Informed RRT* wastes no computational effort on states that are
known to be unable to improve the solution. Its admissible graph
pruning algorithm also only removes vertices from the tree if doing
so does not negatively affect the search.

D. Other Techniques

Some techniques to improve RRT/RRT* performance do not fit
neatly into the previous categories. Many of these methods could be
further accelerated through direct informed sampling.

Urmson and Simmons [23] uses rejection sampling to create a
“probabilistic implementation of heuristic search concepts” in their
Heuristically Guided RRT (hRRT). At each iteration, a uniformly
distributed sample is probabilistically kept or rejected as a function of
its heuristic value relative to the existing tree. This iteratively biases
RRT expansion towards regions of the problem domain believed to
contain high-quality solutions and often finds better solutions than
RRT, especially on problems with continuous cost functions (e.g., path
length [23]); however, it results in nonuniform sample distributions.

Ferguson and Stentz [7] recognize that an existing solution defines
the set of states that could provide better solutions. Their Anytime
RRTs algorithm attempts to incrementally find better solutions by
searching a decreasing series of these ellipses. This shrinking search
ignores some expensive solutions but does not guarantee better ones
will be found.

Alterovitz et al. [24] add path refinement to RRT* in their Rapidly
exploring Roadmap (RRM) algorithm. Once an initial solution is found,
each iteration of RRM either samples a new state or selects an existing
state from the current solution and refines it. Path refinement connects
the selected state to its neighbours and results in a graph instead of a
tree. The ratio of refinement to exploration is a user-tuned parameter.

Shan et al. [25] find an initial solution with RRT, simplify and
rewire it using their RRT*_S algorithm, and then continue the search
with RRT*. This can find better solutions faster than RRT* alone but
the resulting search is not focused and continues to consider states
that cannot provide better solutions.

Salzman and Halperin [26] relax performance to asymptotic near
optimality in their Lower Bound Tree RRT (LBT-RRT). Rewirings are
only considered if they are required to maintain the desired tolerance
to the optimum. This can reduce computational complexity but does
not focus the search.

Devaurs et al. [27] use ideas from stochastic optimization to explore
complex cost functions in their Transition-based RRT* (T-RRT*) and
Anytime Transition-based RRT (AT-RRT) algorithms. Transition tests
accept or reject a potential new state depending on its cost relative to
its parent. These tests help reduce the integral or mechanical work of
the path in a cost space; however, for problems seeking to minimize
path length are equivalent to graph pruning.

These algorithms, and those designed for more advanced purposes
(e.g., RRTX [28]), can be improved with the direct informed sampling
and admissible graph pruning techniques illustrated in Informed RRT*.

E. Direct Informed Sampling for Path Length

This paper presents Informed RRT* as a demonstration of how
direct sampling of L? informed sets increases the rate at which
RRT* improves solutions for problems seeking to minimize path
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Fig. 5. The L? informed set, X +, for a R? problem seeking to minimize path
length is an ellipse with the initial state, Xstart, and the goal state, Xgoals aS
focal points. The shape of the ellipse depends on both the initial and goal states,
the theoretical minimum cost between the two, c¢inin, and the cost of the best
solution found to date, ¢;. The eccentricity of the ellipse is given by cmin/c;.

length. Unlike sample biasing, this approach considers all homotopy
classes that could provide better solutions (i.e., 100% recall) while
maintaining uniform sample distribution over a subplanning problem.
Unlike sample rejection or graph pruning, it is effective regardless
of the relative size of the informed set or the state dimension (i.e.,
high precision). In situations where the heuristic does not provide
substantial information (i.e., small planning problems and/or large
informed sets), it performs identically to RRT*.

IV. THE L? INFORMED SET

A universally admissible heuristic is well defined for problems
seeking to minimize path length in R™ and is commonly used
in sampling-based planners (e.g., [7-9]). The cost of a solution
constrained to pass through any state, x € X, is bounded from
below by the L? norm (i.e., Euclidean distance) between it, the start,
Xstart, and the goal, Xgoal,

F () = lIx = Xstart [l + [[%goar = x|l - @

The set of states that could provide a better solution than the current
solution cost, ¢;, can then be referred to as the L? informed set,

Xf = {X S Xfree | HX - Xstart”z + ||Xgoal - XH2 < Ci} .

This informed set is a universally admissible estimate of the omniscient
set and is exact in the absence of obstacles and constraints (i.e., it
is sharp over all minimum-path-length problems). The size of this
informed set will decrease as solutions improve.

The L? informed set is the intersection of the free space, Xiree,
and a n-dimensional hyperellipsoid symmetric about its transverse
axis (i.e., a prolate hyperspheroid),

XfA = Xfree N XPHSa
where
Xpus = {X cR" |

% — Xstart [|o + [|Xgoat — X, < ci}-

The prolate hyperspheroid has focal points at Xstart and Xgoal, a
transverse diameter of ¢;, and conjugate diameters of \/c? — 2, ,
where

Cmin = ngoal - Xstart”g 5

is the theoretical minimum cost (Fig. 5). The Lebesgue measure of
the informed set is

2 2 n-1
Ci (Ci - Cmin) 2 Cn

A (X7) <A (Xeus) = o : )
where (,, is the Lebesgue measure of a n-dimensional unit ball,
]
N ©)
S ey

and I"(-) is the gamma function, an extension of factorials to real
numbers [29].

The probability of uniformly sampling this informed set by sampling
any superset (e.g., a bounding box), Xsamp 2 X 7> can be written as
a ratio of measures,

A (Xpus)
A (Xsamp)

n—1

TI'%CZ‘ (cf — c,znin) 2

T 20T (2 4 1) A (Xeamp)

P (%eand € X7 | Xeana ~ U (Xeamp) ) <

@)

which can be combined with Theorem 13 to bound the probability of
improving a solution to a geometric problem,

Yi>k, P (Ci+1 < ¢ | Xrand ~ U (Xsamp))

w8e (=) 7

< .
- 27T (g + 1) A (Xsamp)

This probability becomes arbitrarily small for(i) costs, c;, near the
theoretical limit, cmin, (ii) large sampling domains, A (Xsamp), Or
(iii) high state dimensions, n. While the solution cost and sampling
domain size may vary during the search of a problem, the state
dimension is constant throughout. This motivates investigating the
effect of state dimension on existing formulations of the geometric
minimum-path-length planning problem (Theorem 14).

®)

Theorem 14 (The minimum-path-length curse of dimensionality).
The probability that RRT* improves a solution to geometric problems
seeking to minimize path length decreases factorially (i.e., faster than
exponentially) as state dimension increases,

I3

T
Vi >k, P(ci+1 < ¢i | Xrand ~ U (Xre <—Fn——, O
= (H—l 0 | and ( ect))_2nr %—Fl) ()
when uniformly sampling a (hyper)rectangle bounding the L? informed
set, Xrect D) XPHS 2 Xf 2 Xf
This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. Theorem 14 is proven for RRT* but holds for any algorithm
for which an equivalent to Theorem 13 exists.

The smallest possible X ect that completely contains Xpus is a
(hyper)rectangle with widths corresponding to the diameters of the
prolate hyperspheroid (Fig. 6a). The measure of any X;ect O XpHS
is therefore bounded from below as

A(Xreer) > 01 (2 — Ban) T (10)

When substituted into (8) this gives
%

. 7T

Vi >k, P(civ1 < ¢ | Xrand ~ U (Xrect)) < onT (% 4 1)’
proving Theorem 14 for all rectangular sets, X;ect, such that Xyect D
Xpus 2 XJ; B) Xf. O

Theorem 14 is an upper bound on the utility of rectangular rejection
sampling in geometric planning and is illustrated by plotting (9) versus
state dimension (Fig. 6b). The results show that while rectangular
rejection sampling may be 79% successful in R?, its success decreases
factorially as state dimension increases and is only 2% in R® and 4 x
107*% in R'®. These numbers represent the best-case for rectangular
rejection sampling and actual performance will depend on the size
and orientation of the informed set relative to the sampling domain.
This motivates a need for a direct method to sample the prolate
hyperspheroid regardless of size, orientation, and state dimension.
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Fig. 6. An illustration of state dimension on problems seeking to minimize path length. The best case performance of an admissible rectangular sampling, e.g.,
[9], occurs when the rectangle tightly bounds the prolate hyperspheroid defined by the current solution cost, Xrect O Xpps 2 X 7 (a). The probability
of sampling this L? informed set (i.e., its relative measure) decreases factorially (i.e., faster than exponentially) with state dimension, n, (b), meaning that
existing formulations of RRT* do not scale effectively to high state dimensions. Direct informed sampling, Alg. 1, scales more efficiently as illustrated by the
average per-sample time versus state dimension, (c). Samples in the unit n-ball for Alg. 2 were generated with Boost 1.58.

A. Direct Sampling

A direct method to generate uniformly distributed samples in the L?
informed set is adapted from techniques to sample hyperellipsoids [30].

Let S € R™ ™ be a symmetric, positive-definite matrix (the
hyperellipsoid matrix) such that the interior of a hyperellipsoid,
Xellipse, 1 defined as

Xcllipsc = {X S ]Rn

(X - Xcentre)T 871 (X - Xcentre) < 1} )
1)

where Xcentre 1S the centre point of the hyperellipsoid. Uniformly
distributed samples in the hyperellipsoid, Xeliipse ~ U (Xeltipse), can
be generated from uniformly distributed samples in the interior of a
unit n-dimensional ball, Xpan ~ U (Xban), by

(12)

Xellipse = LXball + Xcentre

where L € R™*™ is the lower-triangular Cholesky decomposition of
the hyperellipsoid matrix such that,

LLT =s.

Xpan = {x € R" | |Ix[|, <1}.

For hyperellipsoids with orthogonal axes, there exists a coordinate
frame in which the hyperellipsoid matrix is diagonal,

2
7Tn) )

where 7; is the radius of j-th axis of the hyperellipsoid and diag (-)
constructs a diagonal matrix. A rotation from this hyperellipsoid-
aligned frame to the world frame, Cyw. € SO (n), can be used to
write (11) in terms of S’ as

S’ := diag (r%,rg,...

Xellipse = {X S Rn ‘

(X - xcentre)T Cweslilcgc (X - Xcentre) < 1} s
and (12) as

/
Xellipse = CweL Xball + Xcentre; (13)

given the orthogonality of rotation matrices, Cyd = CZ,, and that
L'L" =g

The rotation between frames can be solved directly as a general
Wahba problem [31] even when underspecified [32]. Generally, the
rotation matrix from one set of axes, {a;}, to another set of axes,
{b,}, is given by

Cia = UAVT, (14)

where A € R™*" is

A =diag(1,...,1,det (U)det (V)),

and det (-) is the matrix determinant. The terms U € R™*" and
V € R™*™ are unitary matrices such that UXV” = M via singular
value decomposition and M € R™*" is given by the outer product
of the 5 < n corresponding axes,

M = [al,ag,. . ,aj] [b17b2, i .bj]T .

15)

In problems seeking to minimize path length, the hyperellipsoid is
a prolate hyperspheroid described by

Xstart T Xgoal
Xcentre *— ——5 (16)

2
2 2 2 2 2

AT sz Ci — Cmin Ci — Cmin
S.fdlag<4, 1 R ) ),

and therefore,

JE—Z PR
L' = diag (C G 20"““,..., VS QC“"). a7

2

Its local coordinate system is underspecified in the conjugate directions
due to symmetry, making (15) just

M = a;17, (18)

where 1; the first column of the identity matrix and the transverse
axis in the world frame is

ay = (Xgoal - xstart) / ||Xg0al — Xstart H2 .

Samples distributed uniformly in the L? informed set, X F=
Xpus N Xiree, can therefore be generated by using (13) to transform
samples drawn uniformly from a unit n-ball. These samples are
mapped to the prolate hyperspheroid through scaling, (17), rotation,
(14) and (18), and translation, (16).

Sun and Farooq [30] investigate various methods to generate
samples in hyperellipsoids and provide the following lemma regarding
the uniform sample density of this technique.

Lemma 15 (The uniform distribution of samples transformed into a
hyperellipsoid from a unit n-ball. Originally Lemma 1 in [30]). If
the random points distributed in a hyperellipsoid are generated from
the random points uniformly distributed in a hypersphere through
a linear invertible nonorthogonal transformation, then the random
points distributed in the hyperellipsoid are also uniformly distributed.

Proof. For brevity, [30] only present anecdotal proofs of Lemma 15.
A full proof appears in Appendix B. O

1) Algorithm: The L? informed set is an arbitrary intersection of
the prolate hyperspheroid and the problem domain. It can be sampled
efficiently by considering the relative measure of the two sets and
sampling the smaller set until a sample belonging to both sets is
found. These procedures are presented algorithmically in Algs. 1 and
2 and are publicly available in OMPL. Note that for most problems
Alg. 2, Lines 1-6 are constant and only need to be calculated once.
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Alg. 1: Sample (Xstart € X, Xgoal € X, ¢; € R>0)

Alg. 3: Sample(Xstart € X, Xgoal C X, ¢ € R>0)

1 repeat
if A (Xpus) < A(X) then
L Xrand ¢ SamplePHS (xstart,xgoal, ci);

w N

4 else
| Xrand < SampleProblem (X);

wn

6 until X;5nq € Xree N XpHS;
7 return X;,nd;

Alg. 2: SamplePHS (Xstart € X, Xgoal € X, ¢; € R>q)

1 Cmin < ||xgoal - xstart} 95

2 Xcentre < (Xstart + Xgoal 2;
3 al < (xgoal — Xstart /Cmin;
4 {U, V} + svD (a;17);

5 A+ diag(1,...,1,det (U)det (V));
6 Cwe + UAVT;
7 r1 4 ci/2;

) 2 2 .
{Tj}j:2;---,n = ( ¢~ Cmin) /2’
L « diag (r1,72,...,mn);

10 Xp,) < SampleUnitBall (n);
11 Xprand < CweLiXpall + Xcentre:
12 return Xp,nq;

®
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Fig. 7. An illustration of the multigoal L2 informed set for a problem
seeking to minimize path length from a start at [0, O]T, to any of three goals at
[—0.75, 0], [0.25, 0], and [0.7, 0.7]7, and a current solution cost of ¢; =
1.05. Each ellipse illustrates the L? informed set for a start-goal pair. Combin-
ing the uniform distributions of these individuals (light grey) would result in a
nonuniform distribution (dark grey), (a). By probabilistically rejecting samples
in proportion to their individual membership, Alg. 3 uniformly samples complex
sets of arbitrary intersections, as illustrated with 2500 random samples, (b).

The function SVD (-) denotes the singular value decomposition
of a matrix and SampleUnitBall (n) returns uniformly distributed
samples from the interior of an n-dimensional unit ball. The
measure of the prolate hyperspheroid, A (Xpus), is given by
(5) and SampleProblem returns samples uniformly distributed
over the entire planning domain. Implementations of SVD and
SampleUnitBall can be found in common C++ libraries.

2) Practical Performance: Direct informed sampling (Alg. 1)
is compared to the best-case performance of rectangular rejection
sampling. The average computational time required to find a sample
in the L? informed set is calculated by generating 10° samples at
each dimension (Fig. 6¢). The results show that while rejection
sampling may outperform direct informed sampling in low state
dimensions (e.g., R?: 7.3 x 1078 vs. 3.5 x 1077 seconds), it becomes
orders of magnitude slower as state dimension increases (e.g., R'°:
4.0 x 1072 vs. 7.2 x 1077 seconds). These per-sample times are
small but significant. Generating 10° samples in R'® requires less
than a second with direct informed sampling (7.2 x 102 seconds)
but over an hour with rectangular rejection sampling (3953 seconds).

This experiment represents optimistic results for both constant (e.g.,
the problem domain) and adaptive (e.g., [9]) rectangular rejection
sampling. Constant sampling domains rarely provide tight bounds

1 repeat

2 | i L307 A (Xpas,;) < A(X) then

3 Xgoal,j < RandomGoal (Xsta‘rts Xgoals c,',):
4 Xrand < SamplePHS (Xstarta Xgoal,j»Ci)s
5 else

6 | Xrand < SampleProblem (X);

7 until Xrand € Xfrcc n (U7:1 XPIIS(/‘)
and KeepSample (xrand7 Xstart, X goal Ci)§
8 return X,;,nd;

Alg. 4: RandomGoal (Xstart € X, Xgoal C X, ¢; € R>o)

1 a<+ 0;
forall xgo.1 1 € Xgoal do
| a<a+X(Xpusk);
p« U0, 1];
Jj<0
repeat
J<it+L
p <+ p—A(Xpus,;) /a;
until p < 0;
10 return Xgoai 53

w N

D-ICCIEEN I SN

Alg. 5: KeepSample (Xrand € X, Xstart € X, Xgoal C X,
ci € Rxo)

1 a<+ 0

2 forall X011 € Xgoal do

3 if || Xrand — xstartl|2 + ngoal,k - xfandHZ < ¢; then
4 L a<a+1;

s p« U0, 1];
6 return p < 1/a;

on the informed set and will generally have higher rejection rates
than the experiment. Adaptive sampling domains may tightly bound
the informed set but must account for its alignment relative to the
state space. This requires either a larger rectangular sampling domain
or a rotation between frames that increases the rejection rate or
computational cost, respectively.

B. Extension to Multiple Goals

Many planning problems seek the minimum-length path that
connects a start to any state in a goal region, Xgoa1. In these situations
the omniscient set is all states that could provide a better solution to
any goal. The multigoal L? informed set is

Xf = {X S Xfree } ||X - Xstart||2 + ||Xgoal,j - XHQ < ¢

for any Xgoal,j € Xgoal} .

this set is the

For a countable goal region, Xgoal = {Xgoal, j};:l’

union of the individual informed sets of each goal,

z
X =U Xz,
j=1
where z is the number of goals and
X, = {X € Xt | 1% — Xstart|ly + [[Xgoar; — %[l < i},

is the L? informed set of an individual (Xstart; Xgoal,j) pair. If the
individual informed sets do not intersect, then a uniform sample
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(d)

Fig. 8. An example of how Informed RRT* uses the current solution to focus search to the L? informed set. After an unfocused search for an initial solution,
(a), Informed RRT* prunes the graph of unnecessary states and redefines the search domain to the current L? informed set, (b). Samples are then generated
directly from this informed set, avoiding those that are known to be unable to improve the current solution. This reduced search space increases the likelihood
of finding an improved solution, which in turn further reduces the search space, (c). This results in an algorithm that focuses the search to the subproblem
given by the current solution, shown enlarged in (d), even as the subproblem decreases with further improvement.

Alg. 6: Informed RRT*(Xstart € Xfree, Xgoal C X)

Alg. 7: Prune (V C X, ECV x V, ¢; € Rx)

1 Ve A{xstart}; E<+0; T=(V,E);

2 Viorn < 0

3fori=1...qdo

4 C; — minvg(mlg Seol'n {gT (Vgual) }
5 Xrand ¢ Sample (Xﬁtﬂl't‘, Xgoal-, Ci)s
6 Vnearest <— Nearest (V7 xrand);

7 Xnew < Steer (Vnearesta Xrand);

8 if IsFree (Vnearest; Xnew) then

9 if Xnew € Xgonl then

b +
10 ‘, Vsol'n — {Xnew}
+
11 V +— {xnew};
12 Vihear + Near (V7 Xnew, rrewire);
13 Vmin ¢~ Vnearest;
14 forall vhear € Viear do
15 Cnew < g7 (Vnear) +c (Vnean xnew);
16 if cnew < ar (Vmin) +c (Vmirn chw) then
17 if IsFree (Vnear, Xnew) then
18 L Vmin <~ Vnear;
+ .
19 E «+— {(Vminyxncw)}a
20 forall vyear € Viear do
21 Cnear < g7 (Xnew) +c (XneW7 Vnear);
2 if cnear < g7 (Vnear) then
23 if IsFree (Xnew, Vnear) then
24 Vparent — Parent (Vnear);
25 E <+ {(Vparent7 Vnear)};
+
26 E«+— {(Xnewavnear)};
27 Prune (V, E, ¢;);

28 return 7;

distribution can be generated by randomly selecting an individual
subset, j, in proportion to its relative measure,

(3

Zz:1 A (X f,k)
and then generating a uniformly distributed sample inside the selected
subset, X7 ..

If individual sets do intersect, then this approach will oversample
states that belong to multiple sets (Fig. 7a). In these situations, uniform
sample density can be maintained by probabilistically rejecting
samples in proportion to their membership in individual sets. This
creates a uniform sample distribution for multigoal L? informed sets
defined by arbitrarily overlapping individual informed sets (Fig. 7b).

p(1<j<z2):

1 repeat
2 Vorune {v eV ‘ f(v) >c¢i, and Yw €V, (v,w) & E};
3 E {(u,v) S | \AS Vprune};

4 V <— Vprune;
5 until Vprune = 0;

1) Algorithm: The algorithm is described in Algs. 3-5 as mod-
ifications to the sampling technique for a single-goal L? informed
set, with changes highlighted in red (cf. Alg. 1). The measure of
individual informed sets, A (Xpus,;), is calculated from (5) using the
appropriate goal, Xgoa1,;. This same technique can also be applied to
problems with a countable start region.

V. INFORMED RRT#*

Informed RRT* is an extension of RRT* that demonstrates how
informed sets can be used to improve anytime almost-surely asymp-
totically optimal planning. It performs the same as RRT* until a
solution is found after which the search is focused to the informed
set through direct informed sampling and admissible graph pruning
(Fig. 8). This increases the likelihood of sampling states that can
improve the solution and increases the convergence rate towards the
optimum regardless of the relative size of the informed set (e.g., near-
minimum solutions or large problem domains) or the state dimension.

Informed RRT* uses direct informed sampling (Alg. 3), admissible
graph pruning (Section V-B), and an updated calculation of the
rewiring neighbourhood (Section V-C) to focus the search. The
complete algorithm is presented in Algs. 6 and 7 as modifications
to RRT*, with changes highlighted in red. It can also be integrated
into other sampling-based planners, such as RRTX [28] and Batch
Informed Trees (BIT*) [33-35].

At each iteration, Informed RRT* calculates the current best solution
(Alg. 6, Line 4) from the vertices in the goal region (Alg. 6, Lines 2,
9-10). This defines a shrinking L? informed set that is used to both
focus sampling (Alg. 6, Line 5; Alg. 3) and prune the graph (Alg. 6,
Line 27; Alg. 7). This process continues for as long as time allows
or until a suitable solution is found.

Informed RRT* retains the probabilistic completeness and almost-
sure asymptotically optimality of RRT*. It is probabilistically complete
since it does not modify the search for an initial solution. It is
almost-surely asymptotically optimal as it maintains a uniform sample
distribution over a subset of the planning problem in which it uses a
local rewiring neighbourhood that satisfies the bounds presented in [6].
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Fig. 9. An illustration of Alg. 7 that shows the retained (black) and pruned
(grey) vertices given the L2 informed set (dashed grey line) defined by the
current solution. Vertices are pruned if and only if they cannot improve
the current solution (i.e., they are not members of the L? informed set)
and neither can their descendants. This pruning condition avoids removing
promising vertices (e.g., v) simply because they are currently descendants of
vertices outside the subset (e.g., u) and maintains the vertex distribution of
the L? informed set (Fig. 10).

A. Notation

The tree, 7 = (V, E), is defined by a set of vertices, V' C Xtree,
and edges, E = {(v,w)}, for some v, w € V. The function g7 (v)
represents the cost to reach a vertex, v € V, from the start given the
current tree (the cost-to-come). The function ¢ (v, w) represents the
cost of a path connecting the states v, w € X¢ee, and corresponds
to the edge cost between those two states if they are connected as
vertices in the tree. The notation X <~ {x} and X <— {x} is used to
compactly represent the compounding set operations X « X U {x}
and X + X\ {x}, respectively. As is customary, the minimum of an
empty set is taken to be infinity and a prolate hyperspheroid defined
by an infinite transverse diameter is taken to have infinite measure.

B. Graph Pruning (Alg. 7)

Graph pruning simplifies a tree by removing unnecessary vertices.
Vertices are often removed if their heuristic values are larger than
the current solution (i.e., they do not belong to informed set). While
this identifies vertices that cannot provide a better solution, it is not
a sufficient condition to remove them without negatively affecting the
search. Their descendants may still be capable of providing better
solutions (i.e., they may belong to the informed set; Fig. 9) in which
case their removal would negatively affect performance by decreasing
vertex density in the search domain (i.e., the informed set; Fig. 10b).

An admissible pruning method that does not remove vertices from
the informed set is presented in Alg. 7. It iteratively removes leaves
of the tree that cannot provide a better solution until no such leaves
exist. This only removes vertices if they and all their descendants
cannot belong to a better solution (i.e., it only removes vertices from
outside the informed set; Fig. 9). This retains all possibly beneficial
vertices regardless of their current connections and does not alter the
vertex distribution in areas being searched (Fig. 10c).

C. The Rewiring Neighbourhood

RRT* almost-surely converges asymptotically to the optimum by
incrementally rewiring the tree around new states. In the r-disc variant

this is the set of states within a radius, 7rewire, Of the new state,
(19)

Trewire = min {7]7 TRRT* } s

where 7 is the maximum allowable edge length of the tree and rrrr+*
is a function of the problem measure and the number of vertices in
the tree [6]. Specifically,

"
TRRT* > TRRT*

= () CE) )

Fig. 10. An illustration of pruning a graph found by RRT*, (a), with both
inadmissible, (b), and admissible, (c), methods. By removing all vertices that
cannot belong to a better solution, the inadmissible method may greedily
remove descendent vertices that will later provide a better solution once the
graph is improved. By only removing vertices that cannot improve a solution
if neither can their descendants, the admissible method (Alg. 7) maintains a
uniform sample density in the entire informed set.

where A (+) is the Lebesgue measure of a set (e.g., the volume), (, is
the Lebesgue measure of an n-dimensional unit ball, i.e., (6), and |-|
is the cardinality of a set.

The rewiring neighbourhood in the k-nearest variant is the krrr+-
closest states to the new state, where

.
kRRT* > KRRT*,

1
kT =€ (1 + E) log (|V]) . (©2))

Informed RRT* searches a subset of the original planning problem.
The rewiring requirements to maintain almost-sure asymptotic opti-
mality in this shrinking domain will be a function of the number of
VnX 7
L? informed set is not known in closed form (it is an intersection of a
prolate hyperspheroid and free space) but its measure can be bounded
from above by the minimum measure of the prolate hyperspheroid
and the problem domain,

vertices in the informed set,

, and its measure, \ (X J;). The

A (Xf) < min{A(X), A (Xpus)}-

This updates (20) and (21) to

rhere < [ 2 (1 + %) (min {)\(X)C;)\ (XPHS)})

log (‘VﬂXf) " o)
’mef
and
[ <1 n %) log ()v n Xf)) , 23)

where A (Xpug) is a function of the current solution, i.e., (5).

These rewiring neighbourhoods will be smaller than (20) and
(21) when they can contain fewer vertices (i.e., only those in the
informed set) and/or a smaller problem measure (i.e., the measure
of the informed set). Smaller rewiring neighbourhoods reduce the
computational cost of rewiring at each iteration and improves the real-
time performance of Informed RRT* while maintaining almost-sure
asymptotic optimality.

VI. RATES OF CONVERGENCE

Almost-sure asymptotic optimality provides no insight into the rate
at which solutions are improved. Previous work has found probabilistic
rates for PRM* [36] and Fast Marching Tree (FMT¥*) [15] and
estimated the expected length of RRT* solutions as a function of
computational time [36].
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Performance can be quantified analytically by evaluating the rate at
which the sequence of solution costs converges to the optimum. This
rate can be classified as sublinear, linear, or superlinear (Definition 16).

Definition 16 (Rate of convergence). A sequence of numbers, (a;);e
that monotonically and asymptotically approaches a limit, ao, has a
rate of convergence given by
. airr — aso
= lim ————.
p= la; — aool

The sequence is said to converge linearly if the rate is in the range
0 < p < 1, superlinearly (i.e., faster than linear) when p = 0, and
sublinearly (i.e., slower than linear) when p = 1.

The expected convergence rate of an algorithm depends on its tuning
and the planning problem. These general rates can be calculated
for geometric minimum-path-length problems for RRT* with and
without sample rejection and Informed RRT* (Theorems 18-20) by
first calculating sharp bounds on the expected next-iteration cost
(Lemma 17).

Lemma 17 (Expected next-iteration cost of minimum-path-length
planning). The expected value of the next solution to a minimum-
path-length problem, E [ci11], is bounded by

ne; + chin

Ps (n+1)c

where c¢; is the current solution cost, Cmin IS the theoretical minimum

solution cost, n is the state dimension of the planning problem, and

pf = P (Xnew € Xy) is the probability of adding a state that is a

member of the omniscient set (i.e., that can belong to a better solution).

While not explicitly shown, the subset, Xy, and the probability of

improving the solution, py, are generally functions of the current
solution cost.

This lower bound is sharp over the set of all possible minimum-path-
length planning problems and algorithm configurations and is exact
for versions of RRT* with an infinite rewiring radius (i.e., 71 = oo,
and rrrT* = 00) searching an obstacle-free environment without
constraints.

+(1=pf)e < Eleiy] < e, 24

Proof. The proof of Lemma 17 appears in Appendix C. O

This result allows sharp bounds on the convergence rates of RRT*
(with and without rejection sampling) and Informed RRT* to be
calculated for any configuration or geometric minimum-path-length
planning problem. These bounds will be exact in problems without
obstacles and constraints and with an infinite rewiring neighbourhood
(i.e., n = oo, and rrrT* = 00) and show that RRT* always has
sublinear convergence to the optimum (Theorem 18).

Theorem 18 (Sublinear convergence of RRT* in geometric mini-
mum-path-length planning). RRT* converges sublinearly towards the
optimum of geometric minimum-path-length planning problems,

FE [,LLRRT*] =1. (25)

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. The proof of Theorem 18 follows directly from Lemma 17
when py is given by (7) and is presented in Appendix D-A. O

Rectangular rejection sampling improves the convergence rate of
RRT*. This improvement is maximized by sampling a rectangle that
tightly bounds the informed set (Fig. 6a). The resulting adaptive
rectangular rejection sampling (e.g., [9]) allows RRT* to converge
linearly in the absence of obstacles and constraints and with an infinite
rewiring neighbourhood (Theorem 19).

10%

— Better—>

n

1077

2 4 6 8 10 12 14 16
State dimension, n

Log. linearity, log(E [1 — p*])

I—RRT* w/ rejection sampling == Informed RRT*]

Fig. 11. An illustration of the lower-bounds on linearity, E' [1 — p*], of RRT*
with rejection sampling and Informed RRT* (Corollary 21). As predicted by
Theorems 19 and 20, the convergence rates bounds diverge as state dimensions
increase, with rejection sampling factorially approaching sublinear convergence.

Theorem 19 (Linear convergence of RRT* with adaptive rectangular
rejection sampling in geometric minimum-path-length planning).
RRT* with adaptive rectangular rejection sampling converges at
best linearly towards the optimum of geometric minimum-path-length
planning problems but factorially approaches sublinear convergence
with increasing state dimension,

Tz
(12T (3+1)

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

(26)

<FE [I/LRect] <1

Proof. The proof of Theorem 19 follows directly from Lemma 17
when py is calculated by substituting (10) in (7) and is presented in
Appendix D-B. O

This convergence rate diminishes factorially (i.e., quickly) as
state dimension increases due to the minimum-path-length curse of
dimensionality. Informed RRT* avoids this limitation with direct
informed sampling. It also converges linearly in the absence of
obstacles and constraints and with an infinite rewiring neighbourhood
but has a weaker dependence on state dimension (Theorem 20).

Theorem 20 (Linear convergence of Informed RRT* in geometric
minimum-path-length planning). Informed RRT* converges at best
linearly towards the optimum of geometric minimum-path-length
planning problems,

n—1
< Efum] < 1,
LIRS (] <

where the lower-bound occurs exactly with an infinite rewiring
neighbourhood in the absence of obstacles and constraints.

27)

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. The proof of Theorem 20 follows directly from Lemma 17
when py = 1 and is presented in Appendix D-C. O

Theorems 18-20 result in the following corollary regarding the
relative convergence rates of the algorithms.

Corollary 21 (The faster convergence of Informed RRT* in geometric
minimum-path-length planning). The best-case convergence rate of In-
formed RRT*, i, is always better than that of RRT*, with or without
rejection sampling in geometric minimum-path-length planning,

n—1
Vn > 2
"= 41

=F [Miknf} S E [/’L;{cct] S E [MERT*} =1.

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.
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Fig. 12. Experimental validation and extension of Lemma 17 and Theorem 20 in R2, R* and R8. Informed RRT* was run from a common initial solution 10%
times in R2, R* and R® with different pseudo-random seeds. The error relative to the known optimum, log (c¢; — c*), was plotted for each instance at each
iteration (cyan lines) along with the mean error (blue circles), a line of best fit (blue dashed line), and the lower-bound error predicted by Lemma 17 (black
line). The difference between the predicted lower bound and the mean errors (red lines), |(cmcan7¢ — Ctheory,i) / (¢mean,i — ¢*)|, with infinite rewiring
neighbourhoods, (a)-(c), confirms experimentally that convergence is linear (Theorem 20). The mean error for a finite but constant rewiring neighbourhood,
(d)—(f), shows experimentally that convergence is slower but possibly still linear. The mean error for a finite and decreasing rewiring neighbourhood, (g)—(i),
shows experimentally that the is slower and sublinear. The results of (d)—(i) motivate further research on the effects of the RRT* rewiring neighbourhood.

Proof. The proof follows immediately from the lower bounds in (25),
(26), and (27). It is illustrated in Fig. 11. O

A. Experimental Validation and Extension

Convergence rates are investigated experimentally for infinite,
constant finite, and decreasing finite rewiring radii. To isolate the
effects of the rewiring parameters, Informed RRT* was run on obstacle-
and constraint-free problems in each configuration for 10* trials in
R?, R*, and R®. Each trial started from the same initial solution but
used different pseudo-random seeds to search for improvements. The
logarithmic error relative to the known optimum, log (¢; — ¢*), and
the resulting mean were calculated at each iteration of each trial and
used to validate Theorem 20 and illustrate the effects of rewiring
parameters on the convergence rate.

The experimental results for an infinite rewiring neighbourhood
(i.e., n = oo and rrrT* = 00) show excellent agreement with the
theoretical predictions in Theorem 20 (Figs. 12a—c). The mean solution
cost converges linearly towards the optimum and closely matches the
lower-bound predicted by Lemma 17.

The experimental results for a constant finite rewiring neighbour-
hood (i.e., n = 0.4 and rrrr* = 00) show that the convergence rate
is lower than predicted by Theorem 20 (Figs. 12d—f). The convergence
rate appears to be initially nonlinear but then become linear. It is
hypothesized that this is related to the density of samples relative to
the maximum edge length as reflected in Theorem 6 by x.

The experimental results for a decreasing finite rewiring neighbour-
hood (i.e., n = oo and rrrT* = 1.1r{RT~) show that the convergence

rate appears to be sublinear (Figs. 12g-1). It is hypothesized that this
is a result of the rewiring neighbourhood shrinking ‘too’ fast relative
to the sample density.

These experiments suggest that further research is necessary to study
the tradeoff between per-iteration cost and the number of iterations
needed to find a solution. While a shrinking rewiring neighbourhood
limits the number of rewirings, the apparent resulting sublinear
convergence would require significantly more iterations to find high-
quality solutions. Alternatively, while linear convergence needs fewer
iterations to find equivalent solutions, the required constant radius
would allow the number of rewirings to increase indefinitely.

VII. EXPERIMENTS

Informed RRT* was evaluated on simulated problems in R2, RY,
and R® (Sections VII-A and VII-B) and for HERB (Section VII-C)
using OMPL?. It was compared to the original RRT* and versions that
focus the search with graph pruning (e.g., Alg. 7), heuristic rejection on
Xnew, heuristic rejection on Xrand, and all three techniques combined.

All planners used the same tuning parameters and the ordered
rewiring technique presented in [37]. Planners used a goal-sampling
bias of 5% and an RRT* radius of rrrr* = 2rgr-. The maximum
edge length was selected experimentally to reduce the time required to
find an initial solution on a training problem, with values of n = 0.3,

2The experiments were run on a laptop with 16 GB of RAM and an Intel
i7-4810MQ processor. The abstract experiments were run in Ubuntu 12.04
(64-bit) with Boost 1.58, while the HERB experiments were run in Ubuntu
14.04 (64-bit).
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0.5, 0.9, and 1.3 used in R?, R*, R®, and on HERB (R14), respectively.
Available planning time was limited for each state dimension to 3,
30, 150, and 600 seconds, respectively. Planners with heuristics used
the L? norm as estimates of cost-to-come and cost-to-go while those
with graph pruning delayed its application until solution cost changed
by more than 5%.

These experiments were designed to investigate admissible methods
to focus search. More advanced extensions of RRT* were not
considered as they commonly include some combination of the
investigated techniques.

A. Toy Problems

Two separate experiments were run in R?, R* and R® on
randomized variants of the toy problem depicted in Fig. 13a to
investigate the effects of obstacles on convergence.

The problem consists of a (hyper)cube of width [ with a single
start and goal located at [—0.5,0,...,0]" and [0.5,0,...,0]",
respectively. A single (hyper)cube obstacle of width w ~ U [0.25, 0.5]
sits between the start and goal in the centre of the problem domain.

The first experiment investigates finding near-optimal solutions in
the presence of obstacles. The time required for each planner to find
a solution within various fractions of the known optimum, c*, was
recorded over 100 trials with different pseudo-random seeds for maps
of width [ = 2. The percentage of trials that found a solution within the
target tolerance of the optimum and the median time necessary to do so
are presented for each planner in Figs. 14a—c. Trials that did not find a
suitable solution were treated as having infinite time for the purpose of
calculating the median. The results show that Informed RRT* performs
equivalently to rejection sampling algorithms in low state dimensions
but outperforms all existing techniques in higher dimensions.

The second experiment investigates finding near-optimal solutions
in large planning problems. The time required for each planner to find
a near-optimal solution was recorded over 100 trials with different
pseudo-random seeds for maps of increasing width, /. Planners sought
a solution better than 1.01c¢*, 1.05¢*, and 1.15¢* in R?, R%, and
R®, respectively. The percentage of trials that found a sufficiently
near-optimal solution and the median time necessary to do so are
presented for each planner in Figs. 14d—f. Trials that did not find a
suitable solution were treated as having infinite time for the purpose
of calculating the median. The results show that Informed RRT*
outperforms all existing techniques in large-domain planning problems
and that the difference increases in higher state dimensions.

These experiments show that increasing problem size and state
dimension decreases the ability of nondirect sampling methods to find
near-optimal solutions, as predicted by (8). Informed RRT* limits these
effects and outperforms existing techniques by efficiently focusing its
search to the L? informed set using direct informed sampling.

B. Worlds with Many Homotopy Classes

The algorithms were tested on more complicated problems with
many homotopy classes in R?, R, and R®. The worlds consisted
of a (hyper)cube of width [ = 4 with the start and goal located
at [-0.5,0,..., O]T and [0.5,0,..., O]T, respectively. The problem
domain was filled with a regular pattern of axis-aligned (hyper)cube
obstacles with a width such that the start and goal were 5 ‘columns’
apart (Fig. 13b).

The planners were tested with 100 different pseudo-random seeds
on each world and state dimension. The solution cost of each planner
was recorded every 1 millisecond by a separate thread and the median
was calculated from the 100 trials by interpolating each trial at a
period of 1 millisecond. The absence of a solution was considered an
infinite cost for the purpose of calculating the median.
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Fig. 13. Tllustrations of the planning problems used for Sections VII-A and
VII-B to study performance relative to a known optimum, the effect of map
width, [, and performance in problems with many homotopy classes. The
width of the obstacle in (a) is a random variable uniformly distributed over
the range [0.25,0.5]. The regularly spaced obstacles in (b) are chosen in to
scale efficiently to high dimensions and their width is such that the start and
goal states are 5 ‘columns’ apart.

The results are presented in Figs. 14g—i, where the percent of trials
solved and the median solution cost are plotted versus run time. They
demonstrate how Informed RRT* has better real-time convergence
towards the optimum than existing techniques, especially in higher
state dimensions.

C. Motion Planning for HERB

Informed RRT* was demonstrated on a high-dimensional problem
using HERB, a 14-DOF mobile manipulation platform [11]. Poses
were defined for the two arms to create a sequence of three planning
problems (Fig. 15) inspired by [38]. The objective of these problems
was to find the minimum path length through a 14-dimensional
search space with strict limits (each joint has no more than 7m2m
radians of travel). While path length is not a common cost function
for manipulation, these experiments illustrate that direct informed
sampling is beneficial in high-dimensional problem domains even
with strict search limits.

RRT*, RRT* with pruning and rejection, and Informed RRT* were
each run for 50 trials on each problem of the cycle. The resulting
median path lengths are presented in Fig. 16. Trials that did not find
a solution were considered to have infinite length for the purpose of
calculating the median. This only occurred for the problem from (a)
to (b), where the planners found a solution on 94% of the trials.

RRT* with and without pruning and rejection sampling both fail
to improve the initial solutions on all three planning problems but
Informed RRT* is able to improve the path length by 3.9%, 7.9%, and
28.2%, respectively. The improvement for (a) to (b) is not statistically
significant but (b) to (¢) and (c) to (d) demonstrate the benefits of
considering the relative sizes of the informed set and problem domain
in high state dimensions.

VIII. DiSCcUSSION & CONCLUSION

RRT* almost-surely converges asymptotically to the optimum
by asymptotically finding the optimal paths to every state in the
problem domain. This is inefficient in single-query scenarios as, once
a solution is found, searches only need to consider states that can
belong to a better solution (i.e., the omniscient set; Definition 3,
Lemma 4). Previous work has focused search to estimates of this set
(i.e., informed sets; Definition 7) but has not used these estimates to
analyze performance. This paper proves that for geometric problems
the probability of sampling an admissible informed set provides an
upper bound on the probability of improving a solution (Theorem 13).
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Fig. 14. Results for the experiments described in Sections VII-A and VII-B. Each planner was run 100 different times in R2, R*, and R® on each problem for
3, 30, and 150 seconds, respectively. The percentage of trials that found the desired solution are plotted above and the median performance is plotted below
for each experiment. Unsuccessful trials were assigned an infinite value for the purpose of calculating the median and the error bars denote a nonparamentric
99% confidence interval on the median value. The times required to find different near-optimal solutions, ¢; < ~yc*, for the problem illustrated in Fig. 13a
with [ = 2 are presented in (a)—(c). The times required to find a solution within a fraction of the known optimum (1.01c*, 1.05¢*, and 1.15c*, respectively)
for the problem illustrated in Fig. 13a for various map widths are presented in (d)—(f). Solution cost is plotted versus run time for the problem illustrated in
Fig. 13b in (g)-(i). Taken together, these experiments demonstrate the benefits of direct informed sampling even in large or high-dimensional problems, with a

high number of obstacles, and many homotopy classes.

A popular admissible heuristic for problems seeking to minimize
path length is the L? norm (i.e., Euclidean distance). This paper shows
that existing techniques to exploit it are insufficient. The majority of
approaches either reduce the ability to find solutions in other homotopy
classes (i.e., reduce recall; Definition 9) or fail to account for the
reduction of the L? informed set in response to solution improvement
(i.e., have decreasing precision; Definition 8). Even existing adaptive
techniques that address these problems (e.g., [9]) fail to account
for its factorial decrease in measure with state dimension (i.e., the
minimum-path-length curse of dimensionality; Theorem 14).

This paper presents a method to avoid these limitations through
direct sampling of the L? informed set (Algs. 1-5; Section IV). This
approach generates uniformly distributed samples in the informed
set regardless of its size relative to the problem domain or the state
dimension (i.e., it has 100% recall and high precision). This paper
presents Informed RRT* as a demonstration of how these techniques
can be used in sampling-based planning (Algs. 6 and 7; Section V).

Informed RRT* considers all homotopy classes that could provide
a better solution (i.e., 100% recall), unlike sample biasing techniques.

It is effective regardless of the relative size of the informed set or
the state dimension, unlike sample rejection or graph pruning. When
the heuristic does not provide any information (e.g., small planning
problems and/or large informed sets) it is identical to RRT*.

This paper also uses the shape of the L? informed set to analyze
the theoretical performance of RRT* (Section VI) by bounding
the expected solution cost (Lemma 17) and convergence rates
(Theorems 18-20) on minimum-path-length problems. The bounds are
sharp over the set of all (Lemma 17) or all geometric (Theorems 18-20)
minimum-path-length planning problems and algorithm configurations
with the lower bounds exact for an infinite rewiring radius in the
absence of obstacles and constraints. These results prove that RRT*
converges sublinearly (i.e., slower than linear) for all configurations
and geometric minimum-path-length problems and that focused
variants (e.g., Informed RRT*) can have linear convergence.

This analysis is extended experimentally to different configurations.
The results confirm the theoretical findings and suggest that obstacle-
and constraint-free convergence remains linear when the rewiring
radius is constant but becomes sublinear when it decreases in the
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(d)

Fig. 15. A motion planning problem for HERB inspired by [38]. Planners must
find a collision-free path between each pair of subsequent poses, e.g., (a) to
(b). HERB’s 14 DOFs and large number of potential self-collisions make this
a nontrivial planning problem for RRT*. The planners were given 600 seconds
for each phase of the planning problem and the results are presented in Fig 16.

manner proposed by [6]. As previous analysis of this radius has
focused on per-iteration complexity, we believe this result motivates
future research into the trade off between per-iteration cost and
convergence rate.

The practical advantages of Informed RRT* are shown on a variety
of planning problems (Section VII). These experiments demonstrate
how its theoretical convergence rate corresponds to better performance
on real planning problems. The amount of improvement depends on
how efficiently the L? informed set decreases the search domain
and may be limited in small problem domains and/or long circuitous
solutions (e.g., the small/low-dimensional problems in Section VII-A
and the first problem of Section VII-C). The designs of Algs. 1 and 3
assure that in these situations Informed RRT* performs no worse than
other methods to exploit the L? heuristic (e.g., rejection sampling).

Designing these experiments highlighted the relationship between
the maximum edge length, 7, and algorithm performance. This user-
selected value not only affected the time required to find an initial
solution but, as a result of (19), also the quality of the solution
found in finite time. Specifically, large values of n appeared to
decrease the difference between algorithms; however, also resulted
in order of magnitude increases in the time required to find initial
solutions. When coupled with the results of Section VII, this result
should further motivate more research into the effects of the RRT*
tuning parameters, 1 and rrrr*, on real-time performance. Given
that anytime improvement of a solution is a major feature of RRT*,
we tuned 7 for these experiments to minimize the initial-solution time
on a series of independent test problems.

We believe that defining precise and admissible informed sets is a
fundamental challenge of using anytime almost-surely asymptotically
optimal planners in real-world applications. The L? informed set
is a sharp, uniformly admissible estimate of the omniscient set for
problems seeking to minimize path length, even in the presence of
constraints, and is exact in the absence of obstacles and constraints.
This suggests that any informed set that is more precise must
either(i) exploit additional information about the problem domain
(e.g., obstacles, constraints), and/or (ii) be inadmissible for some
minimum-path-length planning problems. Finding ways to define new
admissible heuristics from additional problem-specific information
could potentially allow focused search algorithms to converge linearly
in the presence of obstacles and/or constraints.

We ultimately believe that heuristics are a key component of suc-
cessful planning algorithms. To this end, we are currently investigating
methods to extend heuristics to entire sampling-based searches, similar
to how A* [2] extends Dijkstra’s algorithm [1]. We accomplish this
in BIT* [33-35] by extending the ideas presented in this paper to
batches of randomly generated samples. These samples are limited
to informed sets and searched in order of potential solution quality.
Information on OMPL implementations of both Informed RRT* and
BIT* are available at hitp://asrl.utias.utoronto.ca/code.

Path length
'

(a) to (b) (b) to (c)

Planning phase

(c) to (d)

l_RRT* === RRT* w/ pruning & rejection =sss==Informed RRT*]

Fig. 16. Median path length results from the motion planning problems
depicted in Fig. 15. Planners found a solution between each pose in every trial
after 600 seconds other than the transition from (a) to (b), where solutions
were only found in 94% of the 50 trials. For the purpose of calculating the
median, these unsolved trials were assigned an infinite cost. Error bars denote
a nonparamentric 99% confidence interval on the median value. The results
show that even in the presence of strict state-space limits, Informed RRT* can
outperform rejection sampling in high-dimensional problems.

APPENDIX A
PROOFS OF LEMMAS 4 AND 5

A. Proof of Lemma 4

Lemma 4 (The necessity of adding states in the omniscient set).
Adding a state from the omniscient set, Xnew € Xy, is a necessary
condition for RRT* to improve the current solution, c;,

Ci+1 < Ci = Xnew € Xf

This condition is necessary but not sufficient to improve the solution
as the ability of states in Xy to provide better solutions at any iteration
depends on the structure of the tree (i.e., its optimality).

Proof. At the end of iteration ¢ 4+ 1, the cost of the best solution
found by RRT* will be the minimum of the previous best solution,
¢, and the best cost of any new or newly improved solutions, Cnew,

Ci+1 = min {¢;, Cnew } - (28)

Each iteration of RRT* only adds connections to or from the newly
added state, Xnew, and therefore all new or modified paths pass
through this new state. The cost of any of these new paths that extend
to the goal region will be bounded from below by the cost of the
optimal solution of a path through Xnew,

Cnew > f (Xnew) . (29)

Lemma 4 is now proven by contradiction. Assume that RRT* has
a solution with cost ¢; after iteration ¢ and that it is improved at
iteration ¢ 4+ 1 by adding a state nor in the omniscient set, ci+1 <
Ciy Xnew & Xy. By (1), the costs of solutions through any Xpew & Xy
are bounded from below by the current solution,

f(xnew) > ci,

which by (29) is also a bound on the cost of any new or modified
solutions,

Cnew Z f (Xnew) 2 Ci.

By (28), the cost of the best solution found by RRT* at the end of
iteration ¢ 4+ 1 must therefore be c;. This contradicts the assumption
that the solution was improved by a state not in the omniscient set
and proves Lemma 4. O

B. Proof of Lemma 5

Lemma 5 (The necessity of sampling states in the omniscient set in
geometric planning). Sampling the omniscient set, Xrana € Xy, is a
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necessary condition for RRT* to improve the current solution to a
geometric problem, c;, after an initial k iterations,

Vi 2 K, Ci+1 < ¢ ™ Xrand € Xfa

for any sample distribution that maintains a nonzero probability over
the entire omniscient set.

This statement is limited to geometric planning for simplicity but
with appropriate assumptions it can be extended to specific constraints.

Proof. In RRT (and therefore RRT*), the distribution of vertices in the
graph approaches the sample distribution as the number of iterations
approach infinity [39]. In the limit, all reachable regions of the problem
domain with a nonzero sampling probability will therefore be sampled
and the number of vertices in these regions will increase indefinitely
with the number of iterations. This ever increasing number of vertices
means that the worst-case distance between any state in a sampled
subset and the nearest vertex in the graph will decrease indefinitely
and monotonically.

Lemma 5 is now proven by contradiction. Assume that by iteration
K there are a sufficient number and distribution of vertices in the tree
such that all possible states in X are no further than 7 from a vertex,

Vxe Xy, IveV st |x—v|,<n, (30)

and that RRT* has a solution with cost c; after iteration ¢ > k. Now
assume that RRT* improves the solution at iteration ¢ + 1 without
sampling the omniscient set, ¢;+1 < ¢i, Xrand € Xf.

As improving a solution requires adding a state from the omniscient
set, Xnew € X, (Lemma 4) this implies that the state added to the
graph is not the randomly sampled state, Xnew 7 Xrand. These two
states are related in geometric planning by expansion constraints, (2)
and (3), that find a new state as near as possible to X;and and no
further than 7 from the nearest vertex in the tree.

The triangle inequality implies that the nearest vertex to the sample,
Vnearest, 18 also the nearest vertex to the proposed new state,

Vnearest := arg min { |[Xrana — v||, } = argmin {|xnew — vll,},
veVv veVv

which from (30) is bounded in its distance from Xpew by

Hxnew - VnearestH2 < n. (31)

Due to (3), the relationship in (31) is only satisfied in geometric
planning when Xpew = Xrand- As by assumption the random sample is
not a member of the omniscient set, Xrana & X s, then therefore neither
is the newly added state, Xnew & X, and by Lemma 4 the solution
is not improved, c;4+1 = c;. This contradicts the assumption that the
solution was improved by sampling a state not in the omniscient set
and proves Lemma 5. O

APPENDIX B
PROOF OF LEMMA 15

Lemma 15 (The uniform distribution of samples transformed into a
hyperellipsoid from a unit n-ball. Originally Lemma 1 in [30]). If
the random points distributed in a hyperellipsoid are generated from
the random points uniformly distributed in a hypersphere through
a linear invertible nonorthogonal transformation, then the random
points distributed in the hyperellipsoid are also uniformly distributed.

Proof. Let the sets Xpan C R™ and Xenipse C R™ be the unit
n-dimensional ball and a n-dimensional hyperellipsoid with radii
{rj}j_,, respectively, having measures of

A (Xban) = Cn,

n

A (Xellipse) = Cn H Trj.
j=1

Let poan (+) be the probability density function of samples drawn
uniformly from the unit n-ball such that,

1
—, Vx € Xpan
Cn
0, otherwise.

Dball (X) = (32)

Let 7 (-) be an invertible transformation from the unit n-ball to a
hyperellipsoid such that,

T Xball — Xellipsey
7" Xellipse = Xball-
By definition, the probability density function in the hyperellipsoid,
PDellipse (+), resulting from applying this transformation to samples
distributed in the unit n-ball is then

—1 dT71
ellipse = a, det _— . 33
Pellip (X) Poan (T (X)) ’ ¢ (dXellipse x ( )
The proposed transformation in (12) has the inverse
7—71 (Xellipse) = Lil (xellipse - chntrc) s
and the Jacobian
-1
AT e (34)
dxellipse
Substituting (34) and (32) into (33) gives,
1
— |det (L™Y)|, ¥x € Xenipse
Petipse (X) = 4 Cn [det (L)1 ’ (35)

0, otherwise,

using the fact that 771 (x) € Xpan <= X € Xellipse. AS Pellipse (+)
is constant for all Xenipse € Xellipse, this proves that using (12) to
transform uniformly distributed samples in the unit n-ball results in
a uniform distribution over the hyperellipsoid and proves Lemma 15.

For hyperellipsoids whose axes are orthogonal (e.g., a prolate
hyperspheroid), (35) can be expressed in a more familiar and intuitive
form. Using (13) for 7 (-) and the orthogonality of rotation matrices
makes (35)

5

Pellipse (X) = n
0, otherwise.

det (L'_lcz;e)’ , VX € Xellipse 36)

where L’ = diag (r1, 72, ...
simplifies (36) to

,Tr) is a diagonal matrix which then

1
n ) VX S Xellipse
Pellipse (X) = <n j=1 Ty (37)
0, otherwise,

since the determinant is a linear operator, all rotation matrices have a
unity determinant, det (Cwe) = 1, and the determinant of a diagonal
matrix is the product of its diagonal entries. As expected, (37) is the
inverse of the volume of an n-dimensional hyperellipsoid with radii

{riti-1: =

APPENDIX C
PROOF OF LEMMA 17

Lemma 17 (Expected next-iteration cost of minimum-path-length
planning). The expected value of the next solution to a minimum-
path-length problem, E [ci+1], is bounded by

ne; + Chuin
Ps (n+1)e¢

where c; is the current solution cost, Cmin IS the theoretical minimum
solution cost, n is the state dimension of the planning problem, and

+ (1 —py)ei < Eleiy] < ¢, (24 redux)
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P = P (Xnew € Xy) is the probability of adding a state that is a
member of the omniscient set (i.e., that can belong to a better solution).
While not explicitly shown, the subset, Xy, and the probability of
improving the solution, py, are generally functions of the current
solution cost.

This lower bound is sharp over the set of all possible minimum-path-
length planning problems and algorithm configurations and is exact
for versions of RRT* with an infinite rewiring radius (i.e., 1 = 0o,
and rrrT* = 00) searching an obstacle-free environment without
constraints.

Proof. Proof of the upper bound is trivial. RRT* only reports solutions
that improve its existing solution, assuring that the cost monotonically
decreases,

Ci+1 S C;. (38)

Proof of the lower bound comes from finding an exact expression
for the expected value of the solution cost found in the absence of
obstacles and constraints with an infinite rewiring neighbourhood.

The expected solution cost of RRT* depends on the probability of
sampling the omniscient set,

Elcit1] = prE[cit1 | Xnew € X]

+ (1 _pf) E [ci+1 |xnew 4 Xf} ) (39)

where pf = P (Xnew € Xy). Adding a state from the omni-
scient set, Xy, is a necessary condition to improve the solution
(Lemma 4) and any other state will not change the solution cost,
E [cit1 | Xnew & X ] = ¢;. This simplifies (39) to

Elcip] =prE[citr [ Xnew € Xg]+ (1 —ps)ei. (40)

The costs of solutions found by adding states inside the omniscient
are bounded from below by the optimal path through the newly added
state,

Elcit1 [ Xnew € X5] 2 E[f (Xnew) | Xnew € Xg], (41)

where f (x) is the cost of the optimal path from the start to the
goal constrained to pass through a state, x. With a uniform sample
distribution over X the right-hand side of (41) becomes

1

B1S (o) [0 € X1 = 5755 [

When RRT* uses an infinite rewiring radius it attempts connections

between every new state and the start and goal. In the absence of

obstacles and constraints these paths will be feasible and represent

the optimal solutions using the state. This makes the expected value

of this best-case configuration of RRT* equivalent to the expected
optimal solution cost in the absence of obstacles,

f (Xnew) dV.

E [C—;Jrl |Xnew S Xf]* =F [f (Xnew) |Xnew (S Xf] . (42)

The lower bound provided by (41) is therefore sharp over the set of
all possible planning problems and algorithm configurations.

In this absence of obstacles and constraints, the optimal solution
using any state is given by (4) and the omniscient set is the prolate
hyperspheroid, X; = X7 = Xpus. The measure of the omniscient
set, A (Xf) = Apus, is given by (5). This allows (42) to be written
as

N 1
Blowe oo € X1 == [ (Ix =l
PHS
+ o =] .

(43)

The prolate hyperspheroidal coordinates, p, v, 91, ..., ¥n—2,

z1 = acosh pcosv,
2 = asinh psin v cos 1,

x3 = asinh p sin v sin ¥ cos ¥,

ZTn—1 = asinh pusinvsiny; sinys . . . sin Y, _3 cos Y, 2,
Zn, = asinh ysinvsin sins . .. sin,_3 sinYn_2,

and the parameterization a = 0.5¢min, simplifies (4) to
f (X) = Cmin cosh p. (44)

Substituting (44) and the prolate hyperspheroidal differential
volume,

dV = a" (sinh® i + sin® v) sinh”~? psin”  vsin" ¢y ...
sinYn—sdpdvdi ... dipn—2,

into (43) results in

Cnfl i ™ K
E[Ci+l|xnew GXf]* = ﬁ/ / /
PHS Jpu=0Jv=0Jy1=0

T 27
e / / (sinh2 w+ sin? 1/)
Yn—-3=0 Yy _2=0

. _92 . n—2 . m—o
sinh” ™2 g cosh pusin™ 2 vsin™ 2 oy

e SiNYp_sdudydi, ... dpn_a, (45)
where the integration limit for y is derived from (44) as
cosh p; = G (46)
Cmin
Integrating (45) requires applying a series of identities, first
™ ™ 21
(n—1)C—1 = / .. / / sin™ 3 U1
P1=0 Yn—3=0J Yy _9=0
...sin wn—S d¢1 e dlﬂn_z,
simplifies (45) to
" n—1)c" ¢,
E[cit1 | Xnew € Xf]" = (gw
2" \pus
wi o pm ) )
/ / (sinh 1+ sin 1/)
n=0Jv=0
sinh™ ™2 peosh psin” 2 vdudv.  (47)

Next, the definite integral of the product of powers of sin and cos,
/ sin®™ 1 9 cos™ 10 dO = B (m,n),
0
where B (-, ) is the beta function,

1
B (m,n) = / "t =)™t dt,
0
is used to evaluate the integral over v in (47), giving

(n—1)cptiCn
2" \pHS

_ iz
B~ ! , 1 / sinh™ p cosh p du
2 2) Ju=o
Hi
+B(Z + 1, 1 / sinh™ ® pcosh pdu | . (48)
2 °2) /.,

The identity,

E [Ci+1 |chw S Xf]* -

B(m+1,n) = B (m,n),

m
m-+n
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and the recursive nature of the n-dimensional unit ball,

CnEB(n+1 I)Cnfl,

2 2
simplifies (48) to

et Cn M
Ecit1 | Xnew € Xj]" = 2in 2" (n/ sinh™ i cosh p dp
2" A\pus 4=0
M
+(n—-1) / sinh™ ™2 Mcosh,udu) . (49)
pn=0
The indefinite integral,
. m—+1
/sinhm 0 coshfdf = M,
m+1
is then used to evaluate (49), giving
Cn-!—l C’n
Elc; new € X ¢|* = —min >
[evs |new € Xp" = St

<n i 1 sinh™ ! Wi + sinh™ ! ui) . (50)

Using (5) to expand the measure Apugs in (50) cancels the measure
of the unit n-ball, giving

Cn-.kl
Elcit1 | Xnew € X" = ——— 20—
ci (€ = i) 2

<nj— 1 sinh™ ! Wi + sinh™ ! ,ui) .

(5L

Using the relationship

coshpy =b < sinhp = \/b27—1,
some algebraic manipulation, and (46) finally simplifies (51) to
ne; + Chin
(n+1)e’

and exact value for the best-case expected solution cost of RRT*.
This result allows (40) to be written as the sharp bound,

E [C'H»l |Xnew S Xf}* -

2 2
ne; + Cmi
E ) > (3 min 1 _ )
[Cl"rl] Z Pr (n ¥ 1)01_ +( pf) Ci,
which when combined with (38) proves Lemma 17. O
APPENDIX D

PROOFS OF THEOREMS 18-20
A. Proof of Theorem 18

Theorem 18 (Sublinear convergence of RRT* in geometric mini-
mum-path-length planning). RRT* converges sublinearly towards the
optimum of geometric minimum-path-length planning problems,

E [prrr+] = 1. (25 redux)

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. The expected rate of convergence (Definition 16) of RRT* is

(52)

i—=00 Cj—1 — Cmin

E [prrr+] = E {lim m} ,

since V¢, ¢; > cmin. As RRT* almost-surely converges asymptotically
to the optimum, this sequence also almost-surely converges to a finite
value, 0 < prrr* < 1,

Ci — Cmin

P <11m —_— = MRRT*) =1.
1—00 Cj—1 — Cmin

By Lebesgue’s dominated convergence theorem this allows the
expectation operator to be brought inside the limit of (52), giving
E [C’L] — Cmin

E[prrT+] = lim ———,
t—00 Cj—1 — Cmin

(53)

since c¢; is the only random variable at iteration 1.

Lemma 17 provides sharp bounds for the expected solution cost
at any iteration, E [¢;], with the lower-bound corresponding to an
infinite rewiring radius in the absence of obstacles and constraints.
Substituting this lower bound into (53) and simplifying gives an
expression for the expected best-case convergence rate,

1 pr(chin —ci1)
1 (n+1) zlggo (¢21 — cminci—1)’

E [:u';tRT*] =

such that E [ufrr+] < F [urrr+] is a sharp bound over all possible
planning problems and algorithm configurations. Applying 1’Hopital’s
rule [40] with respect to ¢;—1 gives

1
[rRRT*] n+ 1)
5]
Bc?fl (crznin - 012—1) —2prci—1
i—roo (2C’i—1 - Cmin)

As iterations go to infinity the probability of adding a sample in X s
becomes the probability of sampling it (Lemma 5). The lower bound
from Lemma 17 is for an obstacle- and constraint-free problem and
therefore the informed set is the omniscient set, Xy = X 7 and the
probability of sampling it is given by (7) with a partial derivative of

n—1
2

Op;  _
dci—1 2nT (% + 1) A (Xsamp)

(sz— 1 Cmin)

(n—1) ¢y
14+ ————F—].
< * (cii— Ciin))

Almost-sure convergence to Cmin implies lim; yoo ¢i—1 = Cmin

and therefore lim; oo py = 0 and lim; .o alszl = 0, making (54),

E [prrr-] = 1.

As by definition the expected rate of convergence of RRT* is
bounded by,

E [pirr+] < E [prrr~] < 1,

this result proves Theorem 18. O

B. Proof of Theorem 19

Theorem 19 (Linear convergence of RRT* with adaptive rectangular
rejection sampling in geometric minimum-path-length planning).
RRT* with adaptive rectangular rejection sampling converges at
best linearly towards the optimum of geometric minimum-path-length
planning problems but factorially approaches sublinear convergence
with increasing state dimension,

Ts
_ <E <1.
(n+1)2n=1T (2 +1) — lmec] <

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

(26 redux)

Proof. Proof of Theorem 19 follows that of Theorem 18 but with the
probability of adding a new state from X instead calculated from
(7) using (10), as
%
PFS oma

< . : (55)
2"T (4 +1)
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As 221 — 0, (54) becomes

dci—1

. 1 . 2psci-1
E =1- ! '
[LRect] (n+1) zi>rgo (2¢i—1 — Cmin)

(56)
Noting that almost-sure convergence to Cmin implies lim; o0 ci—1 =
Cmin and substituting (55) into (56) results in

2py
(n+1)

E [/I’l*lect] =1-

i
n
T 2

(D20 (241

As by definition the expected rate of convergence of RRT* with
rectangular rejection sampling is bounded by,

E [:U/I*Kect} S E [MRect] S 1.

This result proves Theorem 19 with sharp bounds over all possible
geometric planning problems and algorithm configurations. O

C. Proof of Theorem 20

Theorem 20 (Linear convergence of Informed RRT* in geometric
minimum-path-length planning). Informed RRT* converges at best
linearly towards the optimum of geometric minimum-path-length
planning problems,

n—1
< E ] < 1,
T (] <

(27 redux)

where the lower-bound occurs exactly with an infinite rewiring
neighbourhood in the absence of obstacles and constraints.

This statement is limited to geometric planning for simplicity but
it can be extended to specific constraints by expanding Lemma 5.

Proof. Proof of Theorem 20 follows that of Theorem 18 but with
a unity probability of adding a new state from X . From (54), the
convergence rate of Informed RRT* is then,

2¢;—1

1
[41n¢] (n+1) il (2¢i—1 — Cmin)

As almost-sure convergence to Cmin implies lim; o0 ¢i—1 = Cmin,
this gives,

n—1

n+1"

E [p1ng] =

As by definition the expected rate of convergence of RRT* with
rectangular rejection sampling is bounded by,

E [.uiknf} S E [,U‘Inf} S 1.

This result proves Theorem 20 with sharp bounds over all possible
geometric planning problems and algorithm configurations. O
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