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Abstract—Assistive robotic arms are increasingly en-
abling users with upper extremity disabilities to perform
activities of daily living on their own. However, the increased
capability and dexterity of the arms also makes them harder
to control with simple, low-dimensional interfaces like joy-
sticks and sip-and-puff interfaces. A common technique
to control a high-dimensional system like an arm with a
low-dimensional input like a joystick is through switching
between multiple control modes. However, our interviews
with daily users of the Kinova JACO arm identified mode
switching as a key problem, both in terms of time and
cognitive load. We further confirmed objectively that mode
switching consumes about 17.4% of execution time even for
able-bodied users controlling the JACO. Our key insight is
that using even a simple model of mode switching, like
time optimality, and a simple intervention, like automatically
switching modes, significantly improves user satisfaction.

I. INTRODUCTION

People with upper extremity disabilities are gaining
increased independence through the use of assisted de-
vices such as robotic arms [1]-[4]. However, the increased
capability and dexterity of these arms also makes them
harder to control. For example, the Kinova assistive arm
in Fig. 1 has 6 independently controllable joints and
1 controllable gripper. Even under Cartesian control of
the end-effector, assistive arms have 3 position and 3
orientation freedoms to independently control.

Paradigms for controlling such high dimensional sys-
tems with much lower dimensional interfaces like a joy-
stick [5], sip-and-puff [6], or a brain-computer interface
[7] fall into two categories.

The first treats the user as an indicator of goals by
reducing the user’s input to one of a finite set of pre-
defined configurations or goals [8]. While these systems
are easy to operate, removing autonomy from the user
often decreases their satisfaction with the system [9], [10].

The second treats the user as a provider of motion by
mapping the lower dimensional input to some subset of
the arm’s degrees of freedom, called a mode. Users then
switch modes to control a different subset [11]-[17], a
method known as modal control. Thus the user is able to
move the arm everywhere, but not using all of the de-
grees of freedoms at the same time. Studies with people
with disabilities revealed that the numerous and frequent
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Fig. 1: An able-bodied user is dialing 911 by directly teleoperating the
MICO arm with modal control. The three control modes are translation,
wrist, and gripper mode. A 3-axis joystick is used as primary input and
buttons atop the joystick are used to change mode.

mode switches required for performing everyday tasks
made such systems difficult to operate [18], [19].

Our own interviews with current users of the Kinova
arm pinpointed that the struggles with modal control
relate back to the need to constantly change modes.
Our users found switching between the various control
modes, seen in Fig. 1, to be slow and burdensome, noting
that there were “a lot of modes, actions, combination
of buttons”. Each of these mode changes requires the
user to divert their attention away from accomplishing
their task to consider the necessary mode change [19],
[20]. The cognitive action of shifting attention from one
task to another is referred to as task switching. Task
switching slows down users and can lead to increased
errors regardless of the interface they are using to make
this switch [21]-[25]. Simply the need to change modes
is a harmful distraction that impedes efficient control.

In this paper, we alleviate the problem of mode
switching by automatically switching modes. We achieve
this by building a model of the the user’s desired
robot motion and mathematically computing the optimal
switching points according to that model. Doing so
creates a level of shared control that allows the user to



freely express their intent in the full configuration space
of the robot while simultaneously receiving assistance
from the arm [26]-[28]. Our key insight is that even
a simple model, like time-optimality, combined with a
simple intervention, like automatically switching modes,
significantly improves user satisfaction while maintain-
ing performance.

We therefore make the following contributions:

1. Identifying Mode Change Disruption. Based on
interviews with current JACO users and Kinova em-
ployees we identify that mode switching is a common
problem in assistive arms. A study with able-bodied
users performing a variety of instrumental activities of
daily living [29] confirmed that a significant portion of
the execution time was spent changing modes.

2. Time-Optimal Model. A study using a 2D simu-
lated mobile robot allowed us to determine that we can
model the mode changing behavior of the users as time-
optimal. Using time as the cost to optimize, we can use
Dijkstra’s algorithm to predict when the robot should
automatically change modes for the user.

3. User Performance. Having developed a policy for
when to change modes, we tested how able-bodied users
performed with the robot changed modes automatically.
Users reported feeling comfortable with the assistance,
and that the modes were changed at the same times and
places that they would have wanted to change modes
themselves.

We discuss several limitations of our work in Sec. V.
Key among them is how to generalize the time-optimal
model to higher dimensional spaces, like the 6-DOF
JACO arms. Algorithms like Djikstra’s, that compute
the optimal cost-to-go, incur combinatorial computa-
tional cost with respect to the size of the search space.
Our preliminary results on approximate algorithms like
Weighted A* and LPA* [30] which trade-off optimality
for speed, have been encouraging.

II. CHALLENGES OF MODAL CONTROL

To understand the challenges of modal control, we in-
terviewed the developers and current users of the Kinova
assistive arm, and conducted a pilot study with able-
bodied users operating Kinova’s MICO arm to perform
3 basic tasks (Fig. 2). This section details our findings.

A. The Kinova MICO and JACO arms

The JACO is a 6-DOF wheelchair-mounted or
workstation-mounted arm with an actuated gripper
which presently has over 150 users. The arm can be
teleoperated using the same interface that controls the
powered wheelchair, typically a joystick. The joystick
provided with the arm has 3 DOFs: tilting the stick
forward or backward, tilting the stick left or right, and
twisting the stick clockwise or counterclockwise. To con-
trol the robot arm’s hand location and orientation, 6
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Translation Wrist Finger
Translation - 198 + 0.15s  1.94 £ 0.16s
Wrist 2.04 £ 0.51s - 3.20 £ 1.85s
Finger 1.30 £ 0.13s  0.98 & 0.24s -

TABLE I: Mean mode switching times

DOFs are needed, and a 7th is required to open and close
the gripper. Controlling 7 DOFs with a 3-DOF joystick
requires at least 3 control modes to divide the robot
DOFs into groups of 3, such as: translation mode, wrist
mode, and finger mode (Fig. 1). The control mode is
switched via buttons on the joystick, and a 4 LED light
pattern indicates the current mode.

B. User Interviews

We interviewed three current users of the JACO assis-
tive arm who operate the device on a daily basis within
their homes. All users expressed difficulty in changing
modes. Specifically they noted two key problems. First,
users found that “too many mobilizations and too many
movements” are needed to perform elementary tasks
such as eating. As a result, they often abandoned these
tasks completely and relied on their caregivers. Second,
users said that remembering which mode the arm was in
was difficult and required a lot of concentration. In our
interviews, Kinova employees acknowledged the second
problem, stating that not remembering the mode can
be “a real nightmare” for the user. Kinova is currently
working on an LCD screen interface to display the modes
more easily. Although this alleviates the second problem,
it does not address the first.

C. Study 1: CAHAI Tasks with the MICO Robot

To objectively measure the impact of mode switching,
we ran a study with able-bodied users performing house-
hold tasks with the Kinova MICO arm using a joystick
interface.

Experimental Setup Users sat behind a table on
which the MICO arm was rigidly mounted (Fig. 1). They
used the standard Kinova joystick to control the arm.

Tasks The tasks we chose are modified from the
Chedoke Arm and Hand Activity Inventory (CAHAI),
a validated, upper-limb measure to assess functional
recovery of the arm and hand after a stroke [31]. The
CAHALI has the advantage of drawing tasks from instru-
mental activities of daily living, which are representative
of our desired use case, rather than occupational therapy
assessment tools such as the 9-Hole Peg Test [32] or
the Minnesota Manipulation Test [33] that also evaluate
upper extremity function, but do not place the results
into context.

Manipulated Factors We manipulated which task the
user performed. The three tasks we used were: call-
ing 911, pouring a glass of water from a pitcher, and



(a) Dialing 911

(b) Pouring water (c) Unscrewing a jar

Fig. 2: Three modified tasks from the Chedoke Arm and Hand Activity
Inventory, which able-bodied users performed through teleoperating
the MICO robot.
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Fig. 3: Comparison of time spent moving the robot (lighter shade)
and time spent changing the robot’s control mode (darker shade) both
between tasks (3a) and between users (3b).

unscrewing the lid from a jar of coffee. These three
tasks were chosen from the CAHAI test because they
could easily be modified from a bimanual task to being
performed with one arm. The three tasks are shown in
Fig. 2.

Procedure After a five minute training period, each
user was given a maximum of ten minutes per task. The
order of tasks was counterbalanced across the users. The
joystick inputs and the robot’s position and orientation
were recorded throughout all trials. After all the tasks
were attempted, we asked the users to rate the difficulty
of each task on a 7-point Likert scale and what aspects
make performing tasks difficult with this robot.

Participants and Allocation We recruited 6 able-
bodied participants from the local community (4 male,
2 female, aged 21-34). This was a within subject design,
and each participant performed all three tasks with a
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Fig. 4: Each point is a mode switch, with the y-value indicating the
mode switching time, and the x-value indicating when the mode switch
occurred. The colors correspond to the task (blue: pouring pitcher,
brown: unscrew jar of coffee, red: dial 911), and the order of tasks can
be seen for each user in arranged from left to right. Dashed lines in
the pitcher task identify locations where the user dropped the pitcher
and the task had to be reset.

counterbalanced ordering.

Analysis On average, 17.4 & 0.8% of task execution
time is spent changing control modes and not actually
moving the robot. The mode changing times were calcu-
lated as the total time the user did not move the joystick
before and after changing control mode. The fraction of
total execution time that was spent changing modes was
fairly consistent both across users and tasks as seen in
Fig. 3. If time spent changing mode could be removed,
users would gain over a sixth of the total operating time.

The tasks the users performed were not of equal
difficulty. Users responded that the pitcher pouring was
the most difficult task (M=5.5,SD=0.7), followed by un-
screwing the jar (M=5.2,SD=0.7), and the easiest task
was dialing 911 (M=4,5SD=0.6). The total execution time
shown in Fig. 3a mirrors the difficulty ratings, with
harder tasks taking longer to complete. Difficulty could
also be linked to the number of mode switches, mode
switching time, or ratio of time spent mode switching,
as shown in Fig. 5. The hardest and easiest tasks are
most easily identified when using switching time as a
discriminating factor. The pitcher and jar tasks both rated
as significantly more difficult than the telephone task,
which may be due to the large number of mode changes
and small adjustments needed to move the robot’s hand
along an arc — as one user pointed out: “Circular motion
is hard.”

One might argue that we are basing our findings
on novice users, and their discomfort and hesitation
switching modes will diminish over time. However, over
the course of half an hour using the arm, and an average
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Fig. 5: The connected components are a single user, and the colors represent the difficulty that user rated each task with red being most difficult,

yellow being second most difficult, and green being least difficult.

of more than 100 mode switches, users did not show any
significant decrease in the time it takes to change mode
(Fig. 4). The continued cost of mode switching is further
supported by our interviews, in which a person using the
JACO for more than three years stated “it’s really hard
with the JACO because there are too many mobilizations
and too many movements required.”

The users had three possible modes and used two
buttons on the top of the joystick to change between
them. The left button started translation mode, the right
button started orientation mode, and pressing both but-
tons simultaneously started gripper mode. Changing
into gripper mode was particularly since the timing be-
tween the two buttons had to be very precise lest the user
accidentally press the left or right button when releasing
and switch to translation or wrist mode. The cost to
change from one mode to another was not constant
across the modes; Table I shows the average time it took
to change from the mode in the row to the mode in
the column. While in this case the difference can be
explained by the chosen interface, it could be important
to consider if switching from one particular control mode
to another causes a larger mental shift in context. Such
differences would require the cost of mode switches to
be directional, which we leave for future work.

III.

The users of the JACO arm identified that frequently
changing modes was difficult. We objectively confirmed
the difficulty of mode changing by having able-bodied
users perform everyday tasks with the MICO arm. Hav-
ing identified mode switching as a problem in this
complex scenario, we tried to model the problem in a
much simpler scenario and provide the foundations for
scaling the solution back up to the full space of the MICO
arm.

MODE SWITCHING OBSERVATION

A. Study 2: 2D Mode Switching Task

Study 1 demonstrated that people using modal con-
trol spend a significant amount of their time changing
modes and not moving the robot. The next step is to
model when people change modes so that the robot can
provide assistance at the right time. We identified certain
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(a) Task 1

(b) Task 2

(c) Task 3

Fig. 6: Top row: Three tasks that the users performed with a 2D robot.
The green square is the goal state and the black polygons are obstacles.
Middle row: regions are colored with respect to the optimal control
mode; in blue regions it is better to be in x mode, in orange regions it
is better to be in y mode, and in gray regions x and y mode yield the
same results. Bottom row: user trajectories are overlaid on top of the
decision regions, illustrating significant agreement.

behaviors from Study 1 that could confound our ability
to fit an accurate model. We observed that different
people used very different strategies for each of the
tasks, which we postulated is because they were perform-
ing multi-step tasks that required several intermediate
placements of the robot’s gripper. In some trials, users
changed their mind about where they wanted to grab an
item in the middle of a motion, which we could detect
by the verbal comments they made. To gather a more
controlled set of trajectories under modal control, we ran
a second study in which we more rigidly defined the goal
and used only two modes. To fully constrain the goal, we
used a simulated robot navigating in two dimensions
and a point goal location. We kept all the aspects of
modal control as similar to that of the robot arm as
possible. Using a 2D simulated robot made it simpler
to train novice users and removed confounds, allowing
us to more clearly see the impacts of our manipulated



(a) Delay = 0s

(b) Delay = 1s

(c) Delay = 2s

(d) Time-optimal strategy (e) Agreement

Fig. 7: User strategies for Task 2 are shown via their paths colored in blue. As the delay increases, some users choose to go around the obstacles
rather than through the tunnel, to avoid switching mode. There is still significant agreement with the time-optimal strategy.

factors as described below.

Experimental Setup In this study, the users were
given the task of navigating to a goal location in a
planar world with polygonal obstacles. We had each user
teleoperate a simulated point robot in a 2D world. There
were two control modes: one to move the robot vertically,
and one to move it horizontally. In each mode, the users
pressed the up and down arrow keys on the computer
keyboard to move the robot along the axis being con-
trolled. By using the same input keys in both modes,
the user is forced to re-map the key’s functionality by
pressing the spacebar. This is a more realistic analogy
to the robot arm scenario, where the same joystick is
being used in all of the different control modes to control
different things.

Manipulated Factors We manipulated two factors:
the delay when changing modes (with 3 levels) and
the obstacles in the robot’s world (with 3 levels). To
simulate the cost of changing modes, we introduced
either no delay, a one second delay, or a two second delay
whenever the user changed modes. Different time delays
are analogous to taking more or less time to change mode
due to the interface, the cognitive effort necessary, or
the physical effort. We also varied the world the robot
had to navigate in order to gather a variety of different
examples. The three tasks are as follows: (1) an empty
world, (2) a world with concave and convex polygons
obstacles, and (3) a world with a diagonal tunnel through
an obstacle, and are shown in the top row of Fig. 6.

Procedure This was a within users study design. Each
user saw only one task, but they saw all three delay
conditions. Each user had a two trial training period
with no delay to learn the keypad controls, and then
performed each of the three delay conditions twice. Five
users performed each task. The goal remained constant
across all the conditions, but the starting position was
randomly chosen within the bottom left quadrant of the
world. We collected the timing of each key press, the
robot’s trajectory, and the control mode throughout each
of the trials.

Measures To measure task efficiency, we used three
metrics: the total execution time, the number of mode
switches, and the total amount of time switching modes.
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We also recorded the path the user moved the robot and
which control mode the robot was in at each time step.

Participants We recruited 15 participants through
Amazon Mechanical Turk (aged 18-60).

Analysis When the cost of changing modes increases,
people choose different strategies in particular situations.
This is best seen in Task 2, where there were two dif-
ferent routes to the goal, whereas in Task 1 and Task
3 the map is symmetrical. When there was no mode
delay, nearly all users in Task 2 navigated through the
tunnel to get to the goal, Fig. 7. When the delay was
one second, some users began to navigate around the
obstacles completely, and not through the tunnel. While
navigating the tunnel was a shorter Euclidean distance,
it required more mode changes than navigating around
the tunnel entirely. Therefore we saw that when the cost
of mode changes increased, people optimized for fewer
mode changes.

We noticed that the user trajectories could be very
well modeled by making the assumption that the next
action they took was the one that would take them to
the goal in the least amount of time. Since switching
modes is one of the possible actions, it becomes possible
to use this simple model to predict mode switches. The
next section discusses the time-optimality model in more
detail.

IV. TimMe-OrPTIMAL MODE SWITCHING

The time-optimal policy was found by assigning a
cost to changing mode and a cost to pressing a key.
These costs were found by empirically averaging across
the time it took the users from Study 2 to perform these
actions. Using a graph search algorithm, in our case
Dijkstra’s algorithm [34], we can then determine how
much time the optimal path would take. By looking at
each (x,y) location, we can see if the optimal path is
faster if the robot is in x-mode or y-mode. The time-
optimal mode for each particular (x,y) location is the
mode which has a faster optimal path to the goal. A
visualization of the optimal mode can be seen in Fig. 6
for each of the tasks. Time-optimal paths change into
the optimal mode as soon as the robot enters one of the
x-regions or one of the y-regions. By plotting the user



trajectories over a map of the regions, we can see where
users were suboptimal. If they were moving vertically in
the x-region or horizontally in the y-region, they were
performing sub-optimally with respect to time.

In Task 1, users were in the time-optimal mode 93.11%
of the time. In Task 2, users were in the time-optimal
mode 73.47% of the time. In Task 3, users were in the
time-optimal mode 90.52% of the time. Task 2 and Task
3 require more frequent mode switching due to the
presence of obstacles.

A. Study 3 : 2D Automatic Mode Switching

Once we determined that people often switch to be
time-optimal, we tested how people would react if the
robot autonomously switched modes for them. Using
the same tasks from Study 2, we used the time-optimal
region maps (Fig. 6), to govern the robot’s behavior.

Manipulated Factors We manipulated two factors:
the strategy of the robot’s mode switching (with 3 levels)
and the delay from the mode switch (with 2 levels). The
mode switching strategy was either manual, automatic
or forced. In the manual case, changing the robot’s mode
was only controlled by the user. In the automatic case,
when the robot entered a new region based on our
optimality map, the robot would automatically switch
into the time-optimal mode. This change would occur
only when the robot first entered the zone, but then
the user was free to change the mode back at any
time. Within each region in the forced case, by contrast,
after every action the user took, the robot would switch
into the time-optimal mode. This meant that if the user
wanted to change to a suboptimal mode, they could
only move the robot one step before the mode was
automatically changed into the optimal mode. Hence the
robot effectively forces the user to be in the time-optimal
mode.

Similar to Study 2, we had a delay condition, however
we considered the following three cases: (1) no delay
across all assistance types, (2) a two second delay across
all assistance types, and (3) a two second delay for
manual switching but no delay for auto and forced
switching. The purpose of varying the delay was to see if
the users’ preference was impacted equally by removing
the imposed cost of changing mode (delay type 3), and
by only removing the burden on the user to decide about
changing mode (delay type 1 and 2).

Hypotheses

H1: People will prefer when the robot provides
assistance.

H2: Forced assistance will frustrate users be-
cause they will not be able to change the mode
for more than a single move if they do not
accept the robot’s mode switch.

H3: People will perform the task faster when
the robot provides assistance.
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Procedure After giving each user two practice trials,
we conducted pairs of trials in which the user completed
the task with the manual mode and either the forced
or automatic mode. Testing the automatic assistance and
forced assistance across the three delay conditions led to
six pairs. For each pair, users were asked to compare the
two trials on a forced choice 7-point Likert scale with
respect to the user’s preference, perceived task difficulty,
perceived speed, and comfort level. At the conclusion of
the study, users answered how the felt about the robot’s
mode switching behavior overall and to rate on a 7-point
Likert scale if the robot changed modes at the correct
times and locations.

Participants We recruited 13 able-bodied participants
from the local community (7 male, 6 female, aged 21-58).

Analysis People responded that they preferred using
the two types of assistance significantly more than the
manual control, #(154) = 296, p = .004, support-
ing H1. The users’ preference correlated strongly with
which control type they perceived to be faster and easier
(R=0.89 and R=0.81 respectively).

At the conclusion of the study, users responded that
they felt comfortable with the robot’s mode switching
(M=5.9, SD=1.0), and thought it did so at the correct
time and location (M=5.7, SD=1.8). Both responses were
above the neutral response of 4, with t(24)=4.72, p < .001
and t(24)=2.34, p = .028 respectively. This supports
our finding that mode switching can be predicted by
following a strategy that always places the robot in the
time-optimal mode.

Since this was an experiment, we did not tell par-
ticipants which trials the robot would autonomously
changing modes in. As a result, the first time the robot
switched modes automatically, many users were notice-
ably taken aback. Some users immediately adjusted, with
one saying “even though it caught me off guard that
the mode automatically switched, it switched at the
exact time I would have switched it myself, which was
helpful”. While others were initially hesitant, all but two
of the participants quickly began to strongly prefer when
the robot autonomously changed for them, remarking
that it saved time and key presses. They appreciated
that the robot made the task easier and even that “the
program recognized my intention”.

Over time people learned where and when the robot
would help them and seemed to adjust their path to
maximize robot assistance. People rarely, if ever, fought
against the mode change that the robot performed. They
trusted the robot’s behavior enough to take the robots
suggestions [35]-[37]. We found no significant difference
between the forced and automatic mode switching in
terms of user preference t(76) = 0.37,p = 0.71. Some
users even stated that there was no difference at all be-
tween the two trials. Therefore we did not find evidence
to support H2.

Task efficiency, measured by total execution time and



total time spent changing modes (as opposed to moving
the robot), was not significantly different between the
manual control, auto switching, and forced switching
conditions. Therefore we were not able to support H3.
However, this is not surprising as the assistance tech-
niques are choosing when to switch modes based on a
model that humans already closely follow. It follows that
the resulting trajectories do not differ greatly in terms of
path length nor execution time.

V. DiscussioN

While this work proposes a useful intervention for
controlling assistive robotic arms, there remain many
avenues to explore.

Generalization While our studies involved exclu-
sively able-bodied subjects, we want to see how these
results, particularly those relating to acceptance, gener-
alize to people with disabilities. Study 3, as described in
Sec. IV-A, was restricted to a 2D point robot and we are
looking to reconduct this experiment on the MICO robot
arm. The optimal mode regions will become optimal
mode volumes, and the assisted mode switching will
occur when the robot enters a new volume.

Priority List of Modes How best to improve modal
control is an open question. Here we presented one
technique: having the robot perform mode switches au-
tomatically. An alternative form of assistance would be
to have a priority ordered list of modes. With a single
button press the user could transition to the most likely
next mode, as estimated by the robot. In the case of an
incorrect ordering the user would cycle through the list.
This kind of assistance would complement Kinova’s LCD
screen as described in Sec. II-B.

Extramodal Control We have suggested a method for
more easily switching modes. An alternative approach
is to remove this problem entirely by having the user
only control one mode. The remaining modes would be
controlled by the robot, in a type of assistance known as
extramodal assistance. While this eliminates the burden on
the user in general, mistakes made by the robot become
much more costly. In the case of a robot mistake, the
user would have to change modes manually, correct the
mistake and then revert back to their original task.

Goal uncertainty Often the exact goal the user wants
to achieve is not known in advance. In these situations,
the system must simultaneously predict the user’s goals
and assist them to complete the task [26], [27]. Robot
policies for each goal are key to most formalisms that
address goal uncertainty. Our framework provides that
policy and can be naturally plugged into a policy blend-
ing formalism for goal uncertainty.

By investigating modal control and helpful interven-
tions we strive to close the gap between what users want
to do with their assistive arms and what they can achieve
with ease.
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