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Minimizing Task-Space Fréchet Error via
Efficient Incremental Graph Search

Rachel Holladay!, Oren Salzman?, and Siddhartha Srinivasa?

Abstract—We present an anytime algorithm that generates
a collision-free configuration-space path that closely follows
a desired path in task space, according to the discrete Fréchet
distance. By leveraging tools from computational geometry,
we approximate the search space using a cross-product graph.
We use a variant of Dijkstra’s graph-search algorithm to
efficiently search for and iteratively improve the solution. We
compare multiple proposed densification strategies and em-
pirically show that our algorithm outperforms a set of state-
of-the-art planners on a range of manipulation problems.
Finally, we offer a proof sketch of the asymptotic optimality
of our algorithm.

Index Terms—Motion and Path Planning, Computational
Geometry, Kinematics

I. INTRODUCTION

HE classical formulation of the motion-planning

problem calls for planning a collision-free (possibly
optimal) path between a given start and target config-
uration [1] in a robot’s configuration space (C-space).
However for robot arms, the path of the end-effector is
often of greater relevance. For example, the end-effector
path might be subject to constraints such as keeping a
coffee mug upright, or might even be restricted to a
specific path such as pulling a door open, writing on
a whiteboard, or welding a seam on a car.

We focus on the latter problem: enabling a redundant
robotic manipulator to follow a reference path in task
space. There are two state-of-the-art approaches to solv-
ing this problem:

1) Projection-based approaches exploit the kinematic
redundancy of the manipulator [2], [3], [4], [5] to
drive the robot along the desired path [6], [7], [8], [9],
[10]. Although these are typically efficient and can
follow the desired path accurately, they are myopic
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Fig. 1: On top is a flowchart of our algorithm. We create data structures
that allow us to efficiently compute a path that minimizes the Fréchet
distance to the reference path and then to incrementally reduce this
distance. Each grey box outlines a major step: (1) generating candidate
paths, (2) searching over paths and (3) densifying. On the bottom
we see the progression of our planner (pink) and the planner from
Holladay and Srinivasa [16] (orange) as they trace out the reference
path (black) in the presence of obstacles (grey).

and can fail due to joint limits or collisions [11], [12],
[13].

2) Graph-based approaches sample the task-space
path, compute a set of inverse kinematics (IK) solu-
tions in the C-space for each sample along the path,
create a graph by connecting nearby configurations
via a simple planner (like a straight line), and solve
for the shortest-feasible path on this graph [14], [15].
Although they can solve more intricate problems via
organized search, they are typically much slower,
when compared to projection-based approaches.
More importantly, their optimization criteria (short-
est path in C-space) lacks any notion of “following”
the task-space reference path.

The goal of our paper is to make graph-based ap-
proaches more efficient while still being sufficiently
accurate. Central to our approach is the simple, yet
fundamental question: What does it mean to approximately
follow a path? We can rephrase this more formally as

What is the right distance metric for comparing
two paths in task space?

Informally, let us say that we would like to stay within
an e-ball of any point on the reference path. The one-way
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Hausdorff distance satisfies this property [17]. However,
we might end up shortcutting large sections of the path.
Now, if we force such proximity for both the reference
and the target path, via the two-way Hausdorff distance,
we avoid shortcutting [17]. However, this does not pre-
serve monotonicity of traversal. If we additionally enforce
monotonicity, we end up with the Fréchet distance [18].

Holladay and Srinivasa [16] showed the practical su-
periority of the Fréchet distance over other metrics for
trajectory optimization of manipulator motion. How-
ever, their approach, like other optimization-based ap-
proaches, suffers from local minima (Sec. II-D).

In this work we suggest to approximate the search
space of candidate paths by a layered graph that orga-
nizes IK solutions by their task-space location along the
reference path. By representing both the layered graph
and our reference path as simplicial complexes [19], we
can construct the cross product of these two complexes.
This, in turn, allows us to efficiently compute the (dis-
crete) Fréchet distance between the set of candidate paths
in the layered graph and our reference path via a simple
Bottleneck Shortest-Path algorithm.

We present an anytime algorithm for incrementally
densifying these structures and improving our solution
and prove that our approach is asymptotically optimal,
given some assumptions. Empirically, we evaluate our
approach on several seven degree-of-freedom manipu-
lators and demonstrate its efficacy when compared to
existing state-of-the-art algorithms on multiple paths and
parameter settings. For a summary of our algorithmic
approach, see Fig. 1 (top).

Our key insight is that marrying the correct metric
(Fréchet distance) with the correct search algorithm (bot-
tleneck shortest path) enables us to focus our computa-
tion on parts of the space that are most relevant for the
problem, thereby gaining better efficiency.

II. PROBLEM DEFINITION AND ALGORITHMIC
BACKGROUND

In this section we provide the basic definitions
(Sec II-A) which allow us to formally state our problem
(Sec. II-B). We define the Fréchet distance (Sec. II-C) and
briefly describe the approach proposed by Holladay and
Srinivasa [16]. We explain a key shortcoming of their
work, which motivates our approach (Sec. II-D).

A. Definitions

A configuration ¢ is a d-dimensional point that com-
pletely describes the location of the robot and the C-
space C is the set of all configurations [20]. A task-space
point 7 € SE(3) describes the position and orientation
of the robot’s end effector and the task space is the set of
all such points. Paths in C-space and task space are con-
tinuous mappings ¢ : [0,1] — C and £ : [0,1] — SE(3),
respectively’.

For simplicity, we use the same notation for paths in C-space and
in task space. The specific space will be clear from the context.

The robot induces a forward kinematics FK : ¢ —
SE(3) and an inverse kinematics IK : SE(3) — 2¢ that
map a configuration to a unique task-space pose and a
task-space pose to a set of configurations, respectively.
By a slight abuse of notation we will use FK(-) to map a
C-space path into a task-space path. Equipped with these
definitions, we can define our problem.

B. Problem Statement

We are given a robot and a reference path in task
space ¢ that is a polyline given as a sequence of way-
points. Let =; C C be the set of all collision-free paths
in C-space that have the same start and end task-space
poses as . Our objective is to compute

€ = arg oin [FK(©). ]l M

Namely, we seek a collision-free path (¢ € C whose
forward kinematics maps to a path in task space, FK(¢),
that follows ¢ as close as possible, given some similarity
metric ||-,-||. Similarly to £, our produced path ¢ is a
polyline represented by a sequence of waypoints. To
validate that paths are collision-free, we assume that we
are given access to a discriminative black-box collision
detector that, given a configuration ¢ € C, returns
whether or not the robot, placed in ¢, would be in
collision. The distance metric ||-,|| used to compare
paths is the Fréchet distance, described below. For a
discussion motivating the use of the Fréchet distance in
this context, see Sec. I and Holladay and Srinivasa [16].

C. Distance Metrics

To describe the Fréchet distance, we borrow a common
analogy where a dog is walking along a path ¢ at
speed parameterization o and its owner is walking along
another path &; at speed parameterization 3. The two are
connected via a leash. The Fréchet distance is the shortest
possible leash via some distance metric drg such that
there exists a parameterization « and 3 so that the two
stay connected and move monotonically. More formally
the continuous Fréchet distance between &, and & is
given by:

Fléo, &) =k 283

{wqmw»&mm”.@

As is common in motion planning [21], given two
points z,y € SE(3) = R? x SO(3), we define their dis-
tance, drs(z,y), as the weighted sum? of the Euclidean
metric in R?® and the standard great circle solid angle
metric in SO(3) for the respective components.

Since computing the continuous Fréchet distance
is notoriously difficult, especially in non-Euclidean
spaces [22] and our path representation is given as a
series of waypoints, we approximate F'(-,-) using the
the discrete Fréchet distance Fy(-,-), where the “leash”

%In our setting, we prioritize translational distance over rotational
distance using a ratio of 0.17, which corresponds to 3mm mapping to
1 degree.
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is only considered between discrete waypoints along the
two paths. This metric can be efficiently computed via
dynamic programming [23], [24].

D. Trajectory-Optimization Approach

The key insight from Holladay and Srinivasa [16] is
to optimize Eq. 1 by minimizing F,(&, FK(¢)). Framed
as a trajectory-optimization problem, the paper provides
methods to heuristically assist the optimizer by con-
straining the computed path into a sequence of smaller
problems.

We examine the algorithm’s behavior on HERB, a
bimanual mobile manipulator with seven degree-of-
freedom arms [25], as it tries to follow a straight-line
reference path £, shown as the dotted line in Fig. 2. The
algorithm picks start and end configurations and then
plans a path from start to end, attempting to minimize
Fa(&, FK(€)).

With the starting configuration in Fig. 2a (left), the
planner drives the cost to zero, producing the solid red
line path shown in Fig. 2a (right). However, since this is
a redundant manipulator, the algorithm could have also
picked the starting configuration shown in Fig. 2b (left).
Given this configuration, there is no path that exactly
follows &. Therefore the optimizer produces the red path
in Fig. 2b (right), which deviates significantly from &. The
optimization-based algorithm of [16] will then split £ at
the point where the generated path deviates the most
from &, according to the Fréchet distance. In this case, it
splits the path in the middle and samples an IK solution,
shown in Fig. 2c. As shown in Fig. 2d, the first half of
the path still suffers from the original problem.

This limitation stems from the fact that the algorithm
samples one IK solution for each pose along &. However,
there is a space of multiple IK solutions which may
admit different paths. This motivates our method, which
searches over a space of IK solutions in an anytime
fashion.

ITI. GENERATING A SET OF CANDIDATE PATHS

Recall that our goal, defined in Eq. (1), is to find a
collision-free path ¢ € C such that FK(¢) minimizes the
Fréchet distance to ¢. This will be done by solving the
following problem

§" = arg min Fy(FK(¢), §), 3)
IS

and iteratively refining the number of waypoints along £
and ¢ to refine our approximation of the continuous
Fréchet distance. To do so, we build a layered graph L
that approximates the set of candidate paths, Z¢. As
our algorithm progresses, we try to both improve the
quality of our path by exploring more candidate paths
and improve the accuracy of our Fréchet approximation
by increasing our sampling resolution.

A. Layered Graph

Consider the set of inverse kirlematic solutions to all
points along our reference path &:

Me= | TK(E(@). @

Any collision-free path that connects IK(£(0)) with
IK(£(1)) while completely lying on the manifold Mg
minimizes Eq. (1). To approximate such a path, we sam-
ple Mg and connect samples by straight-line segments
in C-space (that may deviate from Mp).

The structure of Eq. (4) suggests two parameters that
can be used to organize our sampling in a structured
manner. The first is the location of a point in task
space along ¢, denoted by a. The second is the set of
IK solutions at each point.® This further demonstrates
the key limitation of the approach by Holladay and
Srinivasa [16] which consider for each location « only
one configuration.

Following the discus- /‘\
sion above, we construct ‘ ‘

a layered graph L = ‘ ‘

(Vi, Er) embedded in C- /\‘
space where each layer <

is a set of IK solutions N

for one task-space point

lying on the reference
path (Fig. 3).
To construct our graph,

we begin by sampling n
waypoints in task space
along our reference path
{w1 ... wyp}. At each way-
point w;, we initially
compute up to k IK solu-
tions {q; ... q"} by query-
ing random solutions from an analytical IK solver (IK-
Fast [26]). Each configuration ¢} is a vertex in our
graph L. Namely,
Vi={¢ll<j<nand1<i<k} )
We next define our edge set, E;. Each vertex in a
layer of IK solutions connects to every vertex in the
subsequent layer and to every vertex in its own layer.
Intuitively the path passes through every waypoint, with
the freedom to select any IK solution for that waypoint.
More formally,

By ={(g} g1 < j <n—1,1 <0 <k} ©

As mentioned, each edge is a straight-line segment
in C-space between the two configurations, which does
not necessarily lie on Mg.* To account for deviation

from Mg in our discrete Fréchet calculation, we sub-
sample each edge. As we increase the subsampling

Fig. 3: Each layer in our layered
graph (top) maps to a task-space
pose (bottom) along our reference
path, shown as the dotted line. For
each pose, there are multiple IK
solutions, which make up the ele-
ments of each layer.

3Assuming that we have a redundant manipulator, there is an
infinite set of IK solutions for each task-space point.

“In our implementation, we delay collision checking of edges along
these paths.
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Fig. 2: Visualization of the approach taken by Holladay and Srinivasa [16]. Reference path and computed path are shown in dotted black and

solid red lines, respectively.

resolution during our densification process, our discrete
Fréchet distance will better approximate the continuous
Fréchet distance [27].

B. Naive Search Method

Given our layered graph L, let =; denote the set of
all paths in L that connect any vertex in the first layer
of L to any vertex in the last layer of L. We can restate
Eq. (3) as

{1 = arg ggiari Fa(FK(¢),€). )

Since Fréchet is a metric over entire paths, not path
segments (i.e., individual edges), we cannot simply
search L in a Dijkstra-like manner. One naive option
would be to enumerate all candidate paths in =; and
compute F,;(¢,FK(¢r)) for all &1, € 1. However, |21 | =
Q(n*). Instead, we adapt a method that computes the
cross product between our layered graph and the ref-
erence path, allowing us to efficiently search for the
minimal-cost path in L in O(n?k?log(nk)) time. If we
used a metric that operated on individual edges, we
would be able to search L directly in a Dijkstra-like
manner. We discuss this further in Sec. VIII

IV. COMPUTING THE MINIMAL-COST PATH

To efficiently compute a solution to Eq. (7) we rep-
resent ¢ as a (one-dimensional) graph Ge = (Vg Ee)
where V¢ are the sampled waypoints of { and an edge
e € E¢ connects two subsequent waypoints. This allows
us to view both L and G as abstract one-dimensional
simplicial complexes®. Har-Peled and Raichel introduced
an algorithm for computing the Fréchet distance be-
tween two such complexes by considering their cross
product [19]. Therefore, our instance is a restricted case
of their problem and we present our adaptation. Follow-
ing Fig. 1, we first create a new graph ® = L x G¢ and
then use it to solve Eq. (7).

A. Cross-Product Graph ¢

In this section, we define for ® the set of vertices Vs,
edges Eg and their costs. Set Vp = VexVi. Namely, each
vertex in Vg is a pair (w, q) such that w € Vg and ¢ € VL.
An edge connects two vertices in V;, if either or both

5An abstract simplicial complex is a combinatorial description of a
simplicial complex—a set composed of points, line segments, triangles,
and their n-dimensional counterparts [28].

elements of each vertex are adjacent to each other in their
respective graph. Namely,

Eg :{((wml’q;1)7 (wm27Q§z))| if
(Wi, = wm,) and (Qﬁ»qzz) € Ep) or
(W, > Wm,) € Eg and (q;i = qg)) or
(Wrny > Wmy) € Eg and (q;i,q;;) € Ep)}.

Set cost(w,q) = drs(w,FK(q)) to be the cost® of a
vertex (w,q) € Vg. The cost of an edge e = (u,v)
is the maximum of the cost of its endpoints. Namely,
cost(u, v) = max(cost(u), cost(v)).

The cost of a path in ® is defined as the maximal
edge cost along this path, also known as the “bottleneck
cost”. Har-Peled and Raichel show that the cost of such
a path is equal to the Fréchet distance between the cor-
responding curves in the two simplicial complexes that
compose the product space [19]. In other words, the cost
of a path in the cross-product graph (wi,q1) ... (wn,qn)
corresponds to the discrete Fréchet distance between the
discretized reference path {w; ... w,} and the FK of the
polyline {qi ...g,} in the layered graph. Thus, our goal
can be restated as finding the bottleneck shortest path
in ®.

®)

B. Computing the Bottleneck Shortest path

Computing the bottleneck shortest path in a graph
G = (V,E) is a well-studied problem and there are
efficient algorithms that run in time linear in |E| [19].
However, we chose to use a simple variant of Dijkstra’s
algorithm [29] (with complexity O(|Es| + |Va|log |Va]))
because we have found it to be empirically faster and it
allows for more efficient updates to ®, as described in
Sec. V.

Standard implementations of Dijkstra’s algorithm as-
sume that the cost of a path to vertex v coming from
vertex u is the cost to reach w plus the cost of the
edge (u,v). To compute the bottleneck cost, we simply
swap the sum of costs for a max() such that the cost(v)
= max(cost(v), cost(u, v)).

Given the bottleneck shortest path in ®, we can extract
the corresponding path in the layered graph to gener-
ate £y, that optimizes Eq. (7). While searching, we lazily
evaluate the edges in &, for collision [30], [31].

6Har-Peled and Raichel [19] use the term “elevation” to refer to our
notion of cost.
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V. DENSIFICATION

Following the construction of the cross-product
graph ®, we want to iteratively improve (i) the quality of
our solution and (ii) the accuracy of our approximation
of the continuous Fréchet distance. This process creates
an anytime algorithm.

To improve the quality of our solution, we densify our
layered graph L to provide more candidate paths to
search over. The two parameters of our layered graph
(number of layers and number of IK solutions in each
layer) suggest two approaches: we can either add an-
other layer to L by choosing a new waypoint along ¢ and
sampling k IK solutions of this waypoint or we can in-
crease the size of an existing layer in L by sampling more
inverse kinematic solutions at an existing waypoint. To
improve our approximation of the continuous Fréchet
distance, we increase the subsampling resolution along
edges of our two structures, G¢ and L. Given updates
to G¢ or L, we then update our cross-product graph &
accordingly.

To summarize, given these two objectives we have
defined three densification methods: (i) adding a layer
to L, (ii) adding IK samples to an existing layer of L
and (iii) increasing subsampling resolution of an edge
of L or G¢. Given these three densification methods, we
present several strategies on how to apply them followed
by experimental comparisons.

A. Densification Strategies

Our strategies on where to apply our densification
methods are inspired by the PRM literature, which bal-
ance global and local updates [32], [33], [34].

Global updates sample either L or G¢ uniformly to
determine where to add a layer, which layer to augment
or which edge to increase the sampling resolution of.
Local updates are applied in the neighborhood of the
bottleneck node along the current best path in ®, where
the Fréchet distance is the largest. From the Fréchet
distance analogy, this is where we have the longest leash
between a point in the layered graph L and a point in
the reference graph G¢’.

Within a single step of densification, we first deter-
mine whether to use local or global updates and then
pick a densification method uniformly. Having densified
either G¢ or L and updated ¢ accordingly, we search ¢
for best current solution. Our Dijkstra-like search of &
is thus an instance of a dynamic shortest-path problem
which allows us to use efficient algorithms that reuse
information from previous search episodes [35], [36],
[37]. This loop is illustrated in Fig. 1.

We present two strategies for determining whether to
use global or local updates and proceed to empirically
evaluate their performance.

7This is similar to the stapling method described in [16] in that both
leverage the Fréchet distance to heuristically focus effort to improve
the quality of the current solution.

Hybrid Strategy trades off between local and global up-
dates by choosing local updates with probability p.
The values of p = 0 and p = 1 correspond to
purely local updates and purely global updates,
respectively.

Local-then-Global Strategy combines local and global
methods by reasoning about the progress made
across multiple densification steps. We use local
updates as long as they continue to improve the
current best solution. Once m successive iterations
of local updates do not decrease the bottleneck cost,
we switch to performing global updates. If global
updates reduce our cost, this strategy returns to
applying local updates.

B. Experimental Comparison of Densification Strategies

To compare densification strategies, we use the bi-
manual manipulator HERB to generate 100 instances of
layered graphs for a given reference path ¢, all with
the same initial number of waypoints, IK solutions per
waypoint, and level of subsampling resolution. For each
problem we randomly place rectangular boxes in the
vicinity of the robot. We then conduct many iterations of
densification. We repeat this process for multiple param-
eter settings and reference paths. While a summary is
given below, there are more detailed experimental results
available in the extended version of this paper [38].

Our two strategies, hybrid and local-then-global, each
have one parameter. We compare discrete choices of the
parameters to select the best one. For the hybrid strategy
we compare p-values in the set {0,0.25,0.5,0.75,1} and
observe that lower p-values (namely, biasing local up-
dates), produce paths with a shorter Fréchet distance at
each iteration. For the local-then-global strategy (referred
to as, L-t-G) we compare m-values in the set {2,3,4,5,6}
and observe that mid-range m-values produce the best-
quality results. Therefore, in comparing our two den-
sification strategies, we used p = 0.25 for the hybrid
strategy and m = 5 for the local-then-global strategy
(Fig. 5a).

These results indicate that, while the Fréchet dis-
tance is a metric over entire paths and global updates
are required, it is benficial to heuristically guide the
densification process in the neighborhood of the local
bottleneck. An improved densification process leads our
anytime algorithm to produce better results faster.

For both strategies, most of the computation time is
spent collision checking the path segments, with some
smaller fraction spent computing the cost of nodes in
the cross-product graph. Before empirically comparing
our method to alternative algorithms, we first provide a
proof sketch of its asymptotic optimality.

VI. ASYMPTOTIC OPTIMALITY

In this section we state our main theoretic result and
provide a proof outline. We show that, under some
technical assumptions, our algorithm is asymptotically

2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2899668, IEEE Robotics

and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2019

Configuration Space

Task Space

Fig. 4: Visualization of the notation used in proof sketch.

optimal. To do so, we assume that Mg, the set of all
configurations that directly map to &, contains a “well-
behaved” portion. This notion, together with the proof
are detailed in the extended version of this paper [38].

Theorem 1: If Mg contains a well-behaved portion M £
then our algorithm is asymptotically optimal. Namely, as
n — oo and k — oo it will asymptotically find a collision-
free C-space path whose Fréchet distance from ¢ tends
to zero.

A. Proof sketch

Our proof relies on certain properties (detailed in the
extended version of this paper [38]) which hold for any
redundant manipulator. Roughly speaking, we require
that there is some correlation between distances in C-
space and distances in task space. This is required to
ensure both that (i) connecting close-by samples on Mg
will lead to minimizing the Fréchet distance and that
(ii) sampling close-by points in task space can yield
close-by configurations, given enough IK solutions.

Our proof sketch is similar in nature to [39, Thm. 34].
We assume that there exists some path ¢ lying
on M ¢ that directly maps to . Namely, we have that
Fy (FK(€),€) = 0. We will show that there exists a
sequence of a family of paths {Z,},en such that any
sequence of paths {{, € E,}nen converge to £ (recall
that n is the number of sampled waypoints along the
reference path ). For each path ¢, € =, we show that
there exists some ¢,, such that

Fy(FK(&,),€) < e, and that lim &, = 0.
Furthermore, if P, is the probability that our algorithm
will produce a collision-free path in Z, then we will
show that

lim P, = 1.

n—oo

Combining the above will yield that our algorithm is
asymptotically optimal. For a figure depicting the nota-
tion used throughout our proof, see Fig. 4.

B. Discussion

One assumption that we take implies that there is a
path in C-space that directly maps to the reference path.
This is due to our sampling scheme which requires that
we only sample on the reference path and not around
it. If this assumption does not hold, an algorithm that

0.42

+ === Optimization-Based
0.40 0.9 i — Samplinf{-BaSod
0.38 0.8 m—= Greedyl
’ === Vector Field

0.36 CBiRRT
0.34
0.32
0.30
0.28

Fréchet Error
Fréchet Error
o
o

—_—
2 4 6 8 10 0 2 4 6 8 10
Time Budget (s)

(a) Densification Strategies (b) Random path

Fig. 5: Empirical evaluation. (a) A comparison of our densification
strategies. (b) A comparison of our algorithm with state-of-the-art
planners on one of the many random path we evaluated. The results
from each algorithm are averaged from 100 iterations. While each
figure only shows the results for one reference path and initial layered
graph sizes, repeated experiments showed these results were consistent
across multiple reference paths and graph sizes. The standard error is
shown in grey.

Number of Iterations

minimizes the Fréchet distance cannot restrict itself to
sampling only on the reference path.

An interesting difference between our proof and exist-
ing asymptotic-optimality proofs such as [39, Thm. 34]
is that our algorithm connects any two vertices in sub-
sequent layers. Thus, we did not have to argue about
connection radius but about the rate at which we sample
waypoints and IK solutions. It would be interesting to
alter the algorithm to only connect vertices in subsequent
layers if they are within some predefined distance. This
would require adding this constraint to the proof of
Thm .1.

VII. EXPERIMENTAL RESULTS

We compare our sampling-based algorithm with four
other planners: an optimization-based approach [16], a
vector-field planner [40], a greedy IK planner [40] and
CBiRRT (Constrained Bidirectional RRT) [41].

The optimization-based algorithm from [16], summa-
rized in Sec. II-D, continues to split the path into sub-
problems until the Fréchet distance between the entire
path and the reference path is below some threshold
value®. We adapt this to an anytime algorithm where an
entire path is produced and evaluated after each split.
The vector-field planner integrates a Jacobian pseudo-
inverse to follow a vector field defined by our path [40].
The greedy inverse kinematic planner (GreedylIK) sam-
ples IK solutions from ¢ and attempts to interpolate
between them in C-space [40]. CBiRRT plans on con-
straint manifolds by projecting random samples to our
manifold Mg [41]. The algorithm is set to only accept
projected samples if they fall within some threshold
distance x of any point on the reference path.

We use the same experimental setup as described in
Sec. V-B, averaging the results of each planner over 100
instances. The sampling-based and optimization-based
planners both have anytime performance, so we query
each planner after ¢t seconds for their best solution so
far. Vector Field, GreedyIK and CBiRRT’ are treated as

8In [16] this is referred to as "stapling in task space".
9For CBiRRT, we plot the performance across several thresholds (we
use k-values in the set {0.2,0.3,0.4,0.5}).
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(a) Reference Paths
Fig. 6: On the left, each color shows one of the many reference paths
we evaluated the algorithms on. For visual clarity, the obstacles are
not shown. On the right is the setup for our screwdriving task.

(b) Screwdriving Task

single-query planners and therefore do not have anytime
performance.

We then test on a variety of paths in the presence
of randomly generated rectangular boxes that serves as
obstacles. Some of the paths are shown in various colors
in Fig. 6a. As a representative example, we compare
performance in Fig. 5b and the progression of the any-
time algorithms in Fig. 7 for one particular path. Further
performance comparisons are available in the extended
version of this paper [38].

For this path, the single-query planners quickly pro-
duce solutions of low quality. CBiRRT produces equally
low-quality solution because the projection and thresh-
old constraints do not enforce the monotonicity of traver-
sal that Fréchet distance does for our sampling-based
algorithm.

Turning to our anytime algorithms, the optimization-
based approach finds an initial solution faster, but its
solution is significantly worse than the one found by
the sampling-based approach. While the optimization-
based approach improves its solution at a faster rate,
the sampling-based approach produces a higher-quality
path for a fixed time budget. The difference in quality
can be small, but our extended results in [38] show that
it can be non-negligible for certain paths.

Our results show that our sample-based approach is
able to converge to a path that more closely follows
the reference path because it searches over sets of IK
solutions and leverages the Fréchet distance to efficiently
search. It is important to note that, as expected, the
quality of the solution obtained by our planner increases
over time. It is hard to observe this trend in Fig. 5b due to
the scale needed to compare with the other planners but
this can be observed in Fig. 5a as well as in the extended
version of this paper [38].

Having verified our path-following approach in a
cluttered scene, we also explored how our algorithm per-
formed on a screwdriving task on a different bi-manual
manipulator, the PR2 [42]. As seen in Fig. 6b, the goal
is for the screwdriver to be rotated one full turn while
keeping the screwdriver upright and in contact with the
screw. By fixing a robot’s grasp of the screwdriver, we

(a) Initial Paths (c) Final Paths

(b) Midway Progress
Fig. 7: We show the progression of the optimization-based approach
(orange) and the sample-based approach (pink) as they try to follow
the reference path (black). Randomly-generated obstacles in the envi-
ronment are shown in grey. These figures only capture the differences
in position, not orientation.

can determine the necessary task-space path ¢ of the
robot’s end effector. Only our sample-based approach
was able to generate the turning path, producing initial
solutions after 2-3 seconds®.

VIII. FUTURE DIRECTIONS AND DISCUSSION

We presented an anytime algorithm that produces a
collision-free configuration space path that “follows”,
according to the Fréchet distance, a reference path in
task space. By leveraging the Fréchet distance, we were
able to organize our space of candidate solutions into
a structure that we could efficiently search and in-
crementally densify. We outlined several strategies for
densifying the structure and provided a proof sketch of
asymptotic optimality. We concluded with a comparison
of our algorithm against several state-of-the-art planners
across multiple paths, parameter settings and robotic
platforms. Looking forward, we present several future
research directions.

In this work we considered how to optimize paths to
follow a reference path. We did not consider the length
of the path in C-space. In the future, we wish to focus
on the bicriteria optimization problem of simultaneously
decreasing both the distance (in task space) from the
reference path and the path length (in C-space).

In addition to task space positions, we may also want
to specify end-effector velocities [2] or forces (especially
for the screwdriving task). Another variant, originally
suggested by [14] and explored with the Procrustes
distance metric in [16], is to consider paths without
a fixed starting point, thus allowing the shape to be
translated and rotated in space freely.

Our algorithm only samples IK solutions on the ref-
erence path. Given many obstacles, we may want to
encourage our path to deviate slightly by sampling
solutions from an e-ball around our reference path.
This additional flexibility would require revisiting our
theoretic guarantees on asymptotic optimality.

As discussed in Sec. III-B, the cumulative nature of the
Fréchet motivated our use of the cross product graph.
Given a metric that operated on individual edges, we
could directly search on our layered graph. For example,
if we wanted to plan a path that minimized the one-way
Hausdorff distance, a metric mentioned in Sec. I, we

0Dye to technical difficulties, in the screwdriving task, the
optimization-based method was not tested.
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would compute the bottleneck shortest-path algorithm
on the layered graph, where the cost at every vertex
is the minimal distance to any vertex in our reference
path. While the decreased computational cost might be
tempting, the one-way Hausdorff distance (and even the
two-way Hausdorff distance) completely fail to capture
distance between paths in the screwdriving task we
explored in Sec. VIL

Finally, our work draws some parallels to Hauser’s
recent work on global redundancy resolution [43]. Both
algorithms create PRM-like structures in configuration
space, but our work has focused on pathwise redun-
dancy resolution and we leverage a different search
method and optimization criteria. We believe that our
work, which is complementary to his, may benefit by
using his method to pick good IK solutions and leave
this as an area of future work.
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