
Lazy Validation of Experience Graphs

Victor Hwang∗, Mike Phillips∗, Siddhartha Srinivasa∗, Maxim Likhachev∗

Abstract— Many robot applications involve lifelong planning
in relatively static environments e.g. assembling objects or
sorting mail in an office building. In these types of scenarios,
the robot performs many tasks over a long period of time.
Thus, the time required for computing a motion plan becomes a
significant concern, prompting the need for a fast and efficient
motion planner. Since these environments remain similar in
between planning requests, planning from scratch is wasteful.
We propose using Experience Graphs (E-Graphs) to accelerate
the planning process by reusing parts of previously computed
paths to solve new motion planning queries more efficiently.
This work describes a method to improve planning times with
E-Graphs given changes in the environment by lazily evaluating
the validity of past experiences during the planning process.
We show the improvements with our method in a single-arm
manipulation domain with simulations on the PR2 robot.

I. INTRODUCTION

In situations where a robot is doing lifelong planning,
the efficiency of a motion planner becomes very important.
However, in tasks such as assembling objects or performing
sorting and pick-and-place tasks, motion planners still suffer
from poor planning times depending on the complexity of
the environment. In a robot manipulation environment, it
is simple to find standard scenarios where planning takes
a non-trivial amount of time, despite the fact that these
environments are relatively structured.

In this work, we leverage learning from prior experiences
to tackle difficult planning scenarios where a robot’s move-
ment in a structured environment is encumbered by unpre-
dictable clutter. Figure 1 shows a mailroom environment,
where the general task of sorting mail is a structured one.
However, this environment typically has clutter appearing
inside cubby holes or on shelves. By learning from experi-
ences, we expect a mail-sorting robot to accumulate enough
experience over time so that planning to constrained spaces
(cubbyholes, boxes, etc) becomes very fast. At the same
time, we expect this framework to be robust against the fact
that portions of its prior experiences are constantly becoming
invalid due to clutter.

Our work modifies an existing Experience Graph planner
[15] to provide fast planning times in this kind of challenging
environment. The Experience Graphs (E-Graphs) framework
acts as a collection of previously planned paths and augments
A*-like searches to guide a search to reuse these past
experiences. In addition, the planner accumulates experiences
throughout its lifetime by feeding back solutions. This results
in faster planning times while maintaining completeness
guarantees and a bound on the sub-optimality of the solution
with respect to the optimal path.

∗ Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213

Fig. 1: PR2 in a simulated mailroom environment.

While [15] provides an efficient planning framework for a
completely static environment with a large number of prior
experiences, planning times suffer once the possibility of
unpredictable clutter is introduced. The E-Graph planner is
only able to plan with a completely valid set of experiences;
even a negligible change in the environment forces the
planner to validate its entire set of experiences to ensure a
valid plan. Considering the robot may be working tirelessly
for long periods of time, the E-Graph can grow substantially
and introduce more and more overhead into every single
planning request.

In this paper, we address one facet of the problem
that affects any data-driven algorithm: does it scale? We
show efficient experience validation by introducing a general
method that lazily validates prior experiences that the planner
deems potentially relevant to the planning task. This method
leads to performance improvements in changing, cluttered
environments. Specifically, we show speedups using a sim-
ulated environment where the PR2 conducts single arm, 7D
manipulation tasks in a constrained mailroom environment.

II. RELATED WORK

Motion planning has seen considerable interest recently.
Most of the approaches were initially focused on treating
each new motion planning request as a fresh request for
planning. There was little, if any, reuse of information from
experience gained while carrying out a series of motion
plans. However, recent work has seen more reuse of previous
information. In [12], Lien et. al. constructed roadmaps for
obstacles, stored them in a database and reused them during



motion planning while Bruce et. al. [4] biased an RRT
search towards waypoints remembered from previous motion
planning attempts. Related work can also be found in [18],
[8].

Other approaches to exploiting experience have included
the use of trajectory libraries. These libraries were used
to adapt policies for control of underactuated systems and
high-dimensional systems in [16]. In [1], entirely new
trajectories were generated by combining nearby trajectories.
A different application of such techniques can also be found
in [13] while transfer of policies across tasks was presented
in [17]. The reuse of environment information, coupled
with information about previous motion plans, was presented
in [9]; machine learning methods were coupled with paths
stored in a database to generate new motion plans based on
the environment and types of obstacles. Jiang et. al. [10]
present an approach to use a database of older motion plans
to draw a bi-directional RRT search towards a path stored
in the database that is most similar to the new motion plan
request. Recent work [2] attempts to repair previous plans
from a database using randomized planners. As mentioned
in [15], the use of a database of motion plans is also core to
Experience Graphs.

Search-based planning with Experience Graphs offers sev-
eral advantages over these approaches. Experience Graphs
attempt to use all information from previous experiences
instead of attempting to find the nearest or closest motion
plan from a database. They are thus capable of reusing
many parts of the previous experiences when possible. This
method provides guarantees on completeness and solution
quality, which the other methods lack. It also builds the graph
using paths from prior tasks in contrast to approaches like
Probabilistic Roadmaps [11] which rely on sampling the
whole space. At the same time, there are parallels between
the Lazy Probabilistic Roadmap [3] and the work we present
in that both methods only do expensive validation once a plan
has been generated.

III. EXPERIENCE GRAPHS

This section provides a brief overview of the E-Graphs
framework. For a more in-depth analysis, see [15].

A. Terminology

We first introduce a brief set of used terminology.
• G(V G,EG) is a graph representation of the original

motion planning problem. V G is a set of vertices, and
EG is a set of edges connecting vertices.

• Gε(V ε ,Eε) is a subgraph of G that represents the E-
Graph.

• hG and hε represent the original graph heuristic function
and the E-Graph heuristic function, respectively.

• c(s,s′) describes the scalar weight of an edge between
two states s and s′.

• A successor describes a child state ssuccessor which can
be directly reached from its parent state sparent.

• An expansion of a state involves computing all valid
successors for a given parent state.

Fig. 2: The above two images show the differences between
heuristics when varying εE . When εE is close to one, the
heuristic effectively becomes hG (in this example, Euclidean
distance), as seen in the top image. The dashed line indicates
that it is a heuristic edge. As εE increases, the heuristic
guides along previous experiences, as shown by the solid
lines in the bottom figure.

B. Algorithm Description

E-Graphs augment A* search to reduce search compu-
tation by reusing relevant pieces of prior experience. It
is composed of two aspects - the Experience Graph that
maintains all the prior experience, and a heuristic that drives
a weighted A* search towards these prior experiences during
the planning process.

The Experience Graph GE maintains a collection of pre-
viously planned paths as a set of edges EE and vertices V E .
While weighted A* still searches the original graph G, a
new heuristic function hE(s) is introduced that encourages
the search to explore GE rather than G:

hE(s0) = min
π

N−1

∑
i=0

min{εEhG(si,si+1),cE(si,si+1)} (1)

In Equation 1, hE(s) is defined as computing the cost of
the shortest path π where π is a path 〈s0 . . .sN−1〉 and sN−1 =
sgoal . This path is constructed using two kinds of edges.
The first edge cost, εEhG(si,si+1), represents the original
search heuristic hG(s,s′) and describes the underestimating
cost between states s and s′ for all states in G. The second
term represents the edge cost cE(s,s′) between states on GE .
The scalar εE (which is ≥ 1) is a parameter to inflate the cost
of the first term to favor the second. This effectively biases
the minimum path to avoid using edges not on the E-Graph
and instead, favor using edges from previous experiences.

The qualitative effect of εE can be seen in Figure 2. This
image shows the search from s0 to sgoal and the required



Fig. 3: An example of shortcut successors (arrows) being
used to avoid expanding unnecessary states on an E-Graph
component.

state expansions to find the solution. In both images, the
grey circles represent states expanded during the search
and the solid black line represents a E-Graph edges of a
prior experience. We use Euclidean distance as the original
heuristic hG, which is represented as the dashed line. When
the εE is close to one, hε draws the search directly towards
the goal with a heuristic edge (dashed line) and avoids using
any E-Graph edge. However, this heuristic guidance isn’t
particularly helpful, since the search is led straight into an
obstacle (black rectangles). We see that many states end up
being expanded (shown in gray). As εE increases (bottom
image), hε instead guides the search towards the prior ex-
perience (black lines), which effectively dodges the obstacle
and completes the search with fewer states expanded.

In the standard weighted A* search, we can use an
admissible heuristic that is inflated by some scalar factor
εG. This allows us to find a bounded, sub-optimal path that
is within some εG multiple of the optimal solution cost. In
[15], it was shown that the E-Graph heuristic is εE consistent.
Therefore, when using this heuristic with weighted A* search
(whose heuristic is normally inflated by an εG factor), it is
guaranteed that the solution cost will be no worse than εG ·εE

times the optimal solution cost, rather than just εG.

C. Experience Graph Shortcuts

One important element to the E-Graph algorithm is the use
of shortcuts. E-Graph shortcuts are a mechanism for further
reducing the number of expansions by introducing a new
type of successor sshortcut to the search. Given a connected
component C where C ⊆V E

sshortcut = argmin
s∈C

hG(s) (2)

When expanding any state s ∈ C, sshortcut becomes an
additional valid successor of s, allowing the search to avoid
expanding intermediate states in C.

In Figure 3, we see two components that are not directly
connected to the goal. For each component, we compute a
shortcut state as per Equation 2, generating the two labeled
nodes. The arrows show an example of expanding one
node on the component, which has the shortcut node as a
successor. This leads to the planner avoiding expanding states

along a particular E-Graph component by jumping right to
the end.

The utility of this successor can be seen more clearly when
similar start/goal pairs are repeatedly solved by the planner
(assuming a valid E-Graph). The first instance of planning
for a given pair will result in many expansions. However,
subsequent expansions will only require expanding a few
additional node besides the start, and will immediately end
up at the goal state, regardless of how many E-Graph edges
lie in between the start and goal.

IV. LAZY VALIDATION OF E-GRAPHS

This section describes the general method for lazy
validation of E-Graphs, along with two possible design
choices for its implementation (on-the-fly validation and
post-validation). These two design options offer trade-offs
between speed and path quality and can be exercised when
implementing a planner for a specific robotic domain. We
present the post-validation version first to introduce the
general idea of lazy validation, and then present the subtlies
behind post-validation and on-the-fly validation.

A. Lazy Post-Validation

Lazy post-validation is built on top of the original E-
Graph planner described in [15]; it uses the same heuristic
computation to focus the search towards prior experiences.
However, rather than maintaining E-Graph feasibility and
validity as an invariant, we loosely assume that the E-Graph
is valid until the E-Graph planner returns a complete solution.
Only then do we validate the vertices and edges in the
solution path that lie on the E-Graph. During this validation,
we also know that the only E-Graph edges that could be
invalid are those used in the E-Graph shortcut - any other
type of successor would be validated during the search.

Algorithm 1
lazyPlan(sstart ,sgoal ,GE )

1: while not valid π do:
2: initializeEGraph(sgoal)
3: π = computePath(sstart ,sgoal)
4: GE = GE ∪π

5: (Vinvalid ,Einvalid) = returnInvalidElements(π)
6: GE = GE \ (Vinvalid ,Einvalid)
7: if GE is empty:
8: returnπ

Algorithm 2
initializeEGraph(sgoal)

1: precomputeShortcut
2: compute heuristic according to Equation 1

Algorithm 1 shows a high level overview of the logic
for lazy post-validation. Given a pre-built E-Graph GE , we
run the standard procedure for E-Graph planning: initializing
relevant E-Graph mechanisms (Algorithm 2), which pre-
computes the shortcuts and the E-Graph heuristic. Once we
compute a path π , we feed it back into the E-Graph in



order to further accumulate experiences for later use. In
returnInvalidElements, we validate elements of GE related
to π and return those that are invalid. In line 7, we remove
these from GE , and rerun the planning cycle. Given that the
E-Graph contains a sufficient amount of experience and the
environment has not change dramatically, the number of total
replans remains low.

The goal of returnInvalidElements goes beyond discover-
ing points on the returned path that are invalid. Because the
while loop continues to run until a valid path is returned, it is
advantageous to discover as many invalid edges and vertices
in GE as possible in a single run of returnInvalidElements,
especially those that are not explicitly part of π . In the
ideal case, one could run a pre-computation to determine
vertex connectivity in terms of the validation procedure., i.e.
return all Vinvalid given that a particular vertex is invalid.
However, this is likely computationally expensive, so faster
approximations can be used.

In our implementation of lazy E-Graphs for robot arm
planning, we check that the 3D location of the end effector
for V ε

invalid is not an obstacle. If it is, we look up all other V E

that result in the same end effector position, and invalidate
those as well.

An example run of the post-validation method can be seen
in Figure 4. Two replans are required before a completely
valid path is found in the fourth image.

B. On-the-Fly Validation

In the previous method, when a path was found, it needed
to be checked for validity. The only parts of a path that
could be invalid were the shortcut successors, which use the
unverified E-Graph edges. In on-the-fly validation, we check
the edges in a shortcut successor sshortcut (as described in
III-C) during the search as soon as the shortcut is generated.
Therefore, when a path is found, it is guaranteed to be valid.
There is no need to check for validity, and the loop in
algorithm 1 is no longer needed.

C. Theoretical Properties

The general idea of lazy validation still maintains theo-
retical guarantees described in [15]. Specifically, there is an
upper limit on the solution cost with respect to the optimal
cost.

Theorem 1: For a finite graph G, and finite graph GE , the
planner terminates and finds a path in G if one exists.

Theorem 2: For a finite graph G, and finite graph GE ,
the planner terminates and the solution returned is no worse
than ε · εE times the optimal solution cost in G.

D. Post-Validation vs. On-the-Fly Validation

We now explore the subtle differences between these two
implementations. As presented above, the post-validation
algorithm validates the E-Graph paths only after a path
has been successfully found. However, in certain domains,
there can be substantial overhead in completely restarting the
search (recomputation of heuristics, reinitializing data struc-
tures, etc.), especially if the environment changes drastically,
resulting in many invalid E-Graph edges and many replans.

Fig. 4: Three iterations of the post-validation method. While
the plans are 7-dimensional, the pictures show their corre-
sponding end-effector trajectories. The dark regions in the
top two images show the invalid regions of the end effector
path, while the dotted lines are the valid regions of the path.
The last image shows a final (without shortcutting) path of
the end effector.

One option to avoid this overhead is to validate the E-
Graph edges during the search process. Specifically, this
would occur whenever an E-Graph shortcut successor is
generated. If the shortcut is found to be invalid, the successor
is thrown out, and the search proceeds in the standard
fashion. This avoids the overhead problem associated with
the post-validation method because the search does not have
to restart when this occurs. However, the major caveat is that
the E-Graph structure changes in the middle of the search. In
the case where the E-Graph heuristic is pre-computed (which
is standard practice for heuristics used in robot manipulation
and other high dimensional domains), there is now a potential
problem for the heuristic to become extremely misinformed.

This is illustrated in detail in Figure 5. We begin with a
two paths leading to the goal. When we introduce an obstacle
that obstructs one of the prior experiences, a segment of
the experience is taken out. At this point, we hope that the
method will use the second path to the goal to quickly find
a solution. Because the post-validation method reruns the



Fig. 5: A scenario where on-the-fly validation will fail
due to a misinformed heuristic, whereas post-validation will
succeed. Before any invalidation occurs, the heuristic guides
the search along the bottom path. When both methods
discover that the experience passes through the obstacle,
the corresponding edges are invalidated. Post-validation will
recompute the heuristic and guide the search towards the
top segment of experience. On-the-fly, however, will not
recompute the heuristic, and get stuck trying to bypass the
obstacle.

heuristic computation every time the heuristic is invalidated,
the search will be lead to the second path. The on-the-fly
method’s heuristic, however, becomes uninformed because
the heuristic is still drawn to follow the E-Graph as if the
invalid segment still connected to the goal.

The correct choice between these two methods is very
application dependent - if the overhead of recomputing the
heuristic is negligible compared to overall planning time,
then post-validation remains the better choice because the
heuristic will be better informed and result in higher path
quality for the solution. However, if the average planning
time is low enough that the overhead becomes significant,
then on-the-fly validation can be used to improve planning
times at the expense of success rate due to pathologically
bad cases. In our experiments, these bad cases almost never
occur.

V. EXPERIMENTAL RESULTS

We tested our approach in a simulated mailroom environ-
ment, where the PR2 robot is sorting objects between cubby
holes, as seen in Figure 1. We use an existing benchmarking
framework to run all experiments [6]. All the tasks involve
manipulation with a single 7DOF arm of the PR2. The
goals are specified as the position and orientation of the end
effector.

We first build up a usable E-Graph by running 200 trials
of random start goal pairs between the 18 cubby holes in
the environment. These 200 trials are run with a very low
bound (ε = 1.5) to ensure high quality experiences between
locations. This results in an E-Graph of near 7000 vertices.
Figure 6 shows a visualization of the E-Graph - each vertex
represents the 3D location of the end effector of a particular
V G and the edges represent end effector motions.

For testing, we run 50 trials where each trial introduces
six randomly placed obstacles inside the cubbies. We plan
using three different E-Graph based methods and the OMPL

Fig. 6: An E-Graph with 7000 vertices. Each vertex repre-
sents the end effector location of a state, and edges represent
the 3D movement of the end effector.

Post Full On-the-fly RRTConnect
Median CC/request 5280 54235 8304 191248
Average CC/request 14222 54245 11574 221606

TABLE I: Collision check count comparison between three
E-Graph methods and RRTConnect. All E-Graph methods
are initialized with an E-Graph of 7000 vertices.

[7] implementation of the RRT. We do not report any results
for Probabilistic Roadmaps or RRT* since they were both
unable to successfully plan in this scenario. For the E-Graph
based methods, we plan with a higher ε and εE , allowing for
more reuse of experiences. All paths undergo shortcutting
in a post-processing phase. After each trial, the E-Graph
is reloaded with the 200 trial training set. All statistics are
computed on trials where all the planners succeed.

We compare the two lazy validation (post and on-the-
fly) methods with the naive solution: full validation. In full
validation, we validate every vertex and edge in GE once
a planning request has been received. This computation
is factored into the planning time. In all algorithms, the
validation of any E-Graph edge is equivalent to running a
full collision check of the robot arm against the environment.

The first experimental result we present is statistics on
the number of collision checks that each planner issued.
Because collision checking generally takes up a large portion
of planning times, this offers an implementation-independent
view of performance (compared to planning times, which
depend on the particular collision checking implementation).
Table I shows both the median and average number of
collision checks for all planning methods. We see that the
post and on-the-fly methods have lower average collision
checks overall. We expect full validation to have a high
average, because it’s directly proportional to the number
of E-Graph vertices. RRTConnect has a difficult time in
this environment, with an order of magnitude more collision
checks due to the narrow passages from the cubbies.



Post Full On-the-fly RRTConnect
Fast CC 1.45 1.24 .97 8.99
Medium CC 2.44 6.83 1.76 42.3
Slow CC 7.16 29.9 5.09 98.4
Success Rate 76% 80% 73% 84%

TABLE II: Average planning time in seconds using different
speeds of collision checkers. The ”fast” collision checker
takes 2.0×10−5 sec/collision check. The “medium” collision
checker takes 1.1× 10−4 sec/collision check. The “slow”
collision checker takes 4.9× 10−4 sec/collision check. As
a reference, the SBPL approximate collision checker is
the “fast” checker. The FCL collision checker is slightly
slower than our “medium” collision checker at 2.4× 10−4

sec/collision check.

Fig. 7: A comparison between the post-validation and full
validation method over different speeds of collision checking.
These results were generated by artificially slowing the SBPL
collision checker performance to various speeds.

In order to get a sense of planning times, one experiment
was run to demonstrate the planning times for different
speeds of collision checkers. We begin with the SBPL
collision checker, which operates very quickly because of
its sphere-based approximate model of the robot. However,
in domains where a robot is manipulating objects, an exact
collision checking model may be required, such as the
Flexible Collision Library [14].

To get a sense of how the E-Graph methods scale with
time required for a single collision check, we artificially
increase the amount of computation in the SBPL collision
checker [5] to various speeds and measure the required
planning time. Figure 9 shows a plot of the planning times,
and Table II shows the times for several speeds of the
collision checker. Overall, we see the clear relationship that,
as collision checking time increases, full validation linearly
increases in planning time, while post-validation and on-
the-fly validation do not suffer. As a reference, FCL takes
roughly 2.4×10−4 seconds per collision check. Interpolating
on our results, FCL would spend about 12 seconds to plan

Fig. 8: A comparison between the post, on-the-fly, and full
validation methods over different sizes of E-Graphs. We see
that the full validation method planning time increases lin-
early, while post and on-the-fly validation remain relatively
constant.

for full validation, while post-validation still remains close
to two seconds.

We see that the on-the-fly is slightly faster in planning
time than the post-validation method due to the reduced
overhead associated with restarting a search and recomputing
heuristics. However, in terms of path quality, on-the-fly does
slightly worse, as seen in Table III. This is expected, since the
quality of the heuristic with the on-the-fly method is reduced
as more E-Graph edges are obstructed by obstacles.

In Figure 8, we show how the planning times for each
method changes with the size of the E-Graph measure by
the number of nodes it contains. We see that, without the use
of lazy validation, the E-Graph planner does not scale well -
planning times increase linearly with the size of the E-Graph.
Post-validation and on-the-fly are on-par in performance,
though vary with the randomness of the E-Graph.

A. Post-Validation vs On-the-Fly Analysis

In the following experiment, we engineer a situation where
on-the-fly fails, while post-validation succeeds. Here, a small
set of experiences have been added to the environment, and
the robot is planning from the top half of the cabinet to the
bottom half.

As explained before, the plan here fails due to struc-
tural changes in the E-Graph, which causes the heuristic
to become misinformed. Specifically, we include a block
that intentionally disrupts the original end effector path from
the top to bottom of the block, which renders the heuristic
useless, and the plan is unable to finish.

In Figure 9a, we introduce the obstacle, which disrupts
the original experience. Figure 9b reflect the state of both
algorithms after updating the E-Graph structure - with post-
validation, this occurs once the full path has been found, and
for on-the-fly, it happens during the search. Post-validation



Post Full On-the-fly RRTConnect
Average Path Quality 1.60 1.69 1.72 2.15

TABLE III: Path quality comparison between three E-Graph
methods and RRTConnect. All E-Graph methods are initial-
ized with an E-Graph of 7000 vertices.

succeeds the second time after recomputing the heuristic,
which generates the path seen in Figure 9c. On-the-fly
validation fails to plan because its heuristic continues to drive
the search into the block, unaware that the environment has
changed.

VI. CONCLUSION

In this work, we have presented a general method for
leveraging a large amount of prior experiences to accelerate
planning in scenarios with random clutter. We augment
the existing E-Graph planning framework to lazily validate
experiences in the E-Graph, which allowed our method to
only expend computation on validating portions of prior ex-
perience that are relevant to the particular planning episode.
We show experimental results that demonstrate the speedup
in a mailroom environment compared to a number of other
possible methods.

In future work, we will explore obstacle modeling methods
to decrease the number of overall replans required when
many obstacles are added to the environment. In addition,
we will look into possible offline computations to improve
the accuracy of edge invalidations along with pruning or
improving the quality of the E-Graph when there is spare
time.

VII. ACKNOWLEDGEMENTS

We thank Google for their support of these efforts. This
research was also sponsored by ONR grant N00014-09-1-
1052. We also thank Ben Cohen for his invaluable input.

REFERENCES

[1] C. Atkeson and J. Morimoto. Nonparametric representation of policies
and value functions: A trajectory-based approach. In Advances in
Neural Information Processing Systems (NIPS), 2003.

[2] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A robot path
planning framework that learns from experience. In ICRA, 2012.

[3] Robert Bohlin and EE Kavraki. Path planning using lazy prm.
In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on, volume 1, pages 521–528. IEEE, 2000.

[4] J. Bruce and M. Veloso. Real-time randomized path planning for
robot navigation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002.

[5] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Single-and
dual-arm motion planning with heuristic search. The International
Journal of Robotics Research, page 0278364913507983, 2013.

[6] Benjamin Cohen, Ioan Alexandru Sucan, and Sachin Chitta. A generic
infrastructure for benchmarking motion planners. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 589–595. IEEE, 2012.

[7] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine, 2012. To
appear.

[8] D. Ferguson, N. Kalra, and A. T. Stenz. Replanning with rrts. In IEEE
International Conference on Robotics and Automation, May 2006.

(a) An existing E-Graph is disrupted by an obstacle.

(b) The E-Graph structure once both methods (post-
validation and on-the-fly) have been updated to reflect
the new environment.

(c) The post-validation solution, which succeeds be-
cause the heuristic is updated. On-the-fly fails to plan
in this situation.

Fig. 9



[9] Nikolay Jetchev and Marc Toussaint. Trajectory prediction: Learning
to map situations to robot trajectories. In IEEE International Confer-
ence on Robotics and Automation, 2010.

[10] Xiaoxi Jiang and Marcelo Kallmann. Learning humanoid reaching
tasks in dynamic environments. In IEEE International Conference on
Intelligent Robots and Systems, 2007.

[11] L. E. Kavraki, P. Svestka, J.-C Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[12] J. Lien and Y. Lu. Planning motion in environments with similar
obstacles. In Proceedings of the Robotics, Science and Systems
Conference, 2005.

[13] C. Liu and C. G. Atkeson. Standing balance control using a trajectory
library. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009.

[14] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose
library for collision and proximity queries. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 3859–3866.
IEEE, 2012.

[15] Mike Phillips, Benjamin Cohen, Sachin Chitta, and Maxim Likhachev.
E-Graphs: Bootstrapping Planning with Experience Graphs. In Pro-
ceedings of the Robotics, Science and Systems Conference, 2012.

[16] M. Stolle and C. Atkeson. Policies based on trajectory libraries. In
IEEE International Conference on Robotics and Automation, 2006.

[17] M. Stolle, H. Tappeiner, J. Chestnutt, and C. Atkeson. Transfer
of policies based on trajectory libraries. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2007.

[18] M. Zucker, J. Kuffner, and M. Branicky. Multipartite rrts for rapid re-
planning in dynamic environments. In IEEE International Conference
on Robotics and Automation, 2007.


