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Abstract

We present the Frontier Aware Search with backTrack-
ing (FAST) Navigator, a general framework for action de-
coding, that achieves state-of-the-art results on the Room-
to-Room (R2R) Vision-and-Language navigation challenge
of Anderson et. al. (2018). Given a natural language in-
struction and photo-realistic image views of a previously
unseen environment, the agent was tasked with navigating
from source to target location as quickly as possible. While
all current approaches make local action decisions or score
entire trajectories using beam search, ours balances local
and global signals when exploring an unobserved environ-
ment. Importantly, this lets us act greedily but use global
signals to backtrack when necessary. Applying FAST frame-
work to existing state-of-the-art models achieved a 17% rel-
ative gain, an absolute 6% gain on Success rate weighted
by Path Length (SPL).1

1. Introduction
When reading an instruction (e.g. “Exit the bathroom,

take the second door on your right, pass the sofa and stop
at the top of the stairs .”), a person builds a mental map of
how to arrive at a specific location. This map can include
landmarks, such as the second door, and markers such as
reaching the top of the stairs. Training an embodied agent
to accomplish such a task with access to only ego-centric
vision and individually supervised actions requires building
rich multi-modal representations from limited data [2].

Most current approaches to Vision-and-Language Nav-
igation (VLN) formulate the task to use the seq2seq (or
encoder-decoder) framework [21], where language and vi-
sion are encoded as input and an optimal action sequence is

∗Work done partially as an intern at MSR
1The code is available at https://github.com/Kelym/FAST.

(a) SoTA Beam Search (b) FAST NAVIGATOR

Figure 1. Top-down view of the trajectory graphs for beam search
and FAST. Blue Star is the start and Red Stop is the target.

decoded as output. Several subsequent architectures also
use this framing; however, they augment it with impor-
tant advances in attention mechanisms, global scoring, and
beam search [2, 13, 10].

Inherent to the seq2seq formulation is the problem of
exposure bias [19]: a model that has been trained to pre-
dict one-step into the future given the ground-truth se-
quence cannot perform accurately given its self-generated
sequence. Previous work with seq2seq models attempted to
address this using student forcing and beam search.

Student forcing exposes a model to its own generated se-
quence during training, teaching the agent how to recover.
However, once the agent has deviated from the correct path,
the original instruction no longer applies. The Supplemen-
tary Materials (§A.1) show that student forcing cannot solve
the exposure bias problem, causing the confused agent to
fall into loops.

https://github.com/Kelym/FAST


Beam search, at the other extreme, collects multiple
global trajectories to score and incurs a cost proportional to
the number of trajectories, which can be prohibitively high.
This approach runs counter to the goal of building an agent
that can efficiently navigate an environment: No one would
likely deploy a household robot that re-navigates an entire
house 100 times2 before executing each command, even if
it ultimately arrives at the correct location. The top per-
forming systems on the VLN leaderboard3 all require broad
exploration that yields long trajectories, causing poor SPL
performance (Success weighted by Path Length [1]).

To alleviate the issues of exposure bias and expen-
sive, inefficient beam-search decoding, we propose the
Frontier Aware Search with backTracking(FAST NAVIGA-
TOR). This framework lets agents compare partial paths
of different lengths based on local and global information
and then backtrack if it discerns a mistake. Figure 1 shows
trajectory graphs created by the current published state-of-
the-art (SoTA) agent using beam search versus our own.

Our method is a form of asynchronous search, which
combines global and local knowledge to score and com-
pare partial trajectories of different lengths. We evaluate
our progress to the goal by modeling how closely our pre-
vious actions align with the given text instructions. To
achieve this, we use a fusion function, which converts lo-
cal action knowledge and history into an estimated score of
progress. This score determines which local action to take
and whether the agent should backtrack. This insight yields
significant gains on evaluation metrics relative to existing
models. The primary contributions of our work are:
• A method to alleviate the exposure bias of action decod-

ing and expensiveness of beam search.
• An algorithm that makes use of asynchronous search with

neural decoding.
• An extensible framework that can be applied to existing

models to achieve significant gains on SPL.

2. Method
The VLN challenge requires an agent to carry out a nat-

ural language instruction in photo-realistic environments.
The agent takes an input instruction X , which contains
several sentences describing a desired trajectory. At each
step t, the agent observes its surroundings Vt. Because the
agent can look around for 360 degrees, Vt is in fact a set
of K = 36 different views. We denote each view as Vkt .
Using this multimodal input, the agent is trained to execute
a sequence of actions a1, a2, ...., aT ∈ A to reach a desired
location. Consistent with recent work [13, 10], we use a
panoramic action space, where each action corresponds to

2This is calculated based on the length of SPEAKER-FOLLOWER agent
paths and human paths on the R2R dataset.

3https://evalai.cloudcv.org/web/challenges/challenge-
page/97/leaderboard/270

moving towards one of the K views, instead of R2R’s orig-
inal primitive action space (i.e, left, right, etc.) [2, 23]. In
addition, this formulation includes a stop action to indicate
that the agent has reached its goal.

Greedy FAST Beam Search

Figure 2. All VLN agents are performing a search. The orange
areas highlight the frontier for different navigation methods.

2.1. Learning Signals

Key to progress in visual navigation is that all VLN ap-
proaches performs a search (Figure 2). Current work of-
ten goes toward two extremes: using only local informa-
tion, e.g. greedy decoding, or fully sweeping multiple paths
simultaneously, e.g. beam search. To build an agent that
can navigate an environment successfully and efficiently,
we leverage both local and global information, letting the
agent make a local decision while remaining aware of its
global progress and efficiently backtracking when the agent
discerns a mistake. Inspired by previous work [10, 13], our
work uses three learning signals:

LOGIT lt: local distribution over action. The logit of
the action chosen at time t is denoted lt. Specifically, the
original language instruction is encoded via LSTM. An-
other LSTM acts as a decoder, using attention mechanism
to generate logits over actions. At each time step t of de-
coding, logits are calculated by taking the dot product of
the decoder’s hidden state and each candidate action ait.

PM ppmt : global progress monitor. It tracks how much
of an instruction has been completed [13]. Formally, the
model takes as input the (decoder) LSTM’s current cell
state, ct, previous hidden state, ht−1, visual inputs, Vt,
and attention over language embeddings, αt to compute
a score ppmt . The score ranges between [-1,1], indicating
the agent’s normalized progress. Training this indicator
regularizes attention alignments, helping the model learn
language-to-vision correspondences that it can use to com-
pare multiple trajectories.

SPEAKER S: global scoring. Given a sequence of vi-
sual observations and actions, we train a seq2seq captioning
model as a “speaker” [10] to produce a textual description.
Doing so provides two benefits: (1) the new speaker can
automatically annotate new trajectories in the environment
with the synthetic instructions, and (2) the speaker can score
the likelihood that a given trajectory will correspond to the
original instruction.



(a) Instructions and visual observations are encoded as hidden vectors
defining multiple paths through the world. These vectors can then be ac-
cumulated to score a sequence of actions.

(b) At each time step, the predicted action sequence and visual observation
are fed into an attention module with the encoded instruction, to produce
both the logits for the next actions and a progress monitor score.

Figure 3. (a). How the three signals are extracted from the partial trajectory in a seq2seq VLN framework; (b). How to compute the three
signals.

2.2. Framework

We now introduce an extendible framework4 that inte-
grates the preceding three signals (lt, p

pm
t , S)5 and to train

new indicators, equipping an agent to answer:

1. Should we backtrack?
2. Where should we backtrack to?
3. Which visited node is most likely to be the goal?
4. When does it terminate this search?

These questions pertain to all existing approaches in nav-
igation task. In particular, greedy approaches never back-
track and do not compare partial trajectories. Global beam
search techniques always backtrack but can waste efforts.
By taking a more principled approach to modeling naviga-
tion as graph traversal, our framework permits nuanced and
adaptive answers to each of these questions.

For navigation, the graph is defined by a series of loca-
tions in the environment, called nodes. For each task, the
agent is placed at a starting node, and the agent’s movement
in the house creates a trajectory comprised of a sequence of
<node u, action a > pairs. We denote a partial trajectory
up to time t as τt, or the set of physical locations visited and
the action taken at each point:

τt = {(ui, ai)}ti=1 (1)

For any partial trajectory, the last action is proposed and
evaluated, but not executed. Instead, the model chooses
whether to expand a partial trajectory or execute a stop ac-
tion to complete the trajectory. Importantly, this means that
every node the agent visited can serve as a possible final

4Figure 3(a) shows an example of integrating the three signals in a
seq2seq framework.

5Figure 3(b) shows how to compute the three signals.

destination. The agent moves in the environment by choos-
ing to extend a partial trajectory: it does this by moving to
the last node of the partial trajectory and executing its last
action to arrive at a new node. The agent then realizes the
actions available at the new node and collects them to build
a set of new partial trajectories.

At each time step, the agent must (1) access the set of
partial trajectories it has not expanded, (2) access the com-
pleted trajectories that might constitute the candidate path,
(3) calculate the accumulated cost of partial trajectories and
the expected gain of its proposed action, and (4) compares
all partial trajectories.

To do so, we maintain two priority queues: a frontier
queue, QF , for partial trajectories, and a global candidate
queue, QC , for completed trajectories. These queues are
sorted by localL and global G scores, respectively. L scores
the quality of all partial trajectories with their proposed ac-
tions and maintains their order in QF ; G scores the quality
of completed trajectories and maintains the order in QC .

In §4.3, we explore alternative formulas for L and G. For
example, we define L and G using the signals described in
§2.1 and a function, f , that is implemented as a neural net-
work.

L ← Σ0→t li (2)
G ← f(S, ppmt ,Σ0→t li, ...) (3)

To allow the agent to efficiently navigate and follow
the instruction, we use an approximation of the D* search.
FAST expands its optimal partial trajectory until it decides
to backtrack (Q1). It decides on where to backtrack (Q2)
by ranking all partial trajectories. To propose the final goal
location (Q3 & Q4), the agent ranks the completed global
trajectories in candidate queueQC . We explore these ques-
tions in more detail below.



(a) Both local L and global G scores can be trained to condition on ar-
bitrary information. Here, we show the fusion of historical logits and
progress monitor information into a single score.

(b) An expansion queue maintains all possible next actions from all par-
tial trajectories. The options are sorted by their scores (Figure 4(a)) in
order to select the next action.

Figure 4. Arbitrary signals can be computed from partial trajectories to learn a scoring function (left) that ranks all possible actions in our
expansion queue (right). This provides a flexible and extendible framework for optimal action decoding.

Q1: Should we backtrack? When an agent makes a mis-
take or gets lost, backtracking lets it move to a more promis-
ing partial trajectory; however, retracing steps increases the
length of the final path. To determine when it is worth incur-
ring this cost, we proposed two simple strategies: explore
and exploit.
1. Explore always backtracks to the most promising partial

trajectory. This approach resembles beam search, but,
rather than simply moving to the next partial trajectory in
the beam, the agent computes the most promising node
to backtrack to (Q2).

2. Exploit, in contrast, commits to the current partial tra-
jectory, always executing the best action available at
the agent’s current location. This approach resembles
greedy decoding, except that the agent backtracks when
it is confused (i.e, when the best local action causes the
agent to revisit a node, creating a loop; see the SMNA
examples in Supplementary Materials §A.1).

Q2: Where should we backtrack to? Making this deci-
sion involves using L to score all partial trajectories. Intu-
itively, the better a partial trajectory aligns with a given de-
scription, the higher the value of L. Thus, if we can assume
the veracity of L, the agent simply returns to the highest
scoring node when backtracking. Throughout this paper, we
explore several functions for computing L, but we present
two simple techniques here, each acting over the sequence
of actions that comprise a trajectory:
1. Sum-of-log

∑
0→t log pi sums the log-probabilities of

every previous action, thereby computing the probabil-
ity of a partial trajectory.

2. Sum-of-logits
∑

0→t li sums the unnormalized logits
of previous actions, which outperforms summing
probabilities. These values are computed using an
attention mechanism over the hidden state, observations,
and language. In this way, their magnitude captures

how well the action was aligned with the target de-
scription (this information is lost during normalization).6

Finally, during exploration, the agent implicitly con-
structs a “mental map” of the visited space. This lets it
search more efficient by refusing to revisit nodes, unless
they lead to a high-value unexplored path.

Q3: Which visited node is most likely to be the goal?
Unlike existing approaches, FAST considers every point that
the agent has visited as a candidate for the final destination,7

meaning we must rerank all candidates. We achieve this us-
ing G, a trainable neural network function that incorporates
all global information for each candidate and ranks them
accordingly. Figure 4(a) shows a simple visualization.

We experimented with several approaches to compute G,
e.g., by integrating L, the progress monitor, speaker score,
and a trainable ensemble in (§4.3).

Q4: When do we terminate the search? The flexibility
of FAST allows it to recover both the greedy decoding and
beam search framework. In addition, we define two alterna-
tive stopping criteria:

1. When a partial trajectory decides to terminate.
2. When we have expandedM nodes. In §3 we ablate the

effect of choosing a different M .

2.3. Algorithm

We present the algorithm flow of our FAST framework.
When an agent is initialized and placed on the starting node,
both the candidate and frontier queues are empty. The agent

6This is particularly problematic when an agent is lost. Normalizing
many low-value logits can yield a comparatively high probability (e.g. uni-
form or random). We also experiment with variations of this approach (e.g.
means instead of sums) in §4.

7There can be more than one trajectory connecting the starting node to
each visited node.



Algorithm 1 FAST NAVIGATOR

1: procedure FAST NAVIGATOR
2: Qsort=LF , Qsort=GC = {}, {}
3: QF ← (u0, a0 = None) . Initial Proposal
4: τ̂ ← ∅
5: M ← ∅ . Mental Map
6: while QF 6= ∅ and stop criterion do
7: if need backtrack or τ̂ == ∅ then
8: τ̂ ← QF .pop
9: end if

10: ût−1, ât−1 ← τ̂ .last
11: if (ût−1, ât−1) ∈M then
12: ut ←M(ût−1, ât−1)
13: else
14: ut ← move to ut−1 and execute at−1
15: M(ût−1, ât−1)← ut
16: end if
17: for ak in best K next actions do
18: QF ← QF ∪ {τ̂ + (ut, ak)}
19: end for
20: QC ← QC ∪ τ̂
21: τ̂ ← τ̂ + (ut, a

∗) where a∗ is the best action
22: end while
23: return QC .pop
24: end procedure

then adds all possible next actions to the frontier queue and
adds its current location to the candidate queue:

QF ← QF + ∀i∈K{τ0 ∪ (u0, ai)} (4)
QC ← QC + τ0 (5)

Now that the QF is not empty and the stop criterion is
not met, FAST can choose the best partial trajectory from
the frontier queue under the local scoring function:

τ̂ ← arg max
τi
L(QF ) (6)

Following τ̂ , we perform the final action proposal, at, to
move to a new node (location in the house). FAST can now
update the candidate queue with this location and the fron-
tier queue with all possible new actions. We then either
continue, by exploiting the available actions at the new lo-
cation, or backtrack, depending on the choice of backtrack
criteria. We repeat this process until the model chooses to
stop and returns the best candidate trajectory.

τ∗ ← arg max
τ
G(QC) (7)

Algorithm 1 more precisely outlines the full procedure for
our approach. §4.3 details the different approaches to scor-
ing partial and complete trajectories.

3. Experiments

We evaluate our approach using the Room-to-Room
(R2R) dataset [2]. At the beginning of the task, the agent
receives a natural language instruction and a specific start
location in the environment; the agent must navigate to the
target location specified in the instruction as quickly as pos-
sible. R2R is built upon the Matterport3D dataset [5], which
consists of >194K images, yielding 10,800 panoramic
views (“nodes”) and 7,189 paths. Each path is matched with
three natural language instructions.

3.1. Evaluation Criteria

We evaluate our approach on the following metrics in the
R2R dataset:
TL Trajectory Length measures the average length of the

navigation trajectory.
NE Navigation Error is the mean of the shortest path dis-

tance in meters between the agent’s final location and
the goal location.

SR Success Rate is the percentage of the agent’s final lo-
cation that is less than 3 meters away from the goal
location.

SPL Success weighted by Path Length [1] trades-off SR
against TL. Higher score represents more efficiency in
navigation.

3.2. Baselines

We compare our results to four published baselines for
this task.8

• RANDOM: an agent that randomly selects a direction
and moves five step in that direction [2].
• SEQ2SEQ: the best performing model in the R2R

dataset paper [2].
• SPEAKER-FOLLOWER [10]: an agent trained with

data augmentation from a speaker model on the
panoramic action space.
• SMNA [13]: an agent trained with a visual-textual

co-grounding module and a progress monitor on the
panoramic action space.9

3.3. Our Model

As our framework provides a flexible design space, we
report performance for two versions:
• FAST(short) uses the exploit strategy. We use the sum

of logits fusion method to compute L and terminate
when the best local action is stop.

8Some baselines on the leader-board are not yet public when submit-
ted; therefore, we cannot compare with them directly on the training and
validation sets.

9Our SMNA implementation matches published validation numbers.
All our experiments are based on full re-implementations.



Validation Seen Validation Unseen Test Unseen
Model TL NE SR SPL TL NE SR SPL TL NE SR SPL

RANDOM 9.58 9.45 0.16 - 9.77 9.23 0.16 - 9.93 9.77 0.13 0.12
Seq2seq 11.33 6.01 0.39 - 8.39 7.81 0.22 - 8.13 7.85 0.20 0.18
Our baseline SMNA 11.69 3.31 0.69 0.63 12.61 5.48 0.47 0.41 - - - -

G
re

ed
y SMNA - - - - - - - - 18.04 5.67 0.48 0.35

SPEAKER-FOLLOWER - - - - - - - - 14.82 6.62 0.35 0.28
+ FAST (short) 21.17 4.97 0.56 0.43 22.08 5.14 0.54 0.41

B
ea

m SMNA - 3.23 0.70 - - 5.04 0.57 - 373.09 4.48 0.61 0.02
SPEAKER-FOLLOWER - 3.88 0.63 - - 5.24 0.50 - 1,257.30 4.87 0.53 0.01
+ FAST (long) 188.06 3.13 0.70 0.04 224.42 4.03 0.63 0.02 196.53 4.29 0.61 0.03
Human - - - - - - - - 11.85 1.61 0.86 0.76

Table 1. Our results and SMNA re-implementation are shown in gray highlighted rows. Bolding indicates the best value per section and
blue indicates best values overall. We include both a short and long version of our approach to compare to existing models greedy and
beam search approaches.

• FAST(long) uses the explore strategy. We again use
the sum of logits for fusion, terminating the search af-
ter fixed number of nodes and using a trained neural
network reranker to select the goal state G.

3.4. Results

Table 1 compares the performance of our model against
published numbers of existing models. Our approach sig-
nificantly outperforms the existing model in terms of effi-
ciency, matching the best overall success rate despite tak-
ing 150 - 1,000 fewer steps. This efficiency gain can be
seen in the SPL metric, where our models outperform pre-
vious approaches in every setting. Note that our short tra-
jectory model appreciably outperforms current approaches
in both SR and SPL. If our agent could continue exploring,
it matches existing peak success rates in half of the steps
(196 vs 373).

Validation Unseen SR (%) SPL (%) TL

SPEAKER-FOLLOWER 37 28 15.32
+ FAST 43 (+6) 29 (+1) 20.63

SMNA 47 41 12.61
+ FAST 56 (+9) 43 (+2) 21.17

Table 2. Plug-n-play performance gains achieved by adding FAST

to current SoTA models.

Another key advantage of our technique is how simple it
is to integrate with current approaches to achieve dramatic
performance gains. Table 2 shows how the sum-of-logits
fusion method enhances the two previously best perform-
ing models. Simply changing their greedy decoders to FAST
with no added global information and therefore no rerank-
ing yields immediate gains of 6 and 9 points in success

Figure 5. Circle sizes represent the what percentage of agents di-
verge on step N. Most divergences occur in the early steps. FAST

recovers from early divergences.

rate for SPEAKER-FOLLOWER and SMNA, respectively.
Due to those models’ new ability to backtrack, the trajec-
tory lengths increase slightly. However, the success rate in-
creases so much that SPL increases, as well.

4. Analysis

Here, we isolate the effects of local and global knowl-
edge, the importance of backtracking, and various stopping
criteria. In addition, we include three qualitative intuitive
examples to illustrate the model’s behavior in the Supple-
mentary Materials (§A.1). We can perform this analysis be-
cause our approach has access to the same information as
previous architectures, but it is more efficient. Our claims
and results are general, and our FAST approach should ben-
efit future VLN architectures.



4.1. Fixing Your Mistakes

To investigate the degree to which models benefit from
backtracking, Figure 5 plots a model’s likelihood of suc-
cessfully completing the task after making its first mis-
take at each step. We use SMNA as our greedy baseline.
Our analysis finds that the previous SoTA model makes a
mistake at the very first action 40% of the time. Figure
5 shows the effect of this error: the greedy approach, if
made a mistake at its first step, has a <30% chance of suc-
cessfully completing the task. In contrast, because FAST
detects its mistake, it returns to the starting position and
tries again. This simple one-step backtracking increases
its likelihood of success by over 10%. In fact, the greedy
approach is equally successful only if it progresses over
halfway through the instruction without making a mistake.

4.2. Knowing When To Stop Exploring

The stopping criterion balances exploration and exploita-
tion. Unlike previous approaches, our framework lets us
compare different criteria and offers the flexibility to deter-
mine which is optimal for a given domain. The best avail-
able stopping criterion for VLN is not necessarily the best
in general. We investigated the number of nodes to expand
before terminating the algorithm, and we plot the resulting
success rate and SPL in Figure 6. One important finding is
that the model’s success rate, though increasing with more
nodes expanded, does not match the oracle’s rate, i.e., as the
agent expands 40 nodes, it has visited the true target node
over 90% of the time but cannot recognize it as the final
destination. This motivates an analysis of the utility of our
global information and whether it is truly predictive (Table
4), which we investigate further in §4.3.

4.3. Local and Global Scoring

As noted in §2.3, core to our approach are two queues,
frontier queue for expansion and the candidate queue for
proposing the final candidate. Each queue can use arbi-
trary information for scoring (partial) trajectories. We now
compare the effects of combining different set of signals for
scoring each queue.

Fusion methods for scoring partial trajectories An
ideal model would include as much global information as
possible when scoring partial trajectories in the frontier ex-
pansion queue. Thus, we investigated several sources of
pseudo-global information and ten different ways to com-
bine them. The first four use only local information, while
the others attempts to fuse local and global information.

The top half of Table 3 shows the performance when con-
sidering only local information providers. For example, the
third row of the table shows that summing the logit scores
of nodes along the partial trajectory as the L score for that

Figure 6. The SR increases with the number of nodes explored be-
fore plateauing, while SPL (which is extremely sensitive to length)
continually decreases with added exploration.

Heur/step Combine SR SPL Len

logit mean 53.89 44.74 14.80
log prob mean 53.85 44.14 15.57
logit sum 56.66 43.64 21.17
log prob sum 56.23 42.66 21.70

logit mean / pm 53.00 44.51 13.67
log prob mean / pm 53.72 44.64 13.85
logit mean * pm 54.78 44.70 15.91
log prob mean * pm 55.04 43.70 17.45
logit sum * pm 50.95 41.28 20.25
log prob sum * pm 56.15 43.19 21.55

Table 3. Performance of different fusion methods for scoring par-
tial trajectories. Tested on the validation unseen set.

trajectory achieves an SR score of 56.66. Note although
all information originates with the same hidden vectors, the
values computed and how they are aggregated substantially
affect performance. Overall, we find that summing unnor-
malized logits (the 3rd row) performs the best considering
its outstanding SR. This suggests that important activation
information in the network outputs is being thrown away by
normalization and therefore discarded by other techniques.

The bottom part of Table 3 explores ways of combining
local and global information providers. These are motivated
by beam-rescoring techniques in previous work (e.g., mul-
tiplying by the normalized progress monitor score). Cor-
rectly integrating signals is challenging, in part due to dif-
ferences in scale. For example, the logit is unbounded (+/-
), log probabilities are unbounded in the negative, and the
progress monitor is normalized to a score between 0 and
1. Unfortunately, direct integration of the progress monitor
did not yield promising results, but future signals may prove
more powerful.

Fusion methods for ranking complete trajectories .
Previous work [10] used state-factored beam search to



generate M candidates and rank the complete trajec-
tories using probability of speaker and follower scores
argmaxr∈R(d)PS(d|r)λ ∗ PF (d|r)(1−λ). In addition to the
speaker and progress monitor scores used by previous mod-
els, we also experiment with using L to compute G. To
inspect the performance of using different fusion methods,
we ran FAST NAVIGATOR to expand 40 nodes on the fron-
tier and collect candidate trajectories. Table 4 shows the
performance of different fusion scores that rank complete
trajectories. We see that most techniques have a limited un-
derstanding of the global task’s goal and formulation. We
do, however, find a significant improvement on unseen tra-
jectories when all signals are combined. For this we train a
multi-layer perceptron to aggregate and weight our predic-
tors. Note that any improvements to the underlying models
or new features introduced by future work will directly cor-
relate to gains in this component of the pipeline.

The top line of Table 4, shows oracle’s performance.
This indicates how far current global information providers
have yet to achieve. Closing this gap is an important direc-
tion for future work.

Train Val Seen Val Unseen

Oracle 99.13 92.85 90.20

Σ li 78.78 62.49 56.49
µ li 85.78 66.99 54.41
Σ pi 91.25 68.56 56.15
µ pi 91.60 69.34 58.75
ppmt 66.71 53.67 50.15
S 69.99 53.77 43.68

All 90.16 71.00 64.03

Table 4. Success rate using seven different fusion scores as G to
rerank the destination node from the candidate pool.

4.4. Intuitive Behavior

The Supplementary Materials (§A.1) provide three real
examples to show how our model performs when compared
to greedy decoding (SMNA model). It highlights how the
same observations can lead to drastically different behaviors
during an agent’s rollout. Specifically, in Figures A1 and
A2, the greedy decoder is forced into a behavioral loop be-
cause only local improvements are considered. Using FAST
clearly shows that even a single backtracking step can free
the agent of poor behavioral choices.

5. Related Work
Our work focuses on and complements recent advances

in Vision-and-Language Navigation (VLN) as introduced
by [2], but many aspects of the task and core technolo-
gies date back much further. The natural language com-

munity has explored instruction following using 2D maps
[17, 14] and computer-rendered 3D environments [16]. Due
to the enormous visual complexity of real-world scenes, the
VLN literature usually builds on computer vision work from
referring expressions [15, 24], visual question answering
[3], and ego-centric QA that requires navigation to answer
questions [11, 8, 9]. Finally, core to the our work is the
field of search algorithm, dating back to the earliest days of
AI [18, 20], but largely absent from recent VLN literature
that tends to focuses more on neural architecture design.

During publishing the Room-to-Room dataset (VLN),
[2] introduced the “student forcing” method for seq2seq
model. Later work integrated a planning module to com-
bined model-based and model-free reinforcement learning
to better generalize to unseen environments [23], and a
Cross-Modal Matching method that enforces cross-modal
grounding both locally and globally via reinforcement
learning [22]. Two substantial improvements came from
panoramic action spaces and a “speaker” model trained
to enable data augmentation and trajectory reranking for
beam search [10]. Most recently, [13] leverages a visual-
textual co-grounding attention mechanism to better align
the instruction and visual scenes and incorporates a progress
monitor to estimate the agent’s current progress towards a
goal. These approaches require beam search for peak SR.
Beam search techniques can unfortunately lead to long tra-
jectories when exploring unknown environments. This lim-
itation motivates the work we present here. Existing ap-
proaches trade off a high success rate and long trajectories:
greedy decoding provides short, often incorrect paths, the
beam search yields high success rates but long trajectories.

6. Conclusion

We present FAST NAVIGATOR, a framework for using
asynchronous search to boost any VLN navigator by en-
abling explicit backtrack when an agent detects if it is lost.
This framework can be easily plugged into the most ad-
vanced agents to immediately improve their efficiency. Fur-
ther, empirical results on the Room-to-Room dataset show
that our agent achieves state-of-the-art Success Rates and
SPLs. Our search-based method is easily extendible to more
challenging settings, e.g., when an agent is given a goal
without any route instruction [6, 12], or a complicated real
visual environment [7].
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A. Supplementary Material
Our appendix is structured to provide both correspond-

ing qualitative examples for the quantitative results in the
paper and additional implementation details for replication.

A.1. Qualitative comparison

Figures A1 through A3 show three examples comparing
our approach to the previous state-of-the-art. In addition,
the following URL includes a 90 second video (https://
youtu.be/AD9TNohXoPA) showing a first-person view
of several agents navigating the environment with corre-
sponding birds-eye-view maps.

A.2. Candidate Reranker

Given a collection of candidate trajectories, our reranker
module assigns a score to each of the trajectories. The high-
est scoring trajectory is selected for the FAST agent’s next
step. In our implementation, we use a 2-layer MLP as the
reranker. We train the neural network using pairwise cross-
entropy loss [4].

As input to the reranker, we concatenate the following
features to obtain a 6-dimensional vector:

• Sum of score logits for actions on the trajectory.
• Mean of score logits for actions on the trajectory.
• Sum of log probabilities for actions on the trajectory.
• Mean of log probability for actions on the trajectory.
• Progress monitor score for the completed trajector.
• Speaker score for the completed trajectory.

We feed the 6-dimensional vector through an MLP:
BN → FC → BN → Tanh → FC, where BN is a
layer of Batch Normalization, FC is a Fully
Connected layer, and Tanh is the nonlinearity used. The
first FC layer transforms the 6-dimensional input vector to
a 6-dimensional hidden vector. The second FC layer project
the 6-dimensional vector to a single floating-point value,
which is used as the score for the given partial trajectory.

To train the MLP, we cache the candidate queue after
running FAST for 40 steps. Each candidate trajectory in the
queue has a corresponding score si. To calculate the loss,
we minimize the pairwise cross-entropy loss:

−(s1 − s2) + log(1 + exp(s1 − s2))

where s1 is the score for a qualified candidate and s2 is
the score for an unqualified candidate. We define qualified
candidate trajectories as those that end within 3 meters of
ground truth destination. In our cached training set, we have
4, 378, 729 pairs of training data. We train using a batch size
of 3600, SGD optimizer with a learning rate of 5e−5, and
momentum 0.6; We train for 30 epochs.

https://youtu.be/AD9TNohXoPA
https://youtu.be/AD9TNohXoPA


Figure A1. Comparison of the previously state-of-the-art SMNA model [13] to our FAST NAVIGATOR method, with the ground truth as
reference. Note how SMNA retraces its steps multiple times due to the lack of global information. This example is taken from Room-to-
Room, path 2617, instruction set 3. You can view a video of this trajectory here: https://youtu.be/AD9TNohXoPA.

https://youtu.be/AD9TNohXoPA


Figure A2. Identical to previous figure A1, except that this example is taken from Room-to-Room, path 15, instruction set 1.



Figure A3. Identical to previous figure A1, except that this example is taken from Room-to-Room, path 1759, instruction set 1. The typo
’direclty’ comes from the dataset.


