Grasping with Chopsticks: Combating Covariate Shift in Model-free
Imitation Learning for Fine Manipulation

Liyiming Ke, Jingqiang Wang, Tapomayukh Bhattacharjee, Byron Boots and Siddhartha Srinivasa

Abstract— Billions of people use chopsticks, a simple yet
versatile tool, for fine manipulation of everyday objects. The
small, curved, and slippery tips of chopsticks pose a challenge
for picking up small objects, making them a suitably complex
test case. This paper leverages human demonstrations to de-
velop an autonomous chopsticks-equipped robotic manipulator.
Due to the lack of accurate models for fine manipulation,
we explore model-free imitation learning, which traditionally
suffers from the covariate shift phenomenon that causes poor
generalization. We propose two approaches to reduce covariate
shift, neither of which requires access to an interactive expert or
a model, unlike previous approaches. First, we alleviate single-
step prediction errors by applying an invariant operator to
increase the data support at critical steps for grasping. Second,
we generate synthetic corrective labels by adding bounded
noise and combining parametric and non-parametric methods
to prevent error accumulation. We demonstrate our methods
on a real chopstick-equipped robot that we built, and observe
the agent’s success rate increase from 37.3% to 80%, which is
comparable to the human expert performance of 82.6%.

I. INTRODUCTION

Fine manipulation—cutting your fingernails, inserting a
straw into a cup, locking a necklace clasp—are common in
everyday tasks. Although complex end effectors are inher-
ently suited to fine manipulation by tailoring their design to
the problem [1], simple tools are easier to build, deploy,
and are ubiquitous in industrial manipulators. We study
robotic fine manipulation using simple tools. However, the
practicality of simple tools come at the cost of complexity to
control [2]. The one-size-fit-all design of simple tools shifts
the burden to control policies. E.g. picking noodles up with
a fork using a twirling motion requires sophisticated control
policies and the same task would be almost impossible with
a spoon. We have yet to determine which simple tools are
capable of solving complex fine manipulation tasks.

We turn to a fine manipulation tool that humans have
demonstrated incredible dexterity with: chopsticks. Their
small, curved, and slippery tips require precise movements
for grasping small and rigid objects such as a toy marble.
Their limited allowance for failures makes them a suitably
complex test case for evaluating fine manipulation tasks.
With sophisticated control policies, humans have used chop-
sticks to pick up food items with varying physical charac-
teristics including size, shape, deformability. The efficacy of
chopsticks’ design has inspired researchers to adapt them for
diverse robotic applications, such as surgery [3]-[5], micro-
manipulation [6], and meal assistance [7], [8]. Noticeably,
humans have demonstrated impressive adaptability in teleop-
erating a robot equipped with chopsticks to pick up hard-to-

University of Washington, Seattle WA 98105 USA. {kayke,
jwgl23, tapo, bboots, siddh}@uw.edu

Fig. 1: Fine manipulation using chopsticks.

grasp small objects [9]. As chopsticks are ubiquitous, famil-
iar to humans, and easy to track, they provide an additional
advantage that allows us to collect human data that we can
leverage for data-driven algorithms. Therefore, we choose
chopsticks, a simple tool familiar to billions of humans, as an
example to learn and automate fine manipulation strategies
from human demonstrations [10], [11].

To derive a policy from demonstrations, we study imitation
learning [12]-[15]. Due to repeatability, actuator backlash
and unmodeled dynamics like friction or temperature, it
can take tremendous efforts to create simulator models to
achieve the level of precision required in fine manipulation
tasks [16], [17]. The lack of accurate models motivates our
study of model-free imitation learning: we have access to
demonstration data but not to the expert’s policy function or
the environment’s transition model. Under these conditions,
supervised learning methods like behavior cloning [18] learn
a policy function by matching the expert’s action distribution.
Minimizing action distribution divergence, however, does not
necessarily guarantee the recovery of parsimonious states
that lead to task success [19]. A learned agent can suffer
from covariate shift [20], i.e., compounding errors in the
action space that lead the agent to unseen states during test
time. This problem can be especially detrimental for fine
manipulation, the success of which critically depends on a
few steps that usually occur near the end of a trajectory.

To remedy covariate shift, researchers have proposed inter-
active imitation learning methods, such as DAgger [21] and
DART [22], to query an expert online for corrective labels.
DAgger rolls out a learned agent and asks the expert for
labels on learner visited states, which can be computationally
expensive and unnatural on a teleoperation interface [22].
DART injects noise during data collection, disturbs expert
teleoperation, and forces the expert to provide corrective

labels. However, injecting noise during data collection can
burden the expert: adding a small amount of random noise
for our fine manipulation task, as DART suggests, would
require the expert to spend 43% more time on collecting
data[f]

These challenges prompt us to address covariate-shift in
model-free imitation learning in a non-interactive setting,
where we have access to demonstration data but not to
an interactive expert. Since covariate shift results from the
interplay of single-step errors and their accumulation over
time, our key ideas are to (1) increase data support to address
single-step errors, and (2) provide corrective labels to address
the accumulation of errors. Specifically, we provide:

o Enhanced data support by transforming the data to an
object-centric frame that preserves the relative trans-
formation between the end effector and object, while
making training data denser around the critical region
for grasp success.

e Corrective labels by injecting noise into the collected
state, assuming the same action may serve as the cor-
rective label for the deviated state. Thus, we implicitly
enforce smoothness to the learned policy and tell the
agent how to recover from deviated states.

o Corrective labels by choosing a combination of para-
metric and non-parametric methods that improve
matching of the action distribution at unseen states. Be-
cause of our problem structure, a better match in action
distribution leads to a higher likelihood of matching the
state distribution, preventing error accumulation.

We demonstrate our proposal’s effectiveness on a physical
robot equipped with chopsticks to pick up small cube-
and ball-shaped objects, as shown in Fig. [I] Our proposed
agent achieves 60% success rates picking up even the most
challenging item, a small ball, whereas a naive behavior
cloning agent has only a 12% success rate. Our agent
achieves an 80% average success rate picking up all three
objects tested, comparable to the expert human performance
of 82%. We conduct ablation tests, visualize the resulting
states’ distribution, and observe a smaller covariate shift from
our proposed agents. We also validate the generality of the
noise injection method on several Mujoco simulated tasks.

Our promising empirical results, based on pragmatic as-
sumptions of data support and policy smoothness, open the
door for further theoretical analysis of combating covariate
shift. Furthermore, although we have focused on the non-
interactive setting, our techniques directly transfer to the
interactive setting, enhancing robustness while reducing user
burden.

II. METHODS
A. Transform: Increasing Data Support

Our goal is to develop an agent that can generalize from
demonstration data to predict an action for any query state.
However, we lack data support for some states (e.g., the

'We injected an independent Gaussian noise to each joint. Though 95% of
the noise resulted in at most 0.35° deviation per joint, it lowered the expert
success rate by 18% and forced the expert to spend more time completing
each trajectory.

Robot
Starting
Position

bject

(b) Object-centric frame.

(a) Robot-centric frame.

Fig. 2: Visualizing the end-effector positions for all demon-
strations under different coordinate frames. Each black dot is
an xyz-position of the end effector in one step. We highlight
one trajectory, which starts with red dots and ends in blue.

“unseen state” during rollout). We propose to apply an
invariant operator to transform the data, making it denser
around the region of interest and thus increasing the data
support.

In manipulation, changing the frame of reference can
significantly change the distribution of trajectories (Fig. [2).
We could choose a robot-centric frame, where the robot
base is the origin, or an object-centric frame [23], where the
object location is the origin. The change of frame preserves
the relative transformation between the end-effector and the
object and is therefore an invariant operator. We propose that
using an object-centric frame can reduce the covariate shift
and improve the policy generalization, especially for fine
manipulation. The transformation to an object-centric frame
would result in a denser distribution of trajectories near the
origin where the object is located, increasing data support for
this critical region that determines grasping success. Using
an object-centric frame also allows the policy learned to be
invariant to the translation of object location. This makes
the learned policy more sample efficient when generalizing
to novel object locations.

B. Noise: Generating Synthetic Corrective Labels

Although the transformation technique we use improves
the agent’s success rate, we still observe significant devia-
tions during test time that result in task failure (Fig. [3a).
This is understandable because machine learning algorithms
generally need exponentially more data for progressive im-
provement [22]. Instead of naively collecting more data, we
introduce corrective action labels that can help the agent re-
cover from deviations. For example, Venkatraman et al. [24]
rolled out trained agents, collected their deviation states and
used model-predictive control to generate corrective labels
to go back to the demonstrated trajectory. Unfortunately,
models sufficiently accurate for fine manipulation can be
challenging to build.

We propose to generate synthetic corrective labels by
injecting noise into the collected demonstration states (“de-
viated state”) and reusing the collected action (“‘corrective
labels”), thus not requiring access to an expert or a model.
Unlike DART and DAgger, which emphasize collecting
corrective labels for the states that the agent will visit during
rollout (test state distribution), we hypothesize that we do not
need to match the deviated states’ distribution accurately.

(a) Covariate shift: A learner roll out
(black) deviates from the demonstration
(red) and error accumulates.

corrective labels.

(b) Inject noise into the collected states
and reuse the collected action as synthetic

. T2
Decision Boundary &3

(c) Use non-parametric methods (like a k-
NN) to return the agent to proper region
when deviations occur.

Fig. 3: Prevent error escalation in imitation learning.

Instead, we need to collect enough corrective labels to
cover the deviated states’ distribution. Since we can generate
labels for free without burdening an expert, we choose to
generate labels for randomly sampled deviated states, thus
simplifying the selection of states for which to generate
synthetic corrective labels. Fig. [3b| shows an example where
we sample states around a demonstrated state and reuse the
demonstrated action as synthetic corrective labels.

Researchers have injected noise [25] into problems that
reduce a high-dimensional input to a low-dimensional output,
e.g., for classification [26] and object recognition in visual
and language domains [27]. In these works, such tasks
are invariant under a wide variety of transformations [28].
However, our robotic manipulation task has low-dimensional
states and actions, where the mapping learned may not be
invariant to the noise. We provide two insights to justify why
injecting noise can still be desirable.

First, we apply a small amount of additive Gaussian noise
to the demonstration state instead of a large amount that
could pollute the data by mapping a state to a detrimental
action. Inspired by [29], which showed the effectiveness of
noise injection for autoencoders by carefully tuning the mag-
nitude of the noise, we generate Gaussian noise € ~ N (0, o)
to add to the collected states, where o is the covariance of
the noise. For simplicity, we correlate the noise size o with
the variance of the data.

Second, because of the structure of our problem, the col-
lected action can serve as the corrective label for the noise-
injected deviated state. Our state and action representations
both include the end-effector pose. Therefore, when an agent
starts drifting from a demonstrated trajectory and enters a
deviated state, our algorithm can teach it to return to the
original trajectory by reusing the same action label. Injecting
noise can also ensure the learned policy is smooth, which is
desired since we assume the actions are Lipschitz continuous
w.r.t the states.

C. Ensemble: Following the Expert Advice

We can reduce error accumulation at unseen states by
choosing methods that more effectively recover the action
distribution independent of the states. A neural network’s
optimization objective is limited to its training data and will
not necessarily generalize well to unseen inputs [30]. In
contrast, non-parametric methods generate test outputs by
combining the training data, their predictions must come
from the training data and are therefore constrained [31].
e.g., a k-nearest neighbor (k-NN) agent will not cause the

robot to move its joint positions beyond the interpolation of
its training data.

As an example, we use k-NN in conjunction with behavior
cloning (BC). Specifically, our agent follows the k-NN pre-
dicted action if the query state deviates from the training
data (Fig. [3¢).

By using the k-NN method, we are forcing a known
action to a new unseen state during test time to ensure the
action distribution during training and testing will match.
For our manipulation task, the state and action both include
the robot’s end-effector pose. Sending a known action is
equivalent to sending the agent to a known state, implic-
itly reducing the agent’s deviation from training data, thus
reducing covariate shift. However, nonparametric method’s
performance is subject to its distance function, which can be
difficult to design for high-dimensional data.

The distance function for non-parametric methods serves
two purposes: (1) to evaluate the proximity of a query to
the stored data points; and (2) to weight and combine the
expert labels. Our key observation is that (1) requires only
a rough estimate of the distance to decide whether a query
state is far from the training data, and (2) needs a carefully
tuned distance function to assign weights to expert labels.
Therefore, we propose to use a simple decision tree to invoke
a k-NN agent only when the distance of the query state is
far from its nearest neighbors and invoke a behavior cloning
neural network agent otherwise. By invoking k-NN only when
the agent is far away, we bypass the need to carefully design
a distance function for it, favor BC’s scalability with data
when we are inside the training data distribution, and rely
on k-NN to correct the agent’s deviation when we are outside
the training data distribution. We only explore k-NN to serve
as an example and believe that other non-parametric methods
that select actions from data-supported states could work
similarly well.

III. EXPERIMENTS

A. Experimental Setup

We built a 6-DOF robot (Fig. da) equipped with a pair of
chopsticks as its end effector in order to develop algorithms
that control the chopsticks to pick up challenging objects: a
cube with a 1cm edge length, a ball with a 2cm diameter,
and another ball with 1.4 cm diameter, as shown in Fig.
We use Optitrack to track the locations of the object to
grasp. The kinematic model for our inexpensive hardware is
not highly accurate since the robot is assembled from parts
with joints that are not strictly rigid. Even with the best

(a) Robot platform.

(b) Example demonstration.

(c) Evaluation.

Fig. 4: Experiment setup.

calibration, inaccuracies still accumulate along robot links
and result in position errors ranging from 1 mm to 6 mm
at the robot’s end effector. This implies that the difference
between the calculated chopstick tip position and its actual
position is comparable to the radius of the small objects
used in our experiments. For each object, we collected 500
trajectories from an expert teleoperating the robot to pick up
the object (Fig. b). The data collection setup follows our
previous work [9] and is summarized in Appendix

Our agent had access to the tracked location of the objects
and the robot’s end-effector pose. We defined success as
grasping the objects using chopsticks, lifting them above
the workstation, and holding them in the air for 1s. We
evaluated the performance of each method on each object by
computing the success rate over 25 trials. During evaluation,
we divided the square workstation plate into a 5 x 5 grid
(Fig. and placed the object in the center of each grid cell
to ensure effective coverage over the entire workspace. See
Appendix [V-A] for more details.

B. Experimental Procedure

We compared our methods in Section with human
demonstrations during teleoperation (Expert) and a replay
of the successful demonstrations (Replay). Replay tests the
repeatability of our hardware. We chose successful demon-
strations, placed objects at exactly the same locations used
during data collection, and replayed the demonstrations to
see if the robot could pick up the objects.

We used two baselines. The first is a parametric method,
BC+RobotC, a neural-network based behavior cloning agent
that uses the default robot-centric frame. The second is a
non-parametric method, k-NN+RobotC, which is a k-nearest-
neighbor agent that also uses the robot-centric frame.

We evaluated three methods as described in Section [} (1)
using the object-centric frame to train behavior cloning and
the k-nearest neighbors agents, BC+0bjC and k-NN+0bjC,
respectively, (2) injecting a small amount of Gaussian noise
into the behavior cloning agent, BC+0bjC+Noise, and (3)
combining the parametric method BC+0bjC+Noise and non-
parametric method k-NN+ObjC via a decision tree model,

Method | Cube | Ballg20mm | Ballgl4mm | All
Expert 100 80 68 82.7
Replay 100 80 80 86.7
BC +RobotC 84 16 12 37.3
BC +0bjC 92 16 24 44.0
BC +0bjC+Noise 92 76 48 72.0
k-NN +RobotC 64 28 8 333
k-NN +0bjC 84 64 12 53.3
Ensemble ‘ 96 ‘ 84 ‘ 60 ‘ 80.0

TABLE I: Percentage success rates evaluated over 25 trials.

denoted as Ensemble. Implementation details are shown in
the Appendix [V-B]

IV. RESULTS
A. Success Rates for Fine Manipulation

The experimental results are shown in Table.[[} and the best
performers in each column are highlighted. Our parametric
method baseline, BC+RobotC, and nonparametric method
baseline, k-NN+RobotC, had relatively low success rates.
However, the causes of their failures differ. BC+RobotC has
difficulty picking up objects that are placed farther away
from the robot. The agent tends to reach towards the wrong
location after moving over a long distance to approach the
object, highlighting the covariate shift’s impact. In contrast,
the k-NN+RobotC agent’s poses look more similar to expert
demonstrations. However, its trajectories are not smooth
and sometimes end abruptly on top of the object without
picking it up. This occurs because k-NN does not guarantee
a smooth policy function; even after careful tuning of the
distance function, it was challenging to eliminate the jerky
motions. k-NN’s sudden stops are due to direct imitation of
the training data. During demonstration, the human expert
often slowed or even paused their movements around the
object, adjusting the approaching pose before closing the
chopsticks and lifting the object. The distance function we
chose fails to select and mix the more relevant action labels.
This confirms the sensitivity of k-NN to its distance function.

mm Demo kNN = BC = Demo

(a) k-NN+0bjC versus BC+0bjC.

Noisec mmNo-noise

(b) BC+0bjC versus BC+0bjC+Noise.

Ensemble mmm BC

= Demo

(c) Ensemble versus BC+0bjC+Noise.

Fig. 5: Comparing the state distributions as a proxy of covariate shift for trained agents. Each dot is a state in the agent’s
roll out. Green states are farther away from the demonstrations (purple), indicating that their corresponding agent suffers

from more covariate shift than the yellow agent.

Transforming to the 0bjC frame improved the success
rates for k-NN and BC by 20% and 6.7%, respectively.
k-NN becomes less likely to generate jerky motions or stop
since it benefits from the increased data support. BC still
suffers from covariate shift, but the agent has a higher
likelihood of reaching towards the object due to denser data
distribution near it.

Injecting noise to BC+0bjC during training increases its
success rate by 28%. When the items are close to the robot,
the agent has an almost 100% success rate picking up even
the most challenging item. For objects that are far away, the
robot sometimes picks up the object by successfully reaching
the location; at other time, it ends up merely rotating the
chopsticks.

Using a decision tree to combine our best paramet-
ric method (BC+0bjC+Noise) and non-parametric method
(k-NN+0bjC) yields the highest performing agent that
achieves near-expert performance. During test time, if a
state’s distance to its nearest neighbors exceeds a threshold,
the agent triggers the non-parametric method to bring the
state back. We observe that almost all rollouts trigger the
non-parametric method at least once. We observed that the
Ensemble agent can reach an object in a way similar to
poses demonstrated by the expert, no matter how far it is
placed. Failures occasionally occur as the agent misses the
grasping point by some sub-mm error.

B. Covariate Shift Across Methods

To gauge the covariate shift for different agents, we
visualize the distributions of their test states. We collect 25
rollouts from each agent, record the robot-visited states, and
plot the state distribution after dimensionality reduction using
Principal Component Analysis (PCA), as shown in Fig. [3]
First, we observe that BC encounters more covariate shift
than k-NN, i.e., that states visited by k-NN are closer to the
demonstrated states, confirming that a better matching of
action distribution will lead to a better match of state distribu-
tion. Second, injecting noise into BC results in less covariate
shift than no noise, verifying that noise injection can provide
effective correcting labels. Third, the Ensemble model that
combines BC with k-NN has less covariate shift than using
BC alone.

1A sk
* mm Before Noise
mm After Noise
*p<0.05
é **:p<0.01
9
S
=
2
Z
0 i

Humanoid Walker2D

Ant HalfCheetah Hopper

Fig. 6: Performance comparison before and after noise in-
jection. For each MuJoCo environment and each condition,
(before or after noise), we trained 5 agents using consecutive
random seeds. The performance difference is statistically
significant under paired T-tests.

C. Noise Injection: Validation through MuJoCo Environ-
ments

We apply the noise injection method to MuJoCo simulated
environments [32] to test the method’s generality. We use
demonstration data from [33], train 5 behavior cloning agents
under consecutive random seeds as baselines, and train an-
other 5 agents with noise injection for comparison. Figure [6]
compares performances before and after noise injection. A
paired T-test shows that p < 0.05 for all environments. There
is strong evidence that, on average, noise injection improves
the imitation learner.

Though the performance gains for some simulated en-
vironments are not as significant as those we see for our
real robot, we think the difference may be due to the
demonstration source. We use “real” human data for our
robot experiment versus the “synthetic expert demonstration”
generated by a reinforcement learning (RL) agent for the
MuJoCo tasks. Human experts are known to exhibit multi-
modal behaviors during demonstrations, whereas trained RL
agents tend to have single modes in their reaction [34]. Given
that noise injection improves the success rate for our physical

robot task by a considerable 28%, further inquiry is needed
to determine if noise injection is better at enhancing learning
from multi-modal demonstration data.

V. DISCUSSION

We leave some topics for future work. During noise in-
jection, for simplicity, we experiment only with independent
multivariate Gaussian noise with a fixed size of covariance.
It is worth exploring how to formalize the bounded noise
and analyzing how different task domains may benefit from
different noise shapes. For the ensemble model, future work
could explore an alternative way to switch between k-NN and
BC agents in the Ensemble model, perhaps by learning a
threshold condition from the data.

Our work critically depend on two key assumptions. First,
to increase data support by applying an invariant operator,
we assume the existence of a critical region that demands
more data support. Second, to reuse collected action labels
and leverage a nonparametric method to generate corrective
labels, a more accurate match of action distribution should
lead to a more accurate match of the states. The assumption
holds if a part of the state and action representation is directly
connected, e.g., the robot state contains its joint position,
and the robot command accepts the target joint position.
The assumption does not hold, for example, if the robot is
torque-controlled; in these cases, further exploration on how
a learner can generate synthetic corrective labels is needed.

Nevertheless, our proposals do not assume access to a
model or an interactive expert and are therefore more easily
applicable to fine manipulation tasks. Compared to DAgger
and DART, which collect corrective labels from experts, we
can generate synthetic corrective labels for free. Because of
the relatively lower cost of doing so, we generate labels for
randomly sampled state distributions that cover the deviated
state distribution without accurately matching it. Though our
proposals focus on a non-interactive setting, they can directly
transfer to an interactive one.

We choose model-free imitation learning because an accu-
rate model for fine manipulation is rare. However, it remains
to be seen how to leverage an inaccurate model in imitation
learning. This work is but our first step towards exploring
general-purpose autonomous fine manipulation using simple
tools. We look forward to extending it by combining model-
free and model-based methods to manipulate a more diverse
set of hard-to-grasp small objects.

APPENDIX

A. Experimental Setup

a) Robotic Testbed: We use the end-effector (EE) pose
to describe the robot’s state, which is an 8D vector containing
(1) the x-y-z position of the bottom chopstick tip, (2) a
quarternion representation of the rotation of the chopsticks,
and (3) the opening angle of the last joint. We command the
robot by sending a target end-effector pose at 100Hz, using
an Inverse Kinematics solver to translate to joint positions
and running a PID controller at S00Hz to move each joint.

b) Calibration Improved Performance: The default
model and controller for our hardware were not highly
accurate. The average EE position error was 10 mm. After
careful calibration, we reduced this error to 4 mm. Initially,
even a well-tuned controller had low success rates for picking
up a cube and small ball during replay (90% and 15%,
respectively). We implemented a custom PID controller and
gain-tuning to achieve 100% and 80%, respectively.

c¢) Demonstrations: We collect the demonstration at
100 Hz to match the test scenario. Each trajectory contains an
average of 600 (state, action) pairs. The state is a 11-D vector
containing the robot’s state and the object’s tracked x-y-z
position. The action is the target end-effector pose. During
each trajectory, we initiate the robot around a fixed home
configuration and place the object at a random location across
the workstation. One expert user collect all trajectories to re-
duce multi-modal behavior that might interfere with learning
(e.g., picking up object using different strategies). We remove
failed trajectories and keep only the 500 successful ones.

B. Implementation Details

a) BC: We trained a two-layer fully connected neural
network of size 64 x 32 with ReLU activation. It outputs
the 8D target end-effector pose. To compute its loss, we
divided the 8D pose to position, rotation, and opening angle
and computed the loss for each component using the mean
squared error or the rotation difference. We then used a
weighted linear combination to sum the components’ losses
to a 1D loss. The weights are tunable parameters.

b) k-NN: We used the last 3 end-effector poses and the
current object location as input to the k-NN agent. We specify
its distance function to be similar to the BC loss function but
use a different set of weights.

c) Noise: During training of BC agents, instead of
optimizing » ;. .l f (i) — a;], where x; is the state and
a; is the action, we sample 20% of the data in each batch
and replace the state z; with 2} = x;;+¢, where € ~ N'(0, 7).
o is a diagonal matrix whose diagnoal entries are no. We
choose a fixed noise magnitude, 7, for all dimensions of the
state and & is the variance of each dimension of the state.
Empirically, o = 7 also achieves comparable performance.

d) Ensemble: Given that k-NN yields the nearest neigh-
bors for a state and the corresponding distances, we set a
threshold parameter o such that the agent follows BC iff
>(di)/k < «, where d; the distance to the i-th closest
neighbor. Further details are in [35].

ACKNOWLEDGEMENT

Research reported in this publication was supported by the
Eunice Kennedy Shriver National Institute Of Child Health
& Human Development of the National Institutes of Health
under Award Number F32HD101192. The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of
Health. This work was also (partially) funded by the Na-
tional Science Foundation IIS (#2007011), National Science
Foundation DMS (#1839371), the Office of Naval Research,
US Army Research Laboratory CCDC, Amazon, and Honda
Research Institute USA.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

“Gross and fine manipulation.” [Online]. Available: https://www.bls.
gov/ors/factsheet/gross-and- fine-manipulation.htm#

M. T. Mason, A. Rodriguez, S. S. Srinivasa, and A. S. Vazquez,
“Autonomous manipulation with a general-purpose simple hand,” The
International Journal of Robotics Research, vol. 31, no. 5, pp. 688—
703, 2012.

H. Sakurai, T. Kanno, and K. Kawashima, “Thin-diameter chop-
sticks robot for laparoscopic surgery,” in International Conference on
Robotics and Automation, 2016, pp. 4122-4127.

R. A. Joseph, A. C. Goh, S. P. Cuevas, M. A. Donovan, M. G.
Kauffman, N. A. Salas, B. Miles, B. L. Bass, and B. J. Dunkin,
“Chopstick surgery: a novel technique improves surgeon performance
and eliminates arm collision in robotic single-incision laparoscopic
surgery,” Surgical Endoscopy, vol. 24, no. 6, pp. 1331-1335, 2010.
M. Ragupathi, D. I. Ramos-Valadez, R. Pedraza, and E. M. Haas,
“Robotic-assisted single-incision laparoscopic partial cecectomy,” The
International Journal of Medical Robotics and Computer Assisted
Surgery, vol. 6, no. 3, pp. 362-367, 2010.

A. A. Ramadan, T. Takubo, Y. Mae, K. Oohara, and T. Arai, “De-
velopmental process of a chopstick-like hybrid-structure two-fingered
micromanipulator hand for 3-d manipulation of microscopic objects,”
IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1121-
1135, 2009.

B.-C. Chang, B.-S. Huang, C.-K. Chen, and S.-J. Wang, “The pincer
chopsticks: The investigation of a new utensil in pinching function,”
Applied Ergonomics, vol. 38, no. 3, pp. 385-390, 2007.

A. Yamazaki and R. Masuda, “Autonomous foods handling by chop-
sticks for meal assistant robot,” in ROBOTIK 2012; 7th German
Conference on Robotics. VDE, 2012, pp. 1-6.

L. Ke, A. Kamat, J. Wang, T. Bhattacharjee, C. Mavrogiannis, and
S. S. Srinivasa, “Telemanipulation with chopsticks: Analyzing human
factors in user demonstrations,” in International Conference on Intel-
ligent Robots and Systems. 1EEE, 2020.

A. Billard and D. Grollman, “Imitation learning (of robots),” Springer,
Tech. Rep., 2011.

K. Miilling, J. Kober, O. Kroemer, and J. Peters, “Learning to
select and generalize striking movements in robot table tennis,” The
International Journal of Robotics Research, vol. 32, no. 3, pp. 263—
279, 2013.

J. Ho, J. Gupta, and S. Ermon, “Model-free imitation learning with
policy optimization,” in International Conference on Machine Learn-
ing, 2016, pp. 2760-2769.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation. 1EEE, 2009,
pp. 763-768.

J. S. Dyrstad, E. R. @ye, A. Stahl, and J. R. Mathiassen, “Teaching a
robot to grasp real fish by imitation learning from a human supervisor
in virtual reality,” in International Conference on Intelligent Robots
and Systems. 1EEE, 2018, pp. 7185-7192.

T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg,
and P. Abbeel, “Deep imitation learning for complex manipulation

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

tasks from virtual reality teleoperation,” in International Conference
on Robotics and Automation. 1EEE, 2018, pp. 1-8.

M. R. Cutkosky, Robotic grasping and fine manipulation.
Science & Business Media, 2012, vol. 6.

A. Billard and D. Kragic, “Trends and challenges in robot manipula-
tion,” Science, vol. 364, no. 6446, 2019.

D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in Neural Information Processing Systems,
1989, pp. 305-313.

T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and
J. Peters, “An algorithmic perspective on imitation learning,” arXiv
preprint arXiv:1811.06711, 2018.

J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset Shift in Machine Learning. The MIT Press, 2009.
S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627-635.

M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “Dart:
Noise injection for robust imitation learning,” arXiv preprint
arXiv:1703.09327, 2017.

M. T. Mason, S. S. Srinivasa, and A. S. Vazquez, “Generality and
simple hands,” in Robotics Research. Springer, 2011, pp. 345-361.
A. Venkatraman, M. Hebert, and J. A. Bagnell, “Improving multi-
step prediction of learned time series models,” in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

C. M. Bishop, “Training with noise is equivalent to tikhonov regular-
ization,” Neural Computation, vol. 7, no. 1, pp. 108-116, 1995.

J. Sietsma and R. J. Dow, “Creating artificial neural networks that
generalize,” Neural Networks, vol. 4, no. 1, pp. 67-79, 1991.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60,
2019.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
MIT press Cambridge, 2016, vol. 1.

B. Poole, J. Sohl-Dickstein, and S. Ganguli, “Analyzing noise in
autoencoders and deep networks,” arXiv preprint arXiv:1406.1831,
2014.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. USA: Prentice Hall Press, 2009.

N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175-185, 1992.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2012, pp. 5026-5033.
“University of california berkeley CS 285: Deep reinforcement learn-
ing,” http://rail.eecs.berkeley.edu/deeprlcourse/, accessed: 2020-10-27.
L. Ke, S. Choudhury, M. Barnes, W. Sun, G. Lee, and S. Srinivasa,
“Imitation learning as f-divergence minimization,” in Proceedings of
the Workshop on Algorithmic Foundations of Robotics, 2020.
“Additional supplementary details (google drive).”
[Online]. Available: https://drive.google.com/file/d/
1PsryvgkxB9bNuRzgoq YIvalmOrLtOsd7/view ?usp=sharing

Springer

https://www.bls.gov/ors/factsheet/gross-and-fine-manipulation.htm#
https://www.bls.gov/ors/factsheet/gross-and-fine-manipulation.htm#
http://rail.eecs.berkeley.edu/deeprlcourse/
https://drive.google.com/file/d/1PsryvqkxB9bNuRzgoqYIvaIm0rLt0sd7/view?usp=sharing
https://drive.google.com/file/d/1PsryvqkxB9bNuRzgoqYIvaIm0rLt0sd7/view?usp=sharing

