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Abstract. In this work, we make the case for using volumetric informa-
tion for shape reconstruction and recognition from noisy depth images
for robotic manipulation. We provide an efficient algorithm, Voxel Depth
Carving (a variant of Occupancy Grid Mapping) which accomplishes this
goal. Real-world experiments with lasers, RGB-D cameras, and simulated
sensors in both 2D and 3D verify the effectiveness of our algorithm in
comparison to traditional point-cloud based methods.

1 Introduction

3D sensors are cheaper and more readily available than ever before. Commercial
depth sensors, such as Microsoft’s Kinect or the Asus Xtion Pro provide inex-
pensive, low-latency, colored depth data. However, this comes at the expense of
significant noise and missing data [22]. The rise of cheap 3D sensing presents the
challenge of using noisy, incomplete depth data for robotic manipulation. Here,
we focus on two key perception challenges: shape reconstruction and object recog-
nition, which are necessary for robotic manipulation of everyday objects.

(a) Ocm (b) 5cm (c) 10cm (d) 15cm

Fig. 1: The effect of noisy data: the top row shows the raw point clouds. The middle
row shows the result of the reconstruction using hit data only. The bottom row shows
the result of our method. We vary o, the standard deviation of noise on the depth
sampled from N(0,0,) from Ocm to 15cm.

Many previous works on object recognition [14,17,25] and reconstruction [12,
19,21,26] use a point cloud, a set of 3D points which encode data from the sensor.
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Unfortunately, point clouds throw away important information encoded in depth
images: locality of adjacent depth pixels, the implicit ray from the focal point
of the depth camera to each point in the cloud, and, importantly, the implicit
volumetric information implied by the ray passing through empty space from
the camera to the scene. Consequently, corruption from noise and missing data
can severely distort a point cloud, reducing its usefulness.

In contrast, researchers in the mobile robot navigation community have long
used occupancy grids [5] and ray clouds rather than point clouds to overcome
the problem of noisy, sparse data. Occupancy grids provide a natural way to
reason about the uncertainty of noisy sensors by incorporating ray noise models
into the occupancy update probabilities.

However, directly applying occupancy grid mapping to the domain of recog-
nizing and reconstructing common objects presents many challenges. Traditional
occupancy grid mapping techniques [5] assume laser-like or sonar-like sensors
carving out grid cells in spaces much larger than the robot, wheras we are con-
cerned with very dense depth scans covering a much smaller space at higher
resolution. In our domain, ray rasterization is slowed by the extreme number
of rays, and results in artifacts around the fine details of objects. To solve this
problem, we iterate over a fixed set of voxels, rather than over rays. We use
projection and interpolation rather than rasterization to carve out space much
more quickly and conservatively. We call this technique Voxel Depth Carving.
Recognizing objects in a noisy occupancy grid also presents difficulties. We are
unable to use typical surface descriptors or point descriptors used in 2D images
or point clouds, and instead we must use volumetric descriptors to recognize ob-
jects. In this work, we show that simple affine-invariant geometric moments can
sufficiently recognize objects from a database of hundreds of candidates when
only noisy volumetric information is given. Further, in our domain, the majority
of the space around objects may be dominated by occlusion, and remains “un-
known.” To deal with unknown space from occlusions, we construct a Markov
Random Field with strong structural priors to make assumptions about the space
behind objects. Doing so gives us much better object recognition performance
when the number of views of the object is small.

By applying these techniques from occupancy grid mapping to object recog-
nition and reconstruction, our work aims to exploit and recover the implicit
volumetric information encoded in noisy, incomplete depth images; while at the
same time being faster than typical occupancy grid mapping techniques in our
domain. As a result, we are able to reconstruct and recognize objects even in
extremely noisy conditions — where the corresponding point cloud is so distorted
as to be unrecognizable (Fig.1).

2 Related Works

Despite extensive research, object recognition and reconstruction remains chal-
lenging in both the 2D [24] and 3D [11] cases. We are interested in a more specific
subset of the problem where multiple, registered viewpoints are considered.

Shape Reconstruction When only 2D data is given, silhouette information
may be used in the form of a visual hull [18]. However, generating silhouettes
is not always feasible. Algorithms that incorporate color information from Lam-
bertian scenes by evaluating photo consistency [16] produce high quality, high
resolution geometry reconstruction, but fail for lower resolutions.

Another body of work concerns constructing geometry from high resolution
laser scans [13,21,26]. Such scans typically contain very little noise, and are ex-
tremely dense. Most algorithms use only hit information and discard passthrough
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information. In the absence of noise, these approaches are well suited, but with
real-world data from commercial sensors, their prerequisite of having dense, wa-
tertight point clouds falls short. Our approach begins by assuming large chunks
of missing data, occlusion, and noise are all present.

In contrast to the methods used in 3D object recognition and reconstruction,
works in the robotic navigation and mapping community have long made exten-
sive use of volumetric information in the form of Occupancy Grid Maps [5] for
2D navigation, and in the case of 3D navigation, as Octree mapping [13] and
related algorithms. Unlike point cloud based methods, which only consider the
endpoints of rays, these methods integrate passthrough information to construct
a probabilistic representation of the space around the robot. Our work can be
seen as an extension of Occupancy Grid Mapping for object modeling which uses
a voxel-centric approach rather than a ray-centric approach to more efficiently
compute the occupancy probability of the space around the object.

This paper builds on one of our earlier unpublished reports in which we first
proposed the method of Voxel Depth Carving [9]. Since then, another work by
Guggeril et. al. [6] independently introduced the same method to the computer
graphics community, where it is known by the same name. They [6] define the
concept of the depth hull, a complement to the visual hull, which plays a key role
in our work. While their method is very similar to ours, they have not verified the
method using real-world sensor data, as we have — and only consider the problem
of high-resolution surface reconstruction, whereas we are also interested in object
matching and probabilistic object models.

Object Recognition Template matching approaches such as LINEMOD [10]
have been extended to noisy 3D data successfully, but such techniques cannot
efficiently select models from thousands of candidates in a database, which is
our goal. Hsiao et. al. [14] explore the problem of recognizing houshold objects
for grasping from extremely noisy and incomplete depth data by considering
alignment to a number of 3D objects from a very small database — but their
approach (which relies only on simple ICP [1]) only scales to tens of objects.
The Point Cloud Library [25] includes several methods of 3D object detection
and recognition based on point features, but (as the name of the library suggests)
all such methods rely purely on point cloud hits, and do not consider volumetric
data.

Our work complements other object recognition techniques by using volu-
metric descriptors (such as moments) to match against a database of thousands
of objects. We build on the work of Goldfeder [8] et. al, who recognize everyday
objects by the Zernike [4] moments of their point clouds; we simply compute the
moments of their depth hulls instead.

3 Technical Approach

Problem Assume that the robot takes N scans of a scene. We have Hy,..., Hy
globally registered rigid poses of the robot’s sensor. For each scan, assume we
have M rays emanating from the sensor Ry = {r1,...,rn}; where a ray r; =
{0i,p;} has an origin o;, and an endpoint ”hit” p;. We may further assume that
for each Ry, all o; € Ry, are the same (that is, all the rays pass through a focal
point). This is often the case for RGB-D sensors and laser scanners. We will use
0j to mean the focal point of scan Ry.

In the absence of noise, each p; € Ry is a point on the surface of an ob-
ject. However, we will assume that every ray in the scan has a length which is
corrupted by noise, i.e
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Fig.2: Kettle reconstruction: (a) Experimental setup. (b) (Top) Multiple registered
views, (Bottom) Voxel carving and mesh generation. (c) (Top) Grazing incidence from
a single view, (Bottom) Aggregated views.

()

di = ||pi — oill = di +n;

where d; is the true length of the ray, and a random variable n; denotes noise,
drawn from a probability distribution f,, (z). In our experiments, we use a simple
depth-dependant Gaussian model of the noise i.e.: f,, (z,d;) = N (d;,0.(d;)),
where o, is a funciton which varies with depth.

The goal is to find a function S(z) : R® — {—1,1}, the shape function,
which is —1 whenever the space is free (i. e it does not contain an object), and
1 whenever the space is filled.

Specifcially, we may consider the probabilistic shape function Ps(x|Ry,... Ryx)
We will assume that a discrete representation (in the form of voxels) of the prob-
abilistic shape function is sufficient. We construct a voxel grid representation of
the space V € RXXY*Z where X,Y, and Z are the number of cells along each
axis of the workspace. And, V[z] = Ps(z|R; ... Ry). We can similarly write the

probability that a cell is free, P;(x|...). The joint distribution over all the cells,
Py(z1,...,xxyz|R1 ... Ry) is labeled P,(V|Ry,...,Ry) for convenience.

Passthrough Information To find the shape function, it is necessary not only
to consider the end-points of the rays in each scan (called the point cloud), but
also the presence of rays passing through space between the scan origin and the
end-point. To see why this is important, consider the physical process behind a
laser scan. Rays of light (which have non-zero thickness)) emenate from a central
point through the scene. Some of the rays strike objects in the scene directly
(we will call these Type I rays), others will not hit any objects (Type II rays),
and still others will graze objects (Type III rays). Grazing ray hits [23] are the
most interesting of these, as in practice, the sensor will randomly return depths
intermediate between the surface of the object and the background (Fig.3).

If we only consider the endpoints of rays, Type II and III rays immediately
become useless, since for Type II rays, there is no endpoint, and for Type III
rays, the endpoint is wildly corrupted by noise. In contrast, by using the entirety
of the ray, we are able to use all three kinds of rays to determine which parts of
the space are free, even if we can’t say anything about which parts of the space
are occupied.



Modeling and Recognition via Voxel Depth Carving 5

Object

Background

J_ Background
passthrough

Nois
Object be—Noise —]

passthrough

Fig. 3: With noise, the hit information becomes meaningless for evaluating the occu-
pancy of the marked point. The passthrough information from the ray passing by the
object remains useful.
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Fig. 4: The relative confidence of hit and passthrough information under low and high
noise. While the usefulness of hit information declines rapidly with noise (a), most of
the passthrough information (b) remains intact.

Consider the simple case where f,,, (z) is Gaussian, centered at the true depth
with some standard deviation o,, (Fig.4). As we increase o,,, the occupancy prob-
ability of space becomes more and more blurred around the hit, while the proba-
bility of space around the sensor being free remains high. This fact remains true
even for non-Gaussian noise models — notably, it is true for Type III (grazing)
rays.

Depth Images In addition to storing the rays from each scan, we can also
construct the depth image of the scan. We define a depth image of sensor j as a
function Dj[u,v], which takes in a 2d point and returns the length of a stored ray
at that location. If no ray is stored there, the value is interpolated linearly from
nearest neighbors. For RGB-D images, the depth image is merely a 2-dimensional
grid of depth values, where each grid cell is the length of the ray passing through
that grid cell on the image plane of the camera to the scene. For values of u and
v which do not fall in the center of a grid cell, we use bilinear interpolation
to determine the depth value. On the other hand, for laser scanners, the depth
image must be synthesized.

We will also assume there exists a projection mapping of the depth image
proj;(z), which, given a point x in the scene, projects that point back onto the
depth image. In the case of RGB-D sensors, the projection mapping is simply a
perspective projection of the scene onto the image plane. For laser scanners, we
can use the pinhole camera model:

(x—0;) ex (x—05) es]"

(x—o0j)-e1’ (x—0j) e

proj;(z) =
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where (eq, e, e3) form an arbitrary orthonormal basis, with e; being the viewing
direction. This model is only suitable for scans with a field of view significantly
less than 180°.

Occupancy Grid Mapping Consider the typical occupancy grid mapping
problem. If we first assume that each of the voxels is conditionally independent
of one another given measurements, then what we wish to find is the probability
of a cell being occupied given all of the measurements:

P(V|Ry,...,Ry) = [] Pe(cilRy,...,Ry)

c, eV

which, with the further assumption that each sensor measurement is independent

becomes
IIIT I Peeitr)

7 7 'I”kERj

in other words, the probability of any instatiation of the voxel grid’s MRF be-
comes a matter of simply computing the likelihood of each voxel being occupied
given each ray in every scan independently. To imrove numerical stability, we
can use the log-odds of the occupancy probability rather than the probability
distribution itself:

EDIPIES o AT

rkER cl‘rk)

Traditional occupancy grid map approaches [5] solve the problem of finding
the probabilistic shape function by rasterizing each ray using Brensham’s al-
gorithm [3], and lowering the occupancy probability for each cell that the ray
passes through, while raising the occupancy probability for the cell that the ray
ends in. Unfortunately, this approach has the disadvantage that as rays diverge
from the sensor, they cover less space, and thus the reconstruction degrades as
distance from the sensor increases. This problem is especially visible when the
resolution of the voxel grid is high. Rasterizing each ray also takes a considerable
amount of time when the resolution of the grid is high.

Voxel Depth Carving To speed up occupancy grid mapping in our domain,
we make an approximation which uses projection instead of rasterization to carve
away voxels which are likely to be free. Instead of iterating over rays and raster-
izing them, we instead iterate over voxel cells, and determine whether a voxel cell
should be marked as free from the collected sensor measurements. This method
makes more sense in our domain, because typically the number of rays (from a
collection of registered depth camera views) will be much higher than the num-
ber of voxels (which need only capture the shape of a small object). However, we
can only approximate the true depth in areas that no rays actually pass through
by interpolating between depth values of nearby rays. The approximation will
be worse where there are rapid changes in depth smaller than the resolution of
the sensor.

For each voxel cell in the scene, we project its center ¢; onto the depth images
of each sensor (Fig.5(a)). We then compare the linearly-interpolated value from
the depth image z; ;j,with the Euclidean distance from the voxel cell to the sensor
(es,5), which will tell us whether or not the cell should be free.

ziy = Dj[proj;(ci)], eij = llei — o
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Fig. 5: ( ) Two scans, R; and Ry, are shown, with one voxel ¢;. Projections onto the
depth images D; and Dy, with the minimal prOJectlon shown as z;. (b) A diagram of
the Markov Random Field in 2D. ¢;; is the edge with weight ¢(c;, ¢;). The two special
nodes, ¢free and coce are shown as boxes. In 3D, cells are 6-connected. The darkness of
a cell indicates its label.

From here, we can compute the probability that a cell is free given a particular
ray. When the cell is sufficiently close to the sensor, we have:

_ ZMAX
Ps(Ci|7"j) = P(Z@j > 6,’7]') = / P(Z@j = Z)dZ
€
but as the distance to the cell greatly exceeds z; ;, the probability a cell is free
becomes unknown. For an ideal sensor (i.e no noise), the probability distribution
is a step function. The more noise is added to the sensor, the less steep the step
function becomes.

Because of this, P(z; > e; ;) is very large near sensors, and very small near
the vicinity of hits. If afl we ate interested in is whether or not a cell is free
(and make no claims about the occupancy of voxels otherwise), we can make use
of this fact by only considering the minimum distance to any sensor to decide
whether a cell is free. That is,

Z; = minz; j,e; = mine; ;
J J

we can then simply threshold the differences in the depth of the cell and mea-
surements so as to only consider a cell free when it is sufficiently far away from
a hit. This approach is a very conservative approximation of occupancy grid
mapping: hit data can not be used at all, and only cells which are very likely
to be free will be updated in each step. However, under conditions of very high
noise, this conservative approach prevents us from carving important features of
the object away.

N _ J—1 (free) if e; < t;
label(e;) = {0 (unknown) else (1)

with some threshold ¢;. All points which are closer to the origin than the thresh-
old are classified as “free”. We choose the threshold by subtracting a margin Ad
from the measured depth, t; = z; — Ad. We generally want to use a low value for
Ad because otherwise, cavities will look flatter than they actually are. Cavities
with a depth less than Ad cannot be reconstructed at all.Using the noise model
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of the sensor, we can determine a suitable value for the margin by considering
the probability that there are points which are misclassified as “free”, that is:

3]9 € [Oi,pi] : (Hp701” > dl) and (”p*OZH < tz) — d; < z; — Ad

The probability for a misclassification is given by

Phis = P(dl < zZi— Ad)

Ad
=1- fn(x)dz
—1— F,(Ad)

where F), is the probability distribution of the noise. Given a maximum accept-
able misclassification probability Pmismax; We can determine the smallest value
of Ad that results in Pupis < Pmis, max-

In particular, for Guassian noise with mean p and standard deviation o, we
have an optimal Ad of

Ad = &7 (1 — Puis, max)0 + 11

by iterating over each voxel, we are able to “carve” large volumes of space which
are likely to be free, leaving only the occupied space of the object as the number
of views of the scene increase (Fig.2(b)). Note that since we take the center of
the voxel only, as cell resolution decreases, the accuracy of our method degrades.
This effect can be mitigated by additionally projecting the vertices of the voxel
to the depth image and taking the minimum depth over the convex hull of
the projected vertices. We are left with an algorithm which has performance
characteristics linear in the number of voxels (rather than the number of rays,
as in the occupancy grid mapping case). With several dense RGB-D scans, this
is a significant performance improvement; at the cost of throwing away data near
ray hits.

Unknown Space and Shape Priors Until now, we have only been concerned
with determining whether or not a cell is “free”, and make no claims about
whether a cell is “occupied”, instead opting to call all cells which are not free
“unknown.”

However, it is possible to determine which cells are likely to be occupied
based on the free and unknown cells using a prior on the structure of objects.
We can capture this structure using a Markov Random Field that has pairwise
energies between cells (in addition to energies associated with sensor data). In
this sense, Voxel Depth Carving becomes a method of updating the MRF given
sensor data, with strong structural priors determining which cells are actually
labeled as “occupied.”

Markov Random Field Using a Markov Random Field (MRF), we can en-
code prior assumptions about the structure of objects into the pairwise energies
between adjacent cells. That is:

Pv)=5 II dne)

CiyCj cv
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where ¢ is the joint probability of two adjacent cells being occupied, and Z is
a normalizing constant. One choice of ¢ which results in local smoothing and
preserves boundaries is an Ising-like local model

¢(ciycj) = exp (—LiLy)

where v is a smoothness parameter, and L;, L; are the labels of voxel ¢ and j
(for the MRF we are required to label voxels containing points from the point
cloud as “occupied” (L; = 1)). This model penalizes labelings which are not
locally contiguous. If we use the Ising model to propagate occupancy probabil-
ity from ray hits to the rest of the voxel grid, what we will be left with is a
distribution which is smooth in “unknown” areas, but maintains the hard edges
obtained from Voxel Carving. Additionally, we can apply a prior to the struc-
ture of the Markov Random Field by adding additional vertices representing the
labels “free” and “occupied”, called cfree and coce (Fig.5(b)). Every voxel in the
grid is then connected to these vertices with an energy computed from a prior
and evidence from voxel carving. That is:

¢(Cia Cfree) = aI(Lz = 71) + '/Tfree(ci)
(b(cia Cocc) = aI(Lz = 1) + 7Tocc(ci)

where T ¢rce, Toce are priors which weight “unknown” cells based on assumptions
about the shape of the object.

Minimum Graph Cut We are left with a binary labeling problem on a Markov
Random Field. The goal is to segment the field into two components: “occupied”
and “free”, in a way that minimizes the energy of the field. With a field of this
type, it is true from the MaxFlow Mincut theorem [28] that the minimum-cut
of the graph produces the optimal labeling. That is, we want to find a set of
edges, C = {¢1,...,0nm}, where ¢; is an edge between a cell that is “occupied”
and “free”; and we want this set of edges to have minimal energy. The edges
must divide the graph into two connected components, one containing cgee, the
other containing coc. The minimum graph cut can be found efficiently using
Ford-Fulkerson algorithm [7]. Our problem is thus reduced to the binary image
segn[le]ntation problem, which is efficiently solved by finding the minimum graph
cut |2].

Shape Priors One prior we consider is to assume that the object is essentially
a sphere of radius r; and center c,, called the “sphere prior” (Fig.6(b)). In this
case,

lei = el
Wfree(cz) T

that is, a cell is less likely to be free the closer it is to the center of the sphere.
Notice however that if « is very high, the minimum cut of the MRF will only use
the prior in areas that are “unknown”, using evidence from the sensor in other
areas. We can also use a prior for the field which considers each ray independently
using the following formula (which we call the “thin object prior”):

Wfree(ci) = exp(_ﬂh )

where hy = min;(||z — . This prior causes us to be less confident about
voxels belng occupied t{ne further they are away from observed sensor points
(Fig.8(b)). The parameter S controls just how thin we believe objects to be.
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Fig. 6: (a)Precision vs. recall graph from varying rs from 0 to 100 for several views of a
random polygon. The graph cut is shown for the bet and worst values of rs for 1 and 9
views.(b)The minimum cut of an 8-connected 2D voxel grid obtained by voxel-carving
a random polygon. Three views are shown, with two prior radii shown for the sphere
prior.

When g = oo, for instance, we are left with a reconstruction of the surface of
the object (which is less noisy than the point cloud); and when 8 = 0, we simply
have the depth hull of the object. Varying 5 produces shapes which interpolate
between the depth hull and the object surface.

Surface Reconstruction. Based on the carved voxel shape, the surface of the
object can be reconstructed for visualization or analysis. Many algorithms may
be used for this task, including the simplest, Marching Cubes [20]. Addition-
ally, color can be applied to the reconstructed surface by the projection of each
vertex onto the color image of the sensor. (Fig.2(b)) Admittedly, the surfaces
we have constructed are quite ugly in comparison to state-of-the-art techniques
from computer graphics (as in [6]) , but we are concerned with creating a proba-
bilistically accurate representation of the occupied portions of the space for use
in grasping and recognition — and not with constructing an aesthetically pleasing
surface mesh of the object.

Object Recognition Once the shape of the object has been reconstructed
using voxel depth carving, we may want to match the object to one of several
in a database, or else classify the object. Recognizing objects from their vol-
umetric representations is a very well-studied topic, known variously as Shape
Retrieval or Shape Classification. The Princeton Shape Benchmark [27] lists sev-
eral volumetric descriptors, including Shape Histograms, the Spherical Harmonic
Descriptor, and others. The volumetric descriptor we chose for our experiments
is the 3D Zernike [4] descriptor (as in [8]). The Zernike descriptor is constructed
by projecting the object’s voxelization onto a set of N basis polynomials defined
on the unit sphere. It is affine invariant, compact, and descriptive.

Matching is performed by comparing the Zernike descriptor of the carved
object with pre-computed Zernike descriptors in an object database, and taking
the nearest neighbor in the Euclidean sense.
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(a) (b)

Fig.T: (a), Thirteen registered views of a kettle held in the robot’s hand are used to
carve a voxel grid, which is then meshed using Marching Cubes. The robot’s hand is
reconstructed as well. (b) A coffee mug scanned by a simulated Kinect at a depth of
3 meters in the intermediate stages of voxel carving. Voxels (colorful) are constructed
from multiple noisy depth scans (black points).

4 Experiments

Voxel Carving Experiments We validated our method in two real-world
setups: the first one is an object standing on a table, and the second one is an
object in the robot’s hand. When recording ray clouds, we have determined the
pose of the laser scanner. Pose registration is beyond the scope of this work. For
our purposes, we found that determining the pose of checkerboards on the wrist
of the robot or on the table, respectively, with a camera mounted on the robot,
is sufficient. The camera was also used to colorize the resulting model, as seen
in Fig.2(b).

Object on the Table For the object on the table, we recorded seven ray clouds
at a low resolution, taking about 1.5s per cloud. Each of the clouds contains
about 64,000 points. After filtering out points lying outside the region of interest,
about 1((),(;00 points wer cloud remain. The point clouds after filtering are shown
in Fig.2(c).

From each of the point clouds, we synthesize a depth image. After carving the
voxel grid, we use the Marching Cubes algorithm and Laplacian smoothing to
create a mesh from the voxel reconstruction. Finally, we use the camera images
to colorize the mesh by re-projecting vertices onto RGB cameras co-registered
with the laser scanner. More sophisticated methods for creating a mesh out of a
voxel grid are available, but are beyond the scope of this work.

Creation of the depth images from the laser scan takes less than half a second.
Reconstruction of the voxel grid takes about 14.7 seconds for a grid of 456 x 103
voxels. The time for generating and colorizing the mesh is less than one second.
All of these results were obtained on an Intel Core 2 duo processor.

Object in the Hand We had the HERB hold a tea-kettle in its hand. HERB
then rotated its wrist to take 13 scans of the object Fig.2(a). These scans were co-
registered using a fiducial on HERB’s wrist, and were then carved using the depth
carving method. For this experiment, we did not colorize the mesh (Fig.7(a)).

Robustness to Noise For evaluating the robustness of our method to noise, we
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Fig.8: 2D experiments. (a) Matching the letter Z to 10k random 2D polygons. The
number of views increases from 1 to 4, and the match becomes more semantically
similar. The leftmost image is the input, followed by the camera FOVs, the carved
voxels, the occupancy probability, segmentation, and finally the top match. (b) As
increases from 0 to 0.1, we increase the weight of the object surface. At 8%, the match
to the nearest polygon in the database is semantically closest. The leftmost column
represents the occupancy probability, and the rightmost is the top match.

used the acquired data and added zero-mean Gaussian noise to the depth. Note
that neither of these properties are required for our method — the probability
distribution can be arbitrary and have non-zero mean. We chose a maximum
acceptable misclassification probability of Puis, max = 0.2, resulting in a margin
of Ad =~ 1o. The results of the reconstruction can be seen in Fig.1.

Fig.1(a) shows the original point cloud with no additional noise. Both the
conventional method, using hit information, and our method, using depth im-
ages, approximate the shape well, but with the traditional method, part of the
surface to the lower left is missing due to the low density of points. In Fig.1(b),
noise with a standard deviation of ¢ = 5cm was added. The conventional method
results in a very jagged surface. With even more noise (Fig.1(c), and Fig.1(d)),
the object can barely be recognized in the point cloud anymore. The conventional
method does not produce any useful results, while our method still performs well.
Note that in Fig.1(d), the standard deviation of the noise is more than half the
size of the object.

Simulation Environment To explore the effect of noise, multiple views, and
object priors, we created both a 2D and 3D simulation environment. In the 2D
environment, laser scans are simulated by casting 2D rays from the focal point
of a camera in an arc. The rays strike a binary image representing an object.
Noise is then added to the length of the rays. In our 3D simulation environment
(Fig.7(b)), we simulate a Kinect with realistic resolution, noise parameters [22],
and depth discretization using ray casting against 3D meshes.

Classification Accuracy with Shape Priors To explore the behavior of the
object “thin-ness” prior, we varied the falloff parameter 3 over a number of views
of the object. Voxels were said to be “occupied” if their occupancy probability
was greater than 0.49, and were said to be “free” otherwise. After carving, the
voxels were compared to the true object in simulation to see how accurately
the space would be classified into “free” and “occupied” cells. We calculated
Precision and Recall for each shape estimation where shape reconstruction is
treated as a classification problem for each voxel independently.

In the 2D case, we took between 1 and 9 scans of a randomly generated
polygon, and varied 8 for the thin object prior between 0 and 0.5; in another
experiment we vary 7 in the sphere prior from 0 to 100. An example result is
shown in Fig.9(a). In the 3D case, we took between 1 and 9 simulated scans
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Fig.9: Precision vs. Recall curves varying the thin-object prior’s falloff parameter .
Each curve represents varying (3 for the same collection of scans. The most and least
accurate reconstructions are shown for 1 and 9 views.

of objects from the Willow Garage Household Objects Database, and varied
between 0 and 40. Since the resolution of our 3D voxel grid was smaller than in
the 2D case, Recall was very high for all scans, so instead we plot a distribution
of precision vs. 8 (Fig.9(b)).

Moment Matching Experiments. We additionally explored the possibility
of using volumetric shape descriptors to match objects with a database of known
object models in our simulation environment.

In the 2D case, we generated 10,000 random polygons and rasterized them
to 256 x 256 images. We then computed their Hu [15] moments, and stored them
in a database. Novel test objects (Latin letters) were scanned in the simulation,
and the Hu moments of their probabilistic shape functions were computed. The
test objects were then matched to their nearest counterparts in the database by
comparing their Hu moments in the Euclidean sense.

In the 3D case, we voxelized 256 objects in the Willow Garage Household
database, and matched their 20-dimensional Zernike moments against scans of
novel test objects. We compared the matching performance (with realistic sensor
noise) while using only the hits to using Voxel Depth Carving (Fig.10).

5 Results and Main Experimental Insights

Voxel Carving Experiments. Figure 2 shows an intermediate stage during
carving and the completely carved and colorized voxel grid. Figure 2(b) shows
the colorized and smoothed trimesh generated from the voxel grid. Fig.1 shows
the effect of Gaussian noise on voxel carving vs. reconstruction from the point
cloud alone.

Even when the noise of the sensor approaches the scale of the object, our
method is able to extract its shape. Our analysis indicates that our robustness
to noise is greatly enhanced by integrating near misses (Fig.2(c)) of the object,
which discriminate the object from the background even when the noise is ex-
ceedingly high. In contrast, the pointcloud rapidly decays with noise, losing its
descriptive power.
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Fig.10: The top 4 matches according to the L2 norm of Zernike Moments to a voxel-
carved pitcher (far left) from 3 simulated views from a Microsoft Kinect sensor. The top
row shows matches using hits only. The bottom row shows matches using passthrough
information

Classification Accuracy and Shape Priors Even when only one view of
the object is given, using a simple prior on object thin-ness greatly affects oc-
cupancy classification accuracy (Fig.9(a)). The prior becomes less important as
the number of views increases (Fig.9(b)). This is because regardless of the prior,
as more views are taken the set of un-carved voxels approaches the true shape of
the object. When 8 = 0, the estimated object shape is simply a representation
fo the object’s surface which is much less noisy than the input point cloud. A
similar effect happens when we vary rg for the sphere prior. When r, = 0, we
again get a representation of the object’s surface, and as r, increases toward
infinity, the occupied space approaches the depth hull.

Moment Matching Experiments. Figure 8(a) shows the effect of multiple
views on voxel carving and the resulting top match from Hu moments in a
database of 10k random polygons and the simple prior that voxels which are not
carved are occupied. With 1 view, the match is not very semantically similar to
the letter Z. With 4 views, the match is closer. When using the naive prior that
un-carved voxels are occupied, our method fails to reconstruct the shape from
a single view, instead leaving a long “shadow” behind the object. This result
highlights the need for strong priors on the shape of objects in the scene given
depth measurements. Figure 8(b) shows how the thin object prior can be used
to find a good match via moments, even when there is only a single view of
the object. As the weight on surface voxels increases, the occupancy probability
tends to favor the thin shell of the object over the interior.

Figure 10 shows the top four matches from the Willow Garage Household
Objects database to a novel test object (a pitcher, not already in the database),
and a known object according to the L2 norm of their 20-dimensional Zernike
moments. The top row shows matches using the hit information only, the bottom
row shows matches using passthrough information. In the experiment with the
known test object (Fig.10(b)) viewed under favorable conditions, the true object
is the second match in the database using our method, whereas it is fourth when
using only the hits. In the experiment with the novel object (Fig.10(a)), the
handle’s interior was not fully visible, and so during voxel carving it was left
occupied — while the hit data leaves the hole unoccupied.

This result shows again the need for strong priors on occupancy when using
voxel carving. Nevertheless, the first two object matches (both water filters) are
more semantically similar to the test object than the first two matches using only
the hits. We are left to wonder whether Zernike descriptors are strong enough
descriptors to capture the kind of information we desire about manipulable ob-
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jects. Indeed, the fact that Zernike descriptors are affine-invariant might actually
be an undesirable property when considering household objects — whose uses are
strongly correlated with scale.

6 Conclusion

We have shown that Occpuancy Grid Mapping techniques taken from robotic
navigation is useful in a robotic manipulation setting. When only noisy, par-
tial views of the object of interest are given, a volumetric approach to object
modelling and recognition can be more useful than a surface-centric or point-
based approach. Our experiments show that voxel carving leads to much more
robust shape reconstruction under highly noisy, low-resolution conditions than
methods which use point clouds alone. Using techniques from graph-based im-
age segmentation, we introduced an efficient way to reconstruct 3D shapes with
the minimum graph cut of a Markov Random Field. By estimating the occluded
volumes of sensed objects, we are able to utilize implicit information from depth
sensors which would otherwise be thrown away in surface or point-based models.
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