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Articulated Robot Motion for Simultaneous
Localization and Mapping (ARM-SLAM)

Matthew Klingensmith, Siddartha S. Sirinivasa, and Michael Kaess

Abstract—A robot with a hand-mounted depth sensor scans a
scene. When the robot’s joint angles are not known with cer-
tainty, how can it best reconstruct the scene? In this work, we
simultaneously estimate the joint angles of the robot and recon-
struct a dense volumetric model of the scene. In this way, we
perform simultaneous localization and mapping in the configu-
ration space of the robot, rather than in the pose space of the
camera. We show using simulations and robot experiments that
our approach greatly reduces both 3-D reconstruction error and
joint angle error over simply using the forward kinematics. Unlike
other approaches, ours directly reasons about robot joint angles,
and can use these to constrain the pose of the sensor. Because of
this, it is more robust to missing or ambiguous depth data than
approaches that are unconstrained by the robot’s kinematics.

Index Terms—SLAM, visual-based navigation,
RGBD perception, kinematics.

mapping,

I. INTRODUCTION

NCERTAINTY is a central problem in robotics. In order

to understand and interact with the world, robots need to
interpret signals from noisy sensors to reconstruct clear models
not only of the world around them, but also their own internal
state. For example, a mobile robot navigating an unknown space
must simultaneously reconstruct a model of the world around
it, and localize itself against that model using noisy sensor data
from wheel odometry, lasers, cameras, or other sensors. This
problem (called the Simultaneous Localization and Mapping
(SLAM) problem) is very well-studied in the mobile robotics
community.

Less well-studied is the equivalent problem for robot manip-
ulators. That is, given a multi-jointed robot arm with a noisy
hand-mounted sensor, how can the robot simultaneously esti-
mate its state and generate a coherent 3D model of the world?
We call this the articulated SLAM problem. Solving it would
allow the robot manipulator to plan around obstacles and locate
objects of interest. If done online, the SLAM system would
enable the robot to do eye-in-hand 3D visual servoing against
the map.

At first glance, this problem appears trivial; because typ-
ically the joint angles of the robot are directly measurable
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from joint encoders, and the forward kinematic equations of
the robot are known with certainty. Therefore, the pose of the
sensor is known with certainty, and so mapping can be accom-
plished without simultaneously localizing the sensor. However,
in practice, all robots are subject to some amount of actua-
tor uncertainty. Their joint encoders do not perfectly capture
the true geometric angles of the robot’s joints because of gear
thrash, cable stretch, nonrigid deformities, and other unknown
dynamics (see section I1I-B).

Given actuator uncertainty and sensor uncertainty, what is
the correct way of simultaneously constructing a model of
the world and estimating the robot’s state? In this work, we
show that certain contemporary visual SLAM techniques can
be mapped to the articulated SLAM problem by using the
robot’s joint configuration space as the state space for localiza-
tion, rather than the typical SE(3). We map one kind of visual
SLAM technique, Kinect Fusion [9] to the robot’s configura-
tion space, and show how the robot’s joint encoders can be used
appropriately to inform the pose of the camera.

The idea that the configuration of the robot is not merely a
sensor which informs the pose of the camera, but rather it is
the underlying latent state of the system is critical to our anal-
ysis. Tracking the configuration of the robot directly allows us
to build algorithms on top of the SLAM system which depend
on knowledge of the joint angles (such as motion planners and
control systems).

II. RELATED WORK

Our work combines ideas from two other related fields:
visual SLAM, and articulated tracking. Visual SLAM is con-
cerned with tracking the pose of a camera as it moves through
an unknown scene. Articulated tracking (a subset of motion
capture) is concerned with finding the joint angles of a robot
or actor by use of an externally mounted camera. There is also
some relation to robot arm state estimation in control theory,
and to visual servoing.

A. Robot Arm State Estimation

In control theory, often the state of the system being con-
trolled cannot be directly observed, but instead must be inferred
from sensor measurements. Generalized filtering techniques
(such as Kalman filters, and particle filters) have long been
applied to robot arms which have only partially observable
state. For instance, recent works have tracked the state of flexi-
ble robot arms using inertial sensors on the end effector [1] and
from motor voltage inputs alone using a learned dynamic model
and particle filter [29].
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(d) Colorized ARM-SLAM.

(e) Kinect Fusion (baseline).

Fig. 1. Robot scans and reconstructions of a bookshelf at 1.5cm resolution
using real depth and encoder data (Section V-C). Our approach (which esti-
mates robot configurations rather than camera poses) results in preservation
of fine detail and edges that are lost when only using the robot’s forward
kinematics, with comparable reconstruction quality to Kinect Fusion.

State estimation literature from control theory provides a
backdrop for our work, which is concerned with estimating the
state of a robot arm. However, unlike these other works we wish
to also simultaneously estimate a model of the scene using a
visual sensor, and use this model to further inform the state of
the robot.

B. Articulated Tracking

Tracking articulated bodies with known kinematic structure
using externally-mounted visual sensors is a well-studied topic
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in computer vision. For instance, commercial motion capture
systems [19] often use markers (such as fiducials or reflective
spheres) attached to articulated bodies along with an external
camera to track the pose of human actors and objects in the
scene. The kinds of motion capture systems most related to our
purposes are those which use actor-mounted sensor systems
(most commonly inertial sensors [26]) to measure the actor’s
joint angles.

When only the kinematic structure of the body is known, but
no markers are available, the problem is more difficult due to the
unknown correspondences between sensor measurements and
the body itself (i.e. the segmentation problem). But even in this
case, efficient solutions for tracking articulated bodies exist.

In general, the approach is to model the articulated body so as
to simulate sensor measurements at a particular configuration.
Then, a maximum likelihood estimate is obtained which causes
the sensor measurements from the external camera to agree with
the model of the articulated body.

For instance, one method intended for tracking humans in
2D images, Articulated Iterative Closest Point (ICP) [20],
computes the posterior using image-based edge features, and
maximizes the likelihood of a configuration by coordinate
descent in configuration space.

Another algorithm, Real-time Markerless Articulated
Tracking (RMAT) [15] tracks robots using a depth camera. It
uses a simple posterior model that sensor measurements are
near the robot’s surface as projected onto the depth image, and
a simple motion model which assumes the robot’s configura-
tion changes slowly between time-steps. Sensor measurements
are matched to corresponding points on the robot’s body
using an octree, and gradient descent is used to maximize
the likelihood of the robot’s configuration given its previous
configuration and depth image.

A related work, Dense Articulated Real Time Tracking
(DART) [27], improves upon RMAT by using a signed distance
field representation of the robot’s body rather than an octree, a
more complex motion model that considers joint velocity, and
an extended Kalman filter for tracking. DART has been shown
to effectively track robots, human hands, and rigid bodies in
real-time with commercial depth cameras.

Our work builds on some of the mathematical foundations
of these approaches. The key difference is that we are con-
cerned with eye-in-hand sensors which cannot see any part of
the robot. This means we must simultaneously estimate the
robot configuration and the structure of the scene; whereas
in articulated tracking, only the robot configuration must be
estimated.

C. Visual Servoing

When the camera is not mounted externally, but instead
is mounted in-hand, it can be used to control the robot to
achieve visual objectives (such as aligning points or shapes in
an image). Visual servoing and control [4] expresses the robot’s
objective in terms of positions and velocities in the camera
image frame, and system state as the robot’s joint angles.

Visual servoing works are related to ours in the sense that
they use a hand-mounted camera to inform the joint angles of a
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robot, but they typically rely on known models of the scene (in
terms of image points or features), and do not explicitly con-
sider actuator uncertainty; but in our case, we cannot assume
any prior knowledge about the composition of the scene, and
must consider actuator uncertainty.

However, the underlying mathematics of visual servoing
relating motions in the image space to joint angle displacements
are used extensively in our work. Further, our work enables a
kind of model-based 3D visual servoing by way of creating a
3D model of the scene while the robot localizes itself.

D. Visual SLAM

Visual SLAM involves determining the full 6 Degree of
Freedom (DOF) trajectory of a camera as it moves through a
scene as well as a geometric model of the (unknown) world
online [8]. A broad range of techniques have been used in the
literature depending on the type of the sensor and desired world
model.

When only a single (monocular) camera is available, sparse
feature-based techniques can be used to determine the camera
pose. Feature-based techniques typically minimize the repro-
jection error of a global set of 3D feature landmarks shared
between camera frames. Examples of this kind of approach
include Parallel Tracking and Mapping (PTAM) [13], and
ORB-SLAM [21]. Feature-based methods have very good per-
formance due to their sparsity, but the reconstruction quality is
limited to a sparse set of 3D points.

Dense or semi-dense monocular approaches to visual SLAM,
in contrast, compute image intensity error for all (or most) pix-
els in each camera frame. Examples include LSD-SLAM [6]
and DTAM [22]. These approaches are more memory intensive
and computationally expensive than their sparse counterparts,
but provide much more detailed world models that are suitable
for robotics.

When a depth sensor is available, dense visual SLAM is
made easier because the need to estimate the depth of visual
features is eliminated. Fully dense geometric methods, such as
Kinect Fusion [9], Point Fusion [10] and Elastic Fusion [30]
generate a full geometric 3D model of the world, which is in
turn used to estimate the pose of the depth sensor using mainly
geometric techniques, such as point-to-plane ICP. Fully dense
methods enable very high quality pose estimation and scene
reconstruction within a small area, but they tend to drift over
time, and are unable to track the sensor against scenes without
much geometric structure.

Our work makes use of SLAM techniques and terminology.
But, unlike the pure visual SLAM problem, we are not
concerned with a free-floating camera, but rather a camera
attached to an articulated robot arm. Because of this, we have an
extremely strong prior on the allowable motion of the camera
from the robot’s kinematics, and have a very strong indication
of the sensor’s pose from the joint encoders.

In this sense, our work is related to other SLAM works which
fuse visual SLAM together with other sensors, such as iner-
tial sensors. State of the art examples include Li et. al [17],
Leutenegger et. al [16] and Forster et. al [3]. These techniques
harness the advantages of both visual and inertial sensors to
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provide much more robust pose estimation in the presence of
missing or ambiguous visual data. However, unlike these works,
we do not treat the robot’s kinematics as a mere sensor to
inform the camera pose, but rather treat it as the true latent state
of the system, and directly estimate it.

In this work, we present a fully-dense geometric visual
SLAM technique which estimates the robot configuration
(rather than camera pose) from an online 3D model produced
with depth images. As in Kinect Fusion [9], we construct a
volumetric model of the scene, and localize against it using a
geometric objective function.

1II. BACKGROUND
A. Robot Kinematics

A kinematic linkage [18] consists of a series of rigid bod-
ies (called links) attached to one another through mechanisms
(called joints) that constrain their motion. A joint has between 1
and 6 degrees of freedom (DOF) which define how it constrains
the motion of its attached links. The joint which constrains
link A to link B, and which has configuration ¢; has the
transformation:

T5(a:) € SE(3) )
and as ¢g; changes, so does the transformation between links A
and B.

The transformation of any link L; with respect to a fixed ref-
erence frame W can be calculated by traversing the kinematic
tree and appending the transformations implied by each joint
from the root of the tree (a process called forward kinematics):

Li_
T =T ai-1) - TEH (@)L, &)
A robot’s configuration q € R is a vector which concatenates
all of its joints’ degrees of freedom:

a=lq...qn]" 3)

The partial derivative of link ¢’s reference frame with respect
to q:

9w
L;

Ji(q) = %

“
is called the link’s kinematic Jacobian, and for simple kine-
matic chains it can be computed in closed-form efficiently.

B. Actuator Uncertainty

Robots usually have motor encoders which measure the
number of rotations that each of their motors make. Motor
encoders can be used to indirectly infer the angle of the robot’s
joints. However, intervening mechanisms (such as gear trains,
non rigid links, elastic bands, cables, etc.) make the mapping
between the joint encoder reading and the robot’s true joint
angles unclear.

For instance, in the case of the Barrett WAM robot arm,
motors drive a series of pulleys and cables which in turn rotate
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Fig. 2. The Kinova Mico robot was sent to 10 inverse kinematics solutions for a
fixed pose (left). The solutions are overlaid on the right. Error at the end effector
exceeds 5 cm.

the joints. Depending on the amount of torque applied to the
cables, they can stretch and deform, introducing hysteresis into
the system. Boots et. al [2] found the end effector error on this
robot due to cable stretch to be over 8 cm, and Klingensmith
et. al [15] found it to be over 10 cm. Worse, the error is non-
linear, and depends mostly on the torque applied to the robot
along its trajectory.

‘We sent our robot, a Kinova Mico [12] to ten inverse kinemat-
ics solutions, and measured the resulting end effector pose with
an Optitrack [24] motion capture system Fig. 2. Even though
mathematically, the end effector should be in exactly the same
place each time, we found the end effector pose to differ by
as much as 5 cm. According to the manufacturer specifica-
tions [11], the robot’s actuators have a resolution of 0.055°;
and we found the numerical error from our inverse kinematics
solver to account for less than a millimeter of end effector error.
These factors are thus too small to account for the error we see.
Instead, non-rigid deformation of the plastic links under gravity,
and off-axis motion of the joint seems to account for this error.

In our work, we do not attempt to model the actuator uncer-
tainty directly, and instead simply assume it follows a simple
Gaussian Process model. Define the joint encoder readings as a
random variable drawn from the distribution

qe ~ 4 JFN(Mqa Eq) )

where [1q is the mean of the distribution at q, and Xq is its
covariance. Since we anticipate the uncertainty to be more like
an unmodeled dynamic effect and less like a random process,
Ylq is likely to be small, while 4 is a function representing an
offset in configuration space due to the dynamic effect.

C. Depth Sensors

In this work, we will assume access to a depth camera
mounted to the robot’s hand. Depth cameras work by either
projecting a pattern onto a scene and reading with an infrared
camera, or with active time-of-flight pulses. Call the depth
image Ip, it is a function with domain €2 € R2. The relation-
ship between 3D points in the scene and 2D points on a camera
image can be modeled using the simple pinhole camera intrinsic
[8] model:

fyy

Proj(z,y, 2) = [u,v] = + Ca,

faz
. + ¢y (6)
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where u, v are the 2D images coordinates, x,y, z are the 3D
point’s coordinates in the camera’s frame of reference (with
x to the right, y down, and z forward), and f,, fy,cs,c, are
the intrinsic parameters of the camera. We can also define the
inverse projection model, which takes a camera coordinate u, v
and depth measurement z, and converts it into a 3D vector rel-
ative to the camera’s focal point. The resulting 3D points are
called the point cloud of the depth image. For a particular pixel
u, v with depth z, its point in the point cloud is given by:

U—Cp V—Cy
fiC ’ fy

Depth cameras measure the range (z) at each image pixel to
points in the scene. The depth measured by depth cameras is
noisy, incomplete, and contains systematic error.

Projfl(u,v,z) =z 1 7

D. Dense Fusion

When multiple depth images are given at known camera
poses, it is possible to reconstruct an estimate of the 3D geom-
etry of the scene. This process is called dense fusion. In this
work, we use a method of dense fusion from Curless and
Levoy [5], also used in Kinect Fusion [9] and variants, called
Truncated Signed Distance Field (TSDF) fusion. The TSDF
(®: R® — [—7,7]) stores a voxelized representation of the
scene where each voxel encodes the distance to the nearest sur-
face in meters, and has a weight. Positively signed distances
correspond to points outside of surfaces, and negatively signed
distances correspond to points inside of surfaces. Voxels with a
distance of zero correspond implicitly to the surfaces of objects.

To fuse multiple depth images into a TSDF, we can simply
compute a local linearization of the distance field around each
depth pixel as projected into the scene. Overlapping lineariza-
tions are simply averaged. Curless and Levoy [5] provide an
efficient means of doing this (Alg. 1), and show that the result-
ing implicit surface is a least squared minimizer of the point
clouds from each depth image.

Kinect Fusion [9] and variants use the TSDF both for map-
ping and localization. New camera poses are computed by
aligning the point cloud of the depth image to the previously
constructed map using the gradients of the TSDF. Our work
uses a similar approach to estimate the robot’s configuration.

IV. ARTICULATED ROBOT MANIPULATOR SLAM

The task is, given a series of joint encoder readings Q). =

qél), el qgt) received online along with sensor measurements
from a hand-mounted depth camera Z = 2 z(f'), simulta-
neously reconstruct a TSDF of the scene ®, and estimate the
true joint angles @ = q(V, ... q®.

Formally, this can be expressed as a maximum likelihood
estimate problem, first for localization:

Q* = argglaxP(Q|Qe7 Z) ®
= argmas P(Z Qei)?z)l))(Q@e) o

(10)

= argmax log P(Z|Q., Q) + log P(Q|Q.)
Q
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Algorithm 1. FuseTSDF

1 // Given a depth image, sensor pose, previous
TSDF, previous voxel weights, a weighting
function, a volume of interest, and a truncation

distance
Input: ID, T, (I)(t—l), W(t—l)a w, V, T

2T «+ T71

3PP

4 Wy Wiy

5 forveVdo

6 // Depth of voxel v

7 ve +—T'v

8 d; < Ip [Proj(v.)]

9 // Dist to camera plane.

10 dy < ve(z)

11 // Locally linear approximation.

12 u 4 dy — d;
13 // If dist within 7
14 If |u| < 7 then

15 // Weighted average
Wi (v) @ (v)+w(wu

16 (I)t(V) — ‘X/t(v):»w(u)

17 Wi(v) = Wi(v) + w(u)

18 end

19 end

Output: (I)t s Wt

and for mapping

O = argmax P(®|Q", Z) (11)
P

As in Kinect Fusion [9], we neglect optimizing the entire
trajectory and map simultaneously, and instead focus on alter-
natively optimizing the current pose estimate q*) and the
current map ®). This implicitly assumes the problem has
a Markov property, and makes the problem tractable at the
expense of allowing drift over time. First, the localization step:

q(t) + argmax log P (z(t) q, @(t*1)> (12)
q
+1ogP (a| a"Dq) (3)
and the mapping step:
o) argglax <<I> ‘ é(t_l), z(t), q(t)) (14)

Eq. (13) has two components: a sensor posterior, and a joint
encoder prior. We will now analyze each term in detail.

A. Sensor Posterior

Kinect Fusion and variants [9] treat the sensor posterior
geometrically, and align sensor points to the TSDF surface
using point-to-plane ICP. This geometric argument can also
be derived probabilistically, as in generalized ICP [28]. If we
assume that the probability of some world-projected sensor
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point z € R? has probability proportional to its distance to the
nearest surface,

P (7]6) ox exp (@ [2]") (15)
implying in a sense that all surfaces in the scene are “blurred”
with uniform Gaussian noise, it becomes straightforward to
derive the sensor posterior, assuming independence between all
the points in the point cloud.

P(z(t) ’ q,<1><t—1>) - 1I P(qu\cb(t—l)) (16)
zcz(t)

x [] exp (41>[qu}2) (17)
zcz(t)

where T = TE‘; (q) is the pose of the sensor implied by con-
figuration q in the world frame. Admittedly this straightforward
model is too simple to capture some important aspects of the
depth sensor, such as the presence of occlusions and anisotropy
in the sensor. More complex posteriors, like those used in
DART [27], could be used in its place.

B. Joint Encoder Prior

The other term in Eq. (13) relates the probability of a
robot’s configuration given its joint encoders. As discussed in
Section III-B, we can model this as a Gaussian process so that
the prior is given by

P(qlqe) < exp(q — ptq = qe) " Sq(d — g — )] (18)

In our experiments, we simply use a prior that has a mean
centered on zero, with uniform noise ¥4 = ~I; but a more
complicated prior learned from data could be used.

C. Algorithm

The sensor posterior and joint encoder prior together imply a
cost function that can be minimized to localize the robot

1 B
Cla)=relet 5 > @V T2l
zcZ )

19)

where e = q — q((f), and + is a regularization term. The gradient

with respect to g can be obtained using the chain rule:

VC=rye+ Y VO [Tz JTVEUD [Tyz]  (20)

zeZ (1)

Toz - . . . .
where J4 = %qz is the manipulator Jacobian, as described in

Section III-A. This cost function can be minimized by simple
gradient descent. This leads to a filtering approach, wherein an
offset between the joint encoders and true joint angles is tracked
over time, subject to kinematic constraints such as joint limits.

e® =D _\vC (qg) + e(t_l)) — et (21)

For mapping, we can simply take the tracked joint encoder
position as ground truth for fusing the depth image into the
TSDF as in Curless and Levoy [5] (Alg. 1). Tracking and
mapping are repeated in alternation.
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Algorithm 2. ARM-SLAM

1 // Where qgt) are the motor encoders at time ¢, A\
is a learning rate, and vy is a regularization
parameter.

Input: 7;, qét), D1y, Ay, €i—1)

2 ) (=1

3 repeat

4 q® + g +¢

5 // The camera transform.

6 | Tq+ TPV (qW)

7 // Gradient of the sensor measurement

posterior.
8 | VC 3. cpm [0 [Tqz] JTVOUD [T,2]]

9 // Descend the gradient.

10 | €@ e® - A\VC — 4e®

11 until convergence;

12 // Mapping step.

13 ®® « FUSETSDF (@~ Z(t) g®)

Output: ), o)

V. EXPERIMENTS

We conducted three types of experiments to observe the
behavior of this algorithm; 2D simulation experiments, 3D
simulation experiments, and a real robot experiment.'

A. 2D Simulation

In the simple 2D simulation experiment, a 3-link serial robot
manipulator with a simulated 1D depth sensor scans a scene.
We added zero-centered Perlin [25] noise to its joint encoder
readings. That is,

) = g + B, Perlin (an(t))

where s,,, 3,, are parameters which control noise frequency and
magnitude, respectively. In our experiments, s, = 1.0,3, =
0.2. The simulated depth image is noiseless.

For the world model, we constructed a simple 2D TSDF.
We compare the performance of ARM-SLAM (Alg. 2) against
a simple unconstrained descent algorithm which assumes the
sensor can move and rotate freely, without considering the
robot kinematics (Fig. 3). We found that ARM-SLAM man-
aged to both reduce end effector error and dramatically reduce
model error (Table I), whereas just using a 2D dense fusion
technique without constraining using the robot’s kinematics
resulted in severe, unrecoverable drift because of the scene’s
self-similarity and the robot’s fast motion. Note that in the real
experiments, there is comparatively much less actuator noise,
and a much smaller scene than in the 2D experiments.

(22)

B. 3D Simulation

We developed a 3D simulation of a Kinova Mico robot with
a hand-mounted Occipital Structure [23] depth sensor. In the

YWideos of these experiments are attached. High resolution videos are
available at http://youtu.be/QrFyaxFUs9w
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Fig. 3. 2D simulation experiment (Section V-A). The robot is shown in red. The
simulated depth image is shown as grey rays. The TSDF is shown as orange or
blue pixels. Top left shows the ground truth TSDF, top right is with forward
kinematics only (with actuator uncertainty). Bottom left corrects actuator noise
using unconstrained dense fusion. Bottom right corrects using ARM-SLAM
(our approach). Notice that the ARM-SLAM TSDF aligns well with ground
truth. Numerical results are shown in Table I.

TABLE 1
RESULTS FOR THE 2D SIMULATION EXPERIMENTS (SECTION V-A). THE
END EFFECTOR ERROR IN PIXELS, JOINT ANGLE ERROR IN RADIANS,
DISTANCE FIELD ERROR IN 10¢ PIXELS, AND OCCUPANCY
CLASSIFICATION ERROR (THE PROPORTION OF PIXELS MISCLASSIFIED
AS CONTAINING AN OBSTACLE) IS SHOWN FOR FORWARD KINEMATICS,
UNCONSTRAINED DENSE FUSION, AND ARM-SLAM FOR A DATASET
WITH 500 AND 999 TIME-STEPS. OUR APPROACH (ARM-SLAM)
REDUCES ALL THREE ERROR TERMS.

t Fwd. Kin. Dense Fusion ARM-SLAM
EE Err. (pix.) 5.2+5.9 3.4+4.2 0.8+0.7

500 Int. Err (rad.) 0.08 £0.06 — 0.06 + 0.05
SDF Err (pix.) 1.4+£1.7 0.8+0.8 0.5+0.3
Class Err (%) 5.7+3.2 4.7+2.3 3.5+0.6
EE Err. (pix.) 9.2 +6.7 14.7 £17.8 1.4+1.9

999 Int. Err (rad.) 0.17£0.07 — 0.08 +0.05
SDF Err. (pix.) 6.1+5.3 12.2 +£22.2 1.2+0.8
Class Err. (%) 11.3+6.2 9.5+6.1 44+1.1

simulation, the robot scans a simulated bookshelf. As in the
2D experiments, Perlin noise is added to the ground truth joint
angles to simulate actuator uncertainty. We use the Open Chisel
[14] chunked TSDF library for mapping. The simulated depth
image is noiseless. Reconstructions were done at a resolution
of 1.5 cm per voxel.

We found that ARM-SLAM was able to correct for very large
actuator error (see Fig. 5), resulting in a final reconstruction
near the ground truth (Fig. 4). By artificially increasing the actu-
ator noise, we found that ARM-SLAM significantly reduced the
end effector error even when the uncertainty in the camera’s
pose was up to 12 cm (Fig. 5a). We also found ARM-SLAM
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W

(a) Ground truth (b) ARM-SLAM

We

(d) Forward kinematics

(¢) Kinect Fusion

Fig. 4. Results of the 3D simulation (Section V-B) with up to 0.8 radians of
added noise per joint.

to be more robust to tracking failure from lost data than uncon-
strained Kinect Fusion (Fig. 5b) due to the very strong motion
prior from the robot kinematics.

C. Bookshelf Scanning

Using the same framework as in the 3D simulation, we
reconstructed a bookshelf with a Kinova Mico robot with a
hand-mounted Occipital Structure sensor (Fig. 1). The robot
was teleoperated using a joystick. Beforehand, the Structure
sensor was extrinsically calibrated to the robot’s hand using
the Tsai [7] method and a fiducial, though extrinsic calibra-
tion error cannot be ruled out. The end effector deviation was
measured using an Optitrack motion tracking system. One chal-
lenge of working with the real robot data is that the joint
encoders and depth sensor are not synchronized. The joint
encoder data is emitted at ~ 500Hz, whereas the camera data
is produced at 30 Hz. To compensate for this, we store the
robot’s configuration space trajectory as a series of linearly
interpolated, timestamped waypoints. Using this, we can infer
the joint encoder readings at the time when the depth image was
received.

The 3D reconstructions (Fig. 1) show that our method is
able to recover 3D structure in the scene that is lost when
only the (noisy) forward kinematics are used. This is espe-
cially apparent around the edges of the bookshelf and its
adjacent walls. Our reconstructions are comparable to Kinect
Fusion run at the same voxel resolution (1.5 cm). We measured
end-effector motion with an optical motion capture system
(Fig. 5c) and found that Kinect fusion occasionally lost (and
regained) tracking due to self-similar surfaces in the book-
shelf and surrounding walls. Because of the strong motion prior
from the robot’s joints ARM-SLAM did not have this issue.
However, our data from the motion capture system is too noisy
to conclude ARM-SLAM performed any better than forward
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Fig. 5. End effector error observed in the 3D simulation (Section V-B) exper-
iments. Fig. 5a: 100 trials with different noise seeds are run with increasing
noise magnitude. Each trial lasts 60 seconds. The median deviation of the end
effector from ground truth is recorded. Fig. 5b: in a different simulation, the
robot briefly looks away from the scene and then looks back. Kinect Fusion
loses tracking. Fig. Sc: end-effector deviation in the real dataset as measured by
an optical motion capture system, Kinect Fusion briefly loses and then regains
tracking.

kinematics at reporting the true pose of the end effector (ARM-
SLAM had an end effector deviation of 1.2 4+ 0.9 cm while
forward kinematics had a deviation of 1.4 £+ 1.0 cm). It may
be that extrinsic calibration error between the sensor and rigid
hand mount is dominating any error produced at the robot’s
joints.
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VI. DISCUSSION AND FUTURE WORK

In this work, we have introduced a framework for visual
SLAM in a robot’s configuration space. We have shown that
our approach is capable of reconstructing scenes and reducing
actuator uncertainty simultaneously. Many questions remain to
be answered about this problem domain, and it is clear that our
work does not yet address some of its key components.

First, since it is a pure model-based dense SLAM approach
(like Kinect Fusion [9]), it suffers from many of the problems
that plague these approaches. The system requires clear geo-
metric structure and a large field of view to localize correctly,
and since it uses no global pose graph, it is susceptible to drift
over longer trajectories. Further, we are only able to track the
configuration of the robot when a depth image is available. Also
like those approaches, the underlying tracking and mapping
techniques are largely based on geometric arguments, making it
difficult to incorporate probabilistic models. As a consequence,
we don’t have a way of tracking the uncertainty in the predicted
joint angles.

By committing to localization in the configuration space of
the robot, rather than SFE(3), we gain the benefit of only pre-
dicting physically plausible camera poses. We are also able to
express costs and priors (such as joint limit and self-collision
costs) on robot configuration trivially. On the other hand, error
that can’t be expressed in the configuration space (such as error
in the extrinsic calibration, or motion of the robot base) can-
not be corrected for using our technique. Also, the more joints
a robot has in comparison to SE(3), the more work our tech-
nique has to do to compute Jacobian terms, and the larger the
camera motion null-space is (worsening susceptibility to local
minima). For instance, a 2-jointed robot pan-tilt head would be
comparatively easy to localize vs. a highly redundant 50-jointed
snake robot.

In spite of these limitations, our approach provides a good
baseline for conducting further research. We are eager to re-
express other visual SLAM techniques in the configuration
space of the robot, and to explore other ways of correcting
actuator noise through visual sensors.
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