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An Equivalence Relation for Local Path Sets

Ross A. Knepper, Siddhartha S. Srinivasa, and Matthew T. Mason

Abstract We propose a novel enhancement to the task of collision-testing a set of
local paths. Our approach circumvents expensive collision-tests, yet it declares a
continuum of paths collision-free by exploiting both the structure of paths and the
outcome of previous tests. We define a homotopy-like equivalence relation among
local paths and provide algorithms to (1) classify paths based on equivalence, and
(2) implicitly collision-test up to 90% of them. We then prove both correctness and
completeness of these algorithms before providing experimental results showing a
performance increase up to 300%.

1 Introduction

Planning bounded-curvature paths for mobile robots is an NP-hard problem [22].
Many nonholonomic mobile robots thus rely on hierarchical planning architec-
tures [1, 13, 19], which split responsibility between at least two layers (Fig. 1): a
slow global planner and fast local planner. We focus here on the local planner (Alg. 1
and Alg. 2), which iterates in a tight loop: searching through a set of paths and se-
lecting the best path for execution. During each loop, the planner tests many paths
before making an informed decision. The bottleneck in path testing is collision-
testing [24]. In this paper, we introduce a novel approach that delivers a significant
increase in path set collision-testing performance by exploiting the fundamental ge-
ometric structure of paths.

We introduce an equivalence relation intuitively resembling the topological no-
tion of homotopy. Two paths are path homotopic if a continuous, collision-free de-
formation with fixed start and end points exists between them [20]. Like any path
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Fig. 1 An example hier-
archical planning scenario.
The local planner’s path set
expands from the robot, at
center, and feeds commands
to the robot based on the best
path that avoids obstacles
(black squares). The chosen
local path (green) and global
path (red) combine to form a
proposed path to the goal.

equivalence relation, homotopy partitions paths into equivalence classes. Different
homotopy classes make fundamentally different choices about their route amongst
obstacles. However, two mobile robot concepts translate poorly into homotopy the-
ory: limited sensing and constrained action.

The robot may lack a complete workspace map, which must instead be con-
structed from sensor data. Since robot perception is limited by range and occlusion,
arobot’s understanding of obstacles blocking its movement evolves with its vantage
point. A variety of sensor-based planning algorithms have been developed to handle
such partial information. Obstacle avoidance methods, such as potential fields [12],
are purely reactive. The bug algorithm [18], which generates a path to the goal us-
ing only a contact sensor, is complete in 2D. Choset and Burdick [5] present the
hierarchical generalized Voronoi graph, a roadmap with global line-of-sight acces-
sibility that achieves completeness in higher dimensions using range readings of the
environment.

If a robot is tasked to perform long-range navigation, then it must plan a path
through unsensed regions. A low-fidelity global planner generates this path because
we prefer to avoid significant investment in this plan, which will likely be invalidated
later. Path homotopy, in the strictest sense, requires global knowledge of obstacles
because homotopy equivalent paths must connect fixed start and goal points.

Relaxing the endpoint requirement avoids reasoning about the existence of far-
away, unsensed obstacles. Naively relaxing a fixed endpoint, our paths might be
permitted to freely deform around obstacles, making all paths equivalent. To re-
store meaningful equivalence classes, we propose an alternate constraint based on
path shape. This is in keeping with the nonholonomic constraints that limit mo-
bile robots’ action. Laumond [15] first highlighted the importance of nonholonomic
constraints and showed that feasible paths exist for a mobile robot with such con-
straints. Barraquand and Latombe [2] created a grid-based planner that innately
captures these constraints. LaValle and Kuffner [17] proposed the first planner to
incorporate both kinodynamic constraints and random sampling. In contrast to non-
holonomic constraints, true homotopy forbids restrictions on path shape; two paths
are equivalent if any path deformation—however baroque—exists between them.
By restricting our paths to bounded curvature, we represent only feasible motions
while limiting paths’ ability to deform around obstacles. The resulting set of path
equivalence classes is of immediate importance to the planner (Fig. 2). The number
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Fig. 2 left: Paths from a few distinct homotopy classes between the robot and the goal. The dis-
tinctions between some classes require information that the robot has not yet sensed (the dark area
is out of range or occluded). middle: With paths restricted to the sensed area, they may freely de-
form around visible obstacles. right: After restricting path shape to conform to motion constraints,
we get a handful of equivalence classes that are immediately applicable to the robot.

of choices represented by these local equivalence classes relates to Farber’s topo-
logical complexity of motion planning [6].

Equivalence classes have been employed in various planners. In task planning, re-
cent work has shown that equivalence classes of actions can be used to eliminate re-
dundant search [7]. In motion planning, path equivalence often employs homotopy.
A recent paper by Bhattacharya, Kumar, and Likhachev [3] provides a technique
based on complex analysis for detecting homotopic equivalence among paths in 2D.
Two papers employing equivalence classes to build probabilistic roadmaps [11] are
by Schmitzberger, et al. [25] and Jaillet and Simeon [10]. The latter paper departs
from true homotopy by proposing the visibility deformation, a simplified alternative
to homotopic equivalence based on line-of-sight visibility between paths.

Our key insight is that local path equivalence is an expressive and powerful tool
that reveals shared outcomes in collision-testing. Specifically, two equivalent neigh-
boring paths cover some common ground in the workspace, and between them lies
a continuum of covered paths. We develop the mathematical foundations to detect
equivalence relations among all local paths based on a finite precomputed path set.
We then utilize these tools to devise efficient algorithms for detecting equivalence
and implicitly collision-testing local paths.

The remainder of the paper is organized as follows. We provide an implementa-
tion of the basic algorithm in Section 2 and present the fast collision-testing tech-
nique. Section 3 then explores the theoretical foundations of our path equivalence
relation. Section 4 provides some experimental results.

2 Algorithms

In this section, we present three algorithms: path set generation, path classification,
and implicit path collision-testing. All of the algorithms presented here run in poly-
nomial time. Throughout this paper, we use lowercase p to refer to a path in the
workspace, while P is a set of paths (each one a point in path space).
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Algorithm 1 Test_All_Paths(w, P)

Input: w — a costmap object; P — a fixed set of paths
Output: P, the set of paths that passed collision test

1. P free < 0

2: while time not expired and untested paths remain do // test paths for 0.1 seconds
3: p « Get _Next_Path(P)

4 collision <+ w.Test _Path(p) /I collision is boolean
5 if not collision then

6: P tree — Ppree U{p} /I non-colliding path set
7: return Py,

Algorithm 2 Local _Planner_Algorithm(w, x, i, P)

Input: w—a costmap object; x —initial state; 4 — a heuristic function for selecting a path to execute;
P — a fixed set of paths

Output: Moves the robot to the goal if possible

1: while not at goal and time not expired do

2: P tree «— Test_All_Paths(w,x,P)
3: J < h.Best _Path(x, P ree)
4:
5

Execute_Path_On_Robot ()
X < Predict Next_State(x, j)

Definition 1. Path space is a metric space (P, ) in which the distance between a
pair of paths in P is defined by metric u. Paths can vary in shape and length. 0O

2.1 Path Set Generation

We use the greedy path set construction technique of Green and Kelly [8], outlined
in Alg. 3. The algorithm iteratively builds a path set Py by drawing paths from a
densely-sampled source path set, X. During step i, it selects the path p € X that
minimizes the dispersion of P; = P;_; U{p}. Borrowing from Niederreiter [21]:

Definition 2. Given a bounded metric space (X, it) and point set P = {xj,...,xy} €
X, the dispersion of P in X is defined by

6(P,X) =supminp(x,p). O (1)
xex PEP

The dispersion of P in X equals the radius of the biggest open ball in X containing
no points in P. By minimizing dispersion, we ensure that there are no large voids
in path space. Thus, dispersion reveals the quality of P as an “approximation” of
X because it guarantees that for any x € X, there is some point p € P such that
u(x,p) < 8(P,).

The Green-Kelly algorithm generates a sequence of path sets P;, fori € {1,...,N},
that has monotonically decreasing dispersion. Alg. 1 searches paths in this order at
runtime, thus permitting early termination while retaining near-optimal results. Note



An Equivalence Relation for Local Path Sets 5

that while the source set X is of finite size—providing a lower bound on dispersion
at runtime—it can be chosen with arbitrarily low dispersion a priori.

Algorithm 3 Green_Kelly(X, N)

Input: X — a densely-sampled, low-dispersion path set; N < |X| — the target path set size
Output: path sequence Py of size N
1: ﬂ)o —0
2: n—0
3: while n <N do
: n—n+1

p < argmin (P, U{x},X)
X

4
5
xXe
6: Pu = Pui U{[J}
7: return Py

2.2 Path Classification

We next present Alg. 4, which classifies collision-free members of a path set. The
Hausdorff metric is central to the algorithm. Intuitively, this metric returns the great-
est amount of separation between two paths in the workspace. From Munkres [20]:

Ue(pispj) =inf{e: p; C (pj)e and p; C (pi)e}s 2)

where (p), denotes dilation of p by r: {t € R?: ||t, —t||;2 < r for some 1, € p}.
Note that py satisfies all properties of a metric [9]. For our fixed path set generated
by Green-Kelly, we precomputed each pairwise path metric value of (2) and stored
them in a lookup table for rapid online access.

Alg. 4 performs path classification on a set of paths that have already tested
collision-free at runtime. We form a graph G = (V, E) in which node v; € V corre-
sponds to path p;. Edge e;; € E joins nodes v; and v; when this relation holds:

uu(pi,pj) <d, 3)

where d is the diameter of the robot. Taking the transitive closure of this relation,
two paths p, and p, are equivalent if nodes v, and v, are in the same connected
component of G (Fig. 3).

In effect, this algorithm constructs a probabilistic roadmap (PRM) in the path
space instead of the conventional configuration space. A query into this PRM tells
whether two paths are equivalent. As with any PRM, a query is performed by adding
two new graph nodes v, and v, corresponding to the two paths. We attempt to join
these nodes to other nodes in the graph based on (3). The existence of a path con-
necting vy to vg indicates path equivalence.
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Fig. 3 A simple path set, " O
in which obstacles (black)

eliminate colliding paths. r

The collision-free path set

has three equivalence classes

(red, green, and blue). In the

corresponding graph repre- m u
sentation, at right, adjacent

nodes represent proximal

paths. Connected components _.
indicate equivalence classes

of paths.

Algorithm 4 Equivalence_Classes(P fye., d)

Input: P/, —a set of safe, appropriate paths; d — the diameter of the robot
Output: D — a partition of P, into equivalence classes (a set of path sets)

1: Let G= (V,E) — (0,0)

2: D—0

3: forall p; € Py do // This loop discovers adjacency
4 V.add(p;) /I Add a graph node corresponding to path p;
5: forall p; c V\ {p;} do

6: if iz (pi, ;) < d then

7: E.add(i,j) /I Connect nodes i and j with an unweighted edge
8 8 — Pfree

9: while 8§ # 0 do // This loop finds the connected components
10: C—0
11: p < amember of §
12: L—{p} /I List of nodes to be expanded in this class
13: while £ £ 0 do
14: p < amember of L
15: C— cu{p} // Commit p to class
16: S — 8\ {p}
17: L — (L UV.neighbors(p)) N8
18: D —DuU{C}

19: return D

2.3 Implicit Path Safety Test

There is an incessant need in motion planning to accelerate collision-testing, which
may take 99% of total CPU time [24]. During collision-testing, the planner must
verify that a given swath is free of obstacles.

Definition 3. A swath is the workspace area of ground or volume of space swept
out as the robot traverses a path. O

Definition 4. We say a path is safe if its swath contains no obstacles. O

In testing many swaths of a robot passing through space, most planners ef-
fectively test the free workspace many times by testing overlapping swaths. We
may test a path implicitly at significant computational savings by recalling recent
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collision-testing outcomes. We formalize the idea in Alg. 5, which is designed to be
invoked from Alg. 1, line 4 in lieu of the standard path test routine.

The implicit collision-test condition resembles the neighbor condition (3) used
by Alg. 4, but it has an additional “Is_Between” check, which indicates that the
swath of the path under test is covered by two collision-free neighboring swaths.
The betweenness trait can be precomputed and stored in a lookup table. Given a set
of safe paths, we can quickly discover whether any pair covers the path under test.
Experimental results show that this algorithm allows us to test up to 90% of paths
implicitly, thus increasing the path evaluation rate by up to 300% in experiments.

Algorithm 5 Test_Path_Implicit(p, w, 8, d)

Input: p is a path to be tested
Input: w is a costmap object // used as a backup when path cannot be implicitly tested
Input: 8 is the set of safe paths found so far
Input: d is the diameter of the robot
1: for all p;, p; € 8 such that uy (p;,p;) < d do

2: if p.Is_Between(p;,p;) then /I p’s swath has been tested previously
3: sy« p.Get_End _Point ()

4: collision «— w.Test _Point (sy) // endpoint may not be covered by swaths
5: return collision

6: return w.Test_Path(p) // Fall back to explicit path test

3 Foundations

In this section, we establish the foundations of an equivalence relation on path
space based on continuous deformations between paths. We then provide correct-
ness proofs for our algorithms for classification and implicit collision-testing.

We assume a kinematic description of paths. All paths are parametrized by
a shared initial pose, shared fixed length, and individual curvature function. Let
Ki(s) describe the curvature control of path i as a function of arc length, with
Maxo<s<s, |%;(8)| < Knax- Typical expressions for k; include polynomials, piecewise
constant functions, and piecewise linear functions. The robot motion produced by
control i is a feasible path given by

6; K;
Xi | = | cos6;|. (@Y)
yi sin 9,‘

Definition 5. A feasible path has bounded curvature (implying C' continuity) and
fixed length. The set F(sy, Knax) contains all feasible paths of length s/ and curva-
ture |K(s)| < Kpax- O
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Fig. 4 At top: several ex-
ample paths combining dif-
ferent values of v and w. V=0 w=1 v=1 w=017 | v=0.5 w=05 V=1 w=1
Each path pair obeys (3). 1~
The value of v affects the

“curviness” allowed in paths,

while w affects their length. 0.8r

At bottom: this plot, gen-

erated numerically, approx- 0.6-

imates the set of appropri- '
w

ate choices for v and w.
The gray region at top right 0.4F
must be avoided, as we show
in Lemma 2. Such choices
would permit an obstacle to 0.2¢
occur between two safe paths
that obey (3). A path whose
values fall in the white region 0 02 0.4 0.6 0.8 i
is called an appropriate path. v

3.1 Properties of Paths

In this section, we establish a small set of conditions under which we can quickly de-
termine that two paths are equivalent. We constrain path shape through two dimen-
sionless ratios relating three physical parameters. We may then detect equivalence
through a simple test on pairs of paths using the Hausdorff metric.

These constraints ensure a continuous deformation between neighboring paths
while permitting a range of useful actions. Many important classes of action sets
obey these general constraints, including the line segments common in RRT [17] and
PRM planners, as well as constant curvature arcs. Fig. 1 illustrates a more expressive
action set [13] that adheres to our constraints.

The three physical parameters are: d, the diameter of the robot; s, the length of
each path; and r,,,, the minimum radius of curvature allowed for any path. Note
that 1/7,in = Knax, the upper bound on curvature. For non-circular robots, d reflects
the minimal cross-section of the robot’s swath sweeping along a path. We express
relationships among the three physical quantities by two dimensionless parameters:

d s
V= — w= A .
Vmin 2T min

We only compare paths with like values of v and w. Fig. 4(top) provides some intu-
ition on the effect of these parameters on path shape. Due to the geometry of paths,
only certain choices of v and w are appropriate.
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Definition 6. An appropriate path is a feasible path conforming to appropriate val-
ues of v and w from the proof of Lemma 2. Fig. 4 previews the permissible values.

When the condition in (3) is met, the two paths’ swaths overlap, resulting in a
continuum of coverage between the paths. This coverage, in turn, ensures the exis-
tence of a continuous deformation, as we show in Theorem 1, but first we formally
define a continuous deformation between paths.

Definition 7. A continuous deformation between two safe, feasible paths p; and p;
in F(s¢, Kmax) is a continuous function f: [0,1] — F(sy, k), With s slightly less
than s and k!, slightly more than k.. f(0) is the initial interval of p;, and f(1)
is the initial interval of p;, both of length sy We write p; ~ p; to indicate that
a continuous deformation exists between paths p; and p;, and they are therefore
equivalent. 0O

The length Sy depends on v and w, but for typical values, Sy is fully 95-98% of
s¢. For many applications, this is sufficient, but an application can quickly test the
remaining path length if necessary. Nearly all paths f(c) are bounded by curvature
Kmax, but it will turn out that in certain geometric circumstances, the maximum
curvature through a continuous deformation is up to ;.. = %Kmax-

Definition 8. Two safe, feasible paths that define a continuous deformation are
called guard paths because they protect the intermediate paths. O

In the presence of obstacles, it is not trivial to determine whether a continuous
deformation is safe, thus maintaining equivalency. Rather than trying to find a defor-
mation between arbitrary paths, we propose a particular condition under which we
show that a bounded-curvature, fixed-length, continuous path deformation exists,

Ur(p1,p2) <d = pi ~ ps. (@)

This statement, which we prove in the next section, is the basis for Alg. 4 and Alg. 5.
The overlapping swaths of appropriate paths p; and p, cover a continuum of inter-
mediate swaths between the two paths. Eqn. (5) is a proper equivalence relation
because it possesses each of three properties:

reflexivity. py (p, p) = 0; p is trivially deformable to itself.

symmetry. The Hausdorff metric is symmetric.

transitivity. Given uy(p1,p2) <d and uy(p2,p3) < d, a continuous deforma-
tion from p; to p3 passes through p».

3.2 Equivalence Relation

Having presented the set of conditions under which (5) holds, we now prove that
they are sufficient to ensure the existence of a continuous deformation between two
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Fig. 5 Paths p;,p;, and p,

form boundary B. Its interior, )2

1, contains all paths in the D
continuous deformation from g

pitopj.

neighboring paths. Our approach to the proof will be to first describe a feasible
continuous deformation, then show that paths along this deformation are safe.

Given appropriate guard paths p; and p; with common origin, let p, be the short-
est curve in the workspace connecting their endpoints without crossing either path
(pe may pass through obstacles). The closed path B = p; U p; U p, creates one or
more closed loops (the paths may cross each other). By the Jordan curve theorem,
each loop partitions R? into two sets, only one of which is compact. Let I, the inte-
rior, be the union of these compact regions with B, as in Fig. 5.

Definition 9. A path p. is between paths p; and p; if p. CI. O

Lemma 1. Given appropriate paths p;,pj C F(sf, Kmax) with ug (pi, p;j) < d, a path
sequence exists in the form of a feasible continuous deformation between p; and p ;.

Proof. We provide the form of a continuous deformation from p; to p; such that
each intermediate path is between them. With ¢ a workspace point and p a path, let

y(t.p) =inf{e: 1 € (p)e} ©)
[0,1] if y(t,pi) = y(t,pj) =0
g(t) = { {y(t%%} otherwise, @

where g(¢) is a set-valued function to accommodate intersecting paths. Each level
set g(¢) = ¢ for ¢ € [0,1] defines a weighted generalized Voronoi diagram (GVD)
forming a path as in Fig. 6. We give the form of a continuous deformation using
level sets g~ !(c); each path is parametrized starting at the origin and extending for
a length sy in the direction of p,. Let us now pin down the value of Sp- Every point
t; on p; forms a line segment projecting it to its nearest neighbor ¢; on p; (and vice
versa). Their collective area is shown in Fig. 7. Eqn. (3) bounds each segment’s
length at d. Sy is the greatest value such that no intermediate path of length sy
departs from the region covered by these projections.

For general shapes in R?, the GVD forms a set of curves meeting at branching
points [23]. In this case, no GVD cusps or branching points occur in any interme-
diate path. Since d < 7y, no center of curvature along either guard path can fall in
I [4]. Therefore, each level set defines a path through the origin.

Each path’s curvature function is piecewise continuous and everywhere bounded.
A small neighborhood of either guard path approximates constant curvature. A GVD
curve generated by two constant-curvature sets forms a conic section [27]. Table 1
reflects that the curvature of p. is everywhere bounded with the maximum possible
curvature being bounded by %Kmax. For the full proofs, see [14]. O
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Fig. 6 In a continuous de-
formation between paths p;
and p;, as defined by the level
sets of (7), each path takes
the form of a weighted GVD.
Upper bounds on curvature
vary along the deformation,
with the maximum bound of point of maximum curvature
%Kmax occurring at the medial
axis of the two paths.

Fig. 7 Hausdorff coverage (overlapping red and blue shapes in center) is a conservative approxi-
mation of swath coverage (gray). The Hausdorff distance between paths p; and p; is equal to the
maximum-length projection from any point on either path to the closest point on the opposite path.
Each projection implies a line segment. The set of projections from the top line (blue) and bottom
line (red) each cover a solid region between the paths. These areas, in turn, cover a slightly shorter
intermediate path p., in white, with its swath in cyan. This path’s length, sy is as great as possible
while remaining safe, with its swath inside the gray area.

Table 1 Conic sections form the weighted Voronoi diagram. k; and x» represent the curvatures of
the two guard paths, with x; the lesser magnitude. Let &, = max(|ki |, |k>|). For details, see [14].

Type Occurrence Curvature bounds of intermediate paths
line K| =—K» x| < Kn
parabola ki =0,k #0 [x| < K
hyperbola|k;k» < 0,k # —K» [x| < Kn
ellipse Kikp >0 |x| < %Km

Lemma 2. Given safe, appropriate guard paths p;,p; € F(s¢, Knax) separated by
uu(pi,pj) <d, any path p. C 3"(5;, %Kmax) between them is safe.

Proof. We prove this lemma by contradiction. Assume an obstacle lies between p;
and p;. We show that this assumption imposes lower bounds on v and w. We then
conclude that for lesser values of v and w, no such obstacle can exist.

Let sl(p,d) = {t € R%,t,, = nn(t,p): Tt L pand ||t —1,||;> < 4} define a con-
servative approximation of a swath, obtained by sweeping a line segment of length
d with its center along the path. 7,7 is the line segment joining #, to r and nn(t, p)
is the nearest neighbor of point # on path p. The two swaths form a safe region,
U= Sl(p”d)USl(pJ,d)

Suppose that U contains a hole, denoted by the set s, which might contain an
obstacle. Now, consider the shape of the paths that could produce such a hole. Be-
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(a) (b)

Fig. 8 (a) With bounded curvature, there is a lower bound on path lengths that permit a hole, &,
while satisfying (3). Shorter path lengths ensure the existence of a safe continuous deformation
between paths. (b) We compute the maximal path length that prevents a hole using Vendittelli’s
solution to the shortest path for a Dubins car. Starting from the dot marked s, we find the shortest
path intersecting the circle D. The interval p{ illustrates path lengths permitting a hole to exist.

ginning with equal position and heading, they must diverge widely enough to sepa-
rate by more than d. To close the loop in U, the paths must then bend back towards
each other. Since the paths separate by more than d, there exist two open intervals
pf’ C p; and pi? C p; surrounding the hole on each path such that (at this point)
Pt ¢ (pj)a and p? Z (pi)a- To satisfy (3), there must exist later intervals p{ C p;
such that p? C (pf)a and likewise p$ C p; such that phc (P$)a- as in Fig. 8a.

How long must a path be to satisfy this condition? Consider the minimum length
solution to this problem under bounded curvature. For each point ¢ € p’j’., the interval
p¢ must intersect the open disc D = int((¢)4), as in Fig. 8b. Since p}; grows with the
width of h, and p¢ must intersect all of these open neighborhoods, the path becomes
longer with larger holes. We will therefore consider the minimal small-hole case.

Vendittelli [26] solves the shortest path problem for a Dubins car to reach a line
segment. We may approximate the circular boundary of D by a set of arbitrarily
small line segments. One may show from this work that given the position and slope
of points along any such circle, the shortest path to reach its boundary (and thus its
interior) is a constant-curvature arc of radius ry,;;. In the limit, as v approaches one
and the size of h approaches zero, the length of arc needed to satisfy (3) approaches
7/2 from above, resulting in the condition that w > 0.48. Thus, for w < 0.48 and
v € [0,1), pc is safe. For smaller values of v, D shrinks relative to 7y, requiring
longer paths to reach, thus allowing larger values of w as shown in the plot in Fig. 4.

We have shown that there exist appropriate choices for v and w such that (3)
implies that U contains no holes. Since U contains the origin, any path p. € I ema-
nating from the origin passes through U and is safe. 0O

Theorem 1. Given safe, appropriate guard paths p;,pj € F(ss, Knax), and given
Uu (pispj) < d, a safe continuous deformation exists between p; and p.
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Proof. Lemma 1 shows that (7) gives a continuous deformation between paths p;
and p; such that each intermediate path p. C I is feasible. Lemma 2 shows that any
such path is safe. Therefore, a continuous deformation exists between p; and p;.
This proves the validity of the Hausdorff metric as a test for path equivalence. O

3.3 Resolution Completeness of Path Classifier

In this section, we show that Alg. 4 is resolution complete. Resolution complete-
ness commonly shows that for a sufficiently high discretization of each dimension
of the search space, the planner finds a path exactly when one exists in the contin-
uum space. We instead show that for a sufficiently low dispersion in the infinite-
dimensional path space, the approximation given by Alg. 4 has the same connectiv-
ity as the continuum safe, feasible path space.

Let F be the continuum feasible path space and JF ., C JF be the set of safe,
feasible paths. Using the Green-Kelly algorithm, we sample offline from F a path
sequence P of size N. At runtime, using Alg. 1, we test members of P in order to
discover a set P, C P of safe paths.

The following lemma is based on the work of LaValle, Branicky, and Linde-
mann [16], who prove resolution completeness of deterministic roadmap (DRM)
planners, which are PRM planners that draw samples from a low-dispersion, deter-
ministic source. Since we use a deterministic sequence provided by Green-Kelly,
the combination of Alg. 1 and 4 generates a DRM in path space.

Lemma 3. For any given configuration of obstacles and any path set Py generated
by the Green-Kelly algorithm, there exists a sufficiently large N such that any two
paths pi,p; € Prree are in the same connected component of J rye. if and only if
Alg. 4 reports that p; ~ pj.

Proof. LaValle, et al. [16], show that by increasing N, a sufficiently low dispersion
can be achieved to make a DRM complete in any given C-Space. By an identical
argument, given a continuum connected component C C JF ., all sampled paths
in CN Py are in a single partition of D. If ¢ is the radius of the narrowest corridor
in @, then for dispersion dy < ¢, our discrete approximation exactly replicates the
connectivity of the continuum freespace. 0O

Lemma 4. Under the same conditions as in Lemma 3, there exists a sufficiently
large N such that for any continuum connected component € C F free, Alg. 1 returns
a P gree such that P o, N C # 0. That is, every component in 3 yre. has a correspond-
ing partition returned by Alg. 4.

Proof. Let B, be the largest open ball of radius r in C. When dy < r, B, must contain
some sample p € P. Since € is entirely collision-free, p € P ... Thus, for dispersion
less than r, P, contains a pathin C. O
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There exists a sufficiently large N such that after N samples, P has achieved
dispersion dy < min(g,r), where ¢ and r are the dispersion required by Lemmas 3
and 4, respectively. Under such conditions, a bijection exists between the connected
components of Py, and F ..

Theorem 2. Let D = {Dy|...|Dy,} be a partition of Pfre. as defined by Alg. 4. Let
C={Cy]...|Cpn} be afinite partition of the continuum safe, feasible path space into
connected components. A bijection f : D — C exists such that D; C f(D;).

Proof. Lemma 3 establishes that f is one-to-one, while Lemma 4 establishes that f
is onto. Therefore, f is bijective. This shows that by sampling at sufficiently high
density, we can achieve an arbitrarily good approximation of the connectedness of
the continuum set of collision-free paths in any environment. O

Theorem 3. A path interval p may be implicitly tested safe if it is between paths
pi and pj such that uy(pi,p;) < d and a small region at the end of p. has been
explicitly tested.

Proof. By Lemma 2, the initial interval of p. is safe because its swath is covered
by the swaths of the guard paths. Since the small interval at the end of p, has been
explicitly tested, the whole of p, is collision-free. 0O

4 Results

We briefly summarize some experimental results involving equivalence class detec-
tion and implicit path collision-testing. All tests were performed in simulation on
planning problems of the type described in [13].

Path classification imposes a computational overhead due to the cost of searching
collision-free paths. Collision rate in turn relates to the density of obstacles in the
environment. The computational overhead of our classification implementation is
nearly 20% in an empty environment but drops to 0.3% in dense clutter. However,
implicit collision-testing more than compensates for this overhead.

Fig. 9 shows the effect of implicit path testing on total paths tested in the absence
of obstacles. As the time limit increases, the number of paths collision-tested un-
der the traditional algorithm increases linearly at a rate of 8,300 paths per second.
With implicit testing, the initial test rate over small time limits (thus small path set
sizes) is over 22,500 paths per second. The marginal rate declines over time due
to the aforementioned overhead, but implicit path testing still maintains its speed
advantage until the entire 2,401-member path set is collision-tested.

Fig. 10 presents implicit collision-testing performance in the presence of clutter.
We compare the implicit collision-tester in Alg. 5 to traditional explicit collision-
testing. When fixing the replan rate at 10 Hz, implicit path evaluation maintains an
advantage, despite the overhead, across all navigable obstacle densities.
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Fig. 9 Paths tested per time-limited replan step
in an obstacle-free environment. Path testing
performance improves by up to 3x with the al-
gorithms we present here. Note that an artificial
ceiling curtails performance at the high end due
to a maximum path set of size 2,401.
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Fig. 10 Paths tested per 0.1 second time step
at varying obstacle densities. Implicit collision-
testing allows significantly more paths to be
tested per unit time. Even in extremely dense
clutter, implicit path testing considers an extra
six paths on average.

5 Discussion and Future Work

In this paper, we propose an equivalence relation on local paths based on the fol-
lowing constraints: fixed start position and heading, fixed length, and bounded cur-
vature. We describe an algorithm for easily classifying paths using the Hausdorff
distance between them. Path classification is a tool that permits collective reasoning
about paths, leading to more efficient collision-testing.

There are many other applications for path equivalence. One example uses path
class knowledge in obstacle avoidance to improve visibility and safety around ob-
stacles. Another avenue of future work involves generalizing path equivalence to
higher dimensions. For instance, an implicit path test for a robot floating in 3D re-
quires three neighboring paths, while a manipulator arm needs only two.
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