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Abstract. This work addresses the challenge of a robot using real-time
feedback from contact sensors to reliably manipulate a movable object
on a cluttered tabletop. We formulate this task as a partially observable
Markov decision process (POMDP) in the joint space of robot config-
urations and object poses. This formulation enables the robot to ex-
plicitly reason about uncertainty and all major types of kinematic con-
straints: reachability, joint limits, and collision. We solve the POMDP
using DESPOT, a state-of-the-art online POMDP solver, by leveraging
two key ideas for computational efficiency. First, we lazily construct a
discrete lattice in the robot’s configuration space. Second, we guide the
search with heuristics derived from an unconstrained relaxation of the
problem. We empirically show that our approach outperforms several
baselines on a simulated seven degree-of-freedom manipulator.

1 Introduction

Our goal is to enable robots to use real-time contact sensing to reliably manipu-
late their environments. We focus on contact sensing because it is an ideal source
of feedback for manipulation: the sense of touch directly observes the forces that
the robot imparts on its environment and is unaffected by occlusion.

Consider a robot trying to push a bottle into its palm (Figure 1). The robot
is uncertain about the initial pose of the bottle, has only an approximate model
of physics, and receives feedback from noisy contact sensors on its fingertips.
To localize the object and complete the task, the robot must take information-
gathering actions to force the bottle into contact with one of its sensors. Simul-
taneously, the robot must avoid kinematic constraints such as colliding with an
obstacle or pushing the bottle outside of its workspace.

Prior work focuses on planning under kinematic constraints and under un-
certainty in isolation (Section 2). Work that considers kinematic constraints,
but ignores uncertainty, often produces brittle policies that fail when executed.
Work that considers uncertainty, but ignores kinematic constraints, often pro-
duces policies that are infeasible to execute in clutter.

In this paper, we formulate planar manipulation as a partially observable
Markov decision process (POMDP) [42] in the joint space of robot configura-
tions and object poses (Section 3). This formulation enables the robot to explic-
itly reason about uncertainty and, when necessary, plan information-gathering
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(a) Problem Definition (b) Online Search (c) Relaxed Problem

Fig. 1: HERB [44] uses real-time feedback from contact sensors to manipulate
a bottle on a cluttered table. (a) We represent the robot’s configuration as a
point in a lattice that models the reachable ( ) and unreachable ( ) parts of
the robot’s configuration space. (b) We use an online POMDP solver guided
by powerful heuristics to construct only the portions of the lattice relevant to
completing the task. These heuristics are derived from (c) a relaxation of the
problem that considers only the motion of the object relative to the end-effector.

actions to reduce it. Unlike in our prior work [25], this model also includes all
major types of kinematic constraints: reachability, joint limits, and collision.

While exactly solving a POMDP is intractable in the worst case, recent
advances in approximate online [41, 43] and point-based [26] solvers have en-
abled successful POMDP planning for manipulation tasks [17, 18, 25]. We use
DESPOT [43], a state-of-the-art online POMDP solver, and leverage two key
ideas for computational efficiency. First, we lazily discretize the robot’s configu-
ration space into a lattice of configurations connected by constrained trajectories
(Section 4). Second, we leverage heuristics computed from an unconstrained re-
laxation of the problem to guide the online search (Section 5). We prove that
the optimal policy will not take infeasible actions and our heuristics do not
compromise the optimality of the solution.

We validate the algorithm on a simulation of HERB [44], a robot equipped
with a 7-DOF Barrett WAM arm [39], manipulating an object on a cluttered
tabletop (Figure 1, Section 6). Our results show that the proposed algorithm suc-
ceeds more often than approaches that consider either uncertainty or kinematic
constraints in isolation.

2 Related Work

Our work builds on a long history of research on manipulating objects under
uncertainty. Early work focused on planning open-loop trajectories that suc-
cessfully reconfigure an object despite non-deterministic uncertainty [27] in its
pose [5, 14]. Recently, the same type of worst-case analysis has been used to
plan robust open-loop trajectories for grasping [9, 10] and rearrangement plan-
ning [11, 23]. Our approach makes the quasistatic assumption [32], similar to
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this prior work, but differs in two key ways: it (1) considers probabilistic uncer-
tainty [27] and (2) produces a closed-loop policy that uses real-time feedback.

Another line of research aims to incorporate feedback from contact sensors
into manipulator control policies, e.g. to optimize the quality of a grasp [37],
servo towards a desired contact sensor observation [28, 47], or learn a feedback
policy to achieve a grasp [34, 45]. These approaches achieve impressive real-time
performance, but require a higher-level planner to specify the goal.

One common strategy is to plan a sequence of move-until-touch actions that
localize an object, then execute an open-loop trajectory to complete the task [16,
21, 35]. Other approaches formulate the problem as a POMDP [42] and find a
policy that takes information-gathering actions only when they are necessary to
achieve the goal [17, 19]. Unfortunately, most of this work assumes that the end-
effector can move freely in the workspace and that objects do not significantly
move when touched.

Recent work, including our own [25], has relaxed the latter assumption by
incorporating a stochastic physics model into the POMDP [17] and using SAR-
SOP [26], an offline point-based POMDP solver, to find a policy for manipu-
lating an object relative to the hand. Unfortunately, hand-relative policies often
fail when executed on a manipulator due to kinematic reachability or collision
with obstacles. We use a hand-relative policy to guide DESPOT [43], an online
POMDP solver [38], in a search that explicitly models these constraints.

Our approach represents the robot’s configuration space as a state lattice [36],
a concept that we borrow from mobile robot navigation [29] and search-based
planning [8]. Similar to many randomized motion planners [3, 15], we use lazy
evaluation to defer collision checking until an action is queried by the planner.

3 Problem Formulation

We formulate planar contact manipulation as a partially observable Markov
decision process (POMDP) [42]. A POMDP is a tuple (S,A,O, T,Ω,R) where S
is the set of states, A is the set of actions, O is the set of observations, T (s, a, s′) =
p(s′|s, a) is the transition model, Ω(s, a, o) = p(o|s, a) is the observation model,
and R(s, a) : S ×A→ R is the reward function (Figure 2).

The robot does not know the true state st. Instead, the robot tracks the
belief state b(st) = p(st|a1:t, o1:t), a probability distribution over the current
state st conditioned on the history of actions a1:t = {a1, . . . , at} and observations
o1:t = {o1, . . . , ot}. The set of all belief states is known as belief space ∆.

Our goal is to find a policy π : ∆→ A that optimizes the value function

V π [b] = E

[

∞
∑

t=0

γtR(st, at)

]

where the expectation E[·] is taken over the sequence of states visited by π. The
discount factor γ ∈ [0, 1) adjusts the value of present versus future reward.

In our problem, state s = (q, xo) ∈ S is the configuration of the robot q ∈ Q
and the pose of the movable object xo ∈ Xo = SE(3) (Figure 2a). An action
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Fig. 2: We formulate planar contact manipulation as a POMDP with a state
space (a) that contains the robot configuration q and the pose of the movable
object xr. The environment contains one movable object (white glass) and static
obstacles. (b) action is a short joint-space trajectory ξ of duration T . After
executing an action, the robot receives feedback from (c) binary contact sensors
on its end-effector. The goal of pushing the object into (d) the hand-relative goal
region G is encoded in the reward function R(s, a).

a = (ξ, T ) ∈ A is a trajectory ξ : [0, T ] → Q that starts in configuration ξ(0)
and ends configuration ξ(T ) at time T (Figure 2b). We assume that uncertainty
over object pose dominates controller and proprioceptive error. Therefore, we
treat q as fully-observable and assume that the manipulator is perfectly position
controlled.

The robot executes a quasistatic push if it comes in contact with the movable
object. The quasistatic assumption states that friction is high enough to neglect
acceleration of the object, i.e. the object stops moving as soon as it leaves con-
tact [32], and is accurate for many tabletop manipulation tasks [10, 11]. We define
the stochastic transition model p(s′|s, a) = T (s, a, s′) in terms of a deterministic
quasistatic physics model [32] by introducing noise into its parameters [12]. We
do not attempt to refine our estimate of these parameters during execution.

After executing an action, the robot receives an observation o ∈ {0, 1}no = O
from its no binary contact sensors (Figure 2c). We assume that an observation
model p(o|s′, a) = Ω(s′, a, o) is available, but make no assumptions about its
form.

The robot’s goal is to push the movable object into a hand-relative goal region
Xgoal ⊆ X (Figure 2d). We encode this in the reward function that assigns
R(s, a) = 0 for states [Tee(q)]

−1xo ∈ Xgoal in the goal region and R(s, a) = −1
otherwise. In this expression, Tee : Q → SE(3) is the forward kinematics of the
end effector. Note that the choice of −1 reward is arbitrary: any negative reward
would suffice.
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4 Configuration Lattice POMDP

Solving this POMDP is challenging. We simplify the problem by constraining the
end effector to a fixed transformation relative to the support surface and build
a lattice in configuration space (Section 4.1). Configurations in the lattice are
connected by action templates that start and end on lattice points (Section 4.2)
and are penalized if rendered infeasible by kinematic constraints (Section 4.3).

4.1 Configuration Lattice

We assume that the robot’s end effector is constrained to have a fixed transforma-
tion supTee ∈ SE(3) relative to the support surface Tsup ∈ SE(3). A configuration
q satisfies this constraint iff

Tee(q) = Tsup
supTee Trans([xr, yr, 0])Rot(θr, êz) (1)

where (xr, yr, θr) ∈ Xr = SE(2) is the pose of the end effector in the plane,
Rot(θ, v̂) is a rotation about v̂ by angle θ, Trans(v) is a translation by v.

We also assume that the movable object also has a fixed transformation
supTo ∈ SE(3) relative to the support surface. We parameterize its pose as

xo = Tsup
supTo Trans([xo, yo, 0])Rot(θo, êz)

where (xo, yo, θo) ∈ Xo = SE(2) is the pose of the object in the plane.
We discretize the space of the end effector poses Xr by constructing a state

lattice Xr,lat ⊆ Xr with a translational resolution of ∆xr, ∆yr ∈ R
+ and an

angular resolution of ∆θr = 2π/nθ for some integer value of nθ ∈ N [36]. The
lattice consists of the discrete set of points

Xr,lat = {(ix∆xr, iy∆yr, iθ∆θr) : ix, iy, iθ ∈ Z}.

Each point xr ∈ Xr,lat may be reachable from multiple configurations. We as-
sume that we have access to an inverse kinematics function qlat(xr) that returns
a single solution {q} that satisfies Tee(q) = xr or ∅ if no such solution exists. A
solution may not exist if xr is not reachable, the end effector is in collision, or the
robot collides with the environment in all possible inverse kinematic solutions.

4.2 Action Templates

Most actions do not transition between states in the lattice Slat. Therefore, we
restrict ourselves to actions that are instantiated from one of a finite set Alat

of action templates. An action template alat = (ξlat, T ) ∈ Alat is a Cartesian
trajectory ξlat : [0, T ] → SE(3) that specifies the relative motion of the end
effector. The template starts at the origin ξlat(0) = I and ends at some lattice
point ξlat(T ) ∈ Xr,lat. It is acceptable for multiple actions templates in Alat to
end at the same lattice point or have different durations.
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An action a = (ξ, T ) ∈ A instantiates template alat at lattice point xr ∈
Xr,lat if it satisfies three conditions: (1) starts in configuration ξ(0) = qlat(xr),
(2) ends in configuration ξ(T ) = qlat(xrξlat(T )), and (3) satisfies Tee(ξ(τ)) =
xrξlat(τ) for all 0 ≤ τ ≤ T . These conditions are satisfied if ξ moves between
two configurations in Qlat and produces the same end effector motion as ξlat.

We define the function Proj(xr, a) 7→ alat to map an action a to the template
alat it instantiates. The pre-image Proj−1(xr, alat) contains the set of all possible
instantiations of action template alat at xr. We assume that we have access to
a local planner φ(q, alat) that returns a singleton action {a} ⊆ Proj−1(q, alat)
from this set or ∅ to indicate failure. The local planner may fail due to kinematic
constraints, end effector collision, or robot collision.

4.3 Configuration Lattice POMDP

We use the lattice to define a configuration lattice POMDP, Lat-POMDP, (Slat,
Alat, O, Tlat, Ωlat, Rlat) in state space Slat = Xr,lat×Xo. The structure of the lat-
tice guarantees that that all instantiations Proj−1(q, alat) of the action template
alat execute the same motion ξlat of the end effector. This motion is independent
of the starting pose of the end effector xr and configuration qlat(xr) of the robot.

If the movable object only contacts the end effector—not other parts of the
robot or the environment—then the motion of the object is also independent of
these variables. We refer to a violation of this assumption as un-modelled contact.
The lattice transition model Tlat(slat, alat, s

′

lat) is identical to T (s, a, s
′) when alat

is feasible and no un-modelled contact occurs. If either condition is violated, the
robot transitions to the absorbing state sinvalid. Similarly, the lattice observation
model Ωlat(slat, alat, o) is identical to Ω(s, a, o) for valid states and is uniform
over O for slat = sinvalid.

We penalize invalid states slat = sinvalid, infeasible actions φ(qlat(xr), alat) =
∅, and un-modelled contact in the reward function Rlat by assigning them
mins∈S,a∈AR(s, a) = −1 reward. Otherwise, we define Rlat(s, a) = R(s, a). This
choice guarantees that an optimal policy π∗

lat will never take an infeasible action:

Theorem 1. An optimal policy π∗

lat
of Lat-POMDP will not execute an infea-

sible action in belief b if V ∗

lat
[b] > −1

1−γ .

Proof. Suppose V ∗

lat[b] >
−1
1−γ and an optimal policy πlat executes the invalid

action in belief state b. The robot receives a reward of −1 and transitions to
sinvalid. For all time after that, regardless of the actions that πlat takes, the
robot receives a reward of Rlat(sinvalid, ·) = −1 at each timestep. This yields a
total reward of V πlat

lat = −1
1−γ , which is the minimum reward possible to achieve.

The value function of the optimal policy satisfies the Bellman equation
V ∗

lat[b] = argmaxalat∈Alat
Q∗[b, alat], where Q

∗[b, a] denotes the value of taking
action a in belief state b, then following the optimal policy for all time. This
contradicts the fact that V ∗

lat[b] >
−1
1−γ and V πlat

lat [b] = −1
1−γ . Therefore, πlat must

not be the optimal policy. ⊓⊔
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We can strengthen our claim if we guarantee that every lattice point reachable
from q0 has at least one feasible action and it is possible to achieve the goal with
non-zero probability. Under those assumptions we know that V ∗

lat[b] >
−1
1−γ and

Theorem 1 guarantees that π∗

lat will never take an infeasible action. One simple
way to satisfy this condition is to require that all actions be reversible.

5 Online POMDP Planner

Lat-POMDP has a large state space that changes whenever obstacles are added
to, removed from, or moved within the environment. We use DESPOT [43], an
online POMDP solver, to efficiently plan in this space. DESPOT incrementally
explores the action-observation tree rooted at b(s0) by performing a series of
trials. Each trial starts at the root node, descends the tree, and terminates by
adding a new leaf node to the tree.

In each step, DESPOT chooses the action that maximizes the upper bound
V̄ [b] and the observation that maximizes weighted excess uncertainty, a regular-
ized version of the gap V̄ [b] − V[b] between the bounds. This strategy heuris-
tically focuses exploration on the optimally reachable belief space [26]. Finally,
DESPOT backs up the upper and lower bounds of all nodes visited by the trial.

We leverage two key ideas for computational efficiency. First, we interleave
lattice construction with planning to evaluate only the parts of the lattice that
are visited by DESPOT (Section 5.1). Second, we guide DESPOT with upper
(Section 5.2) and lower (Section 5.3) bounds derived from a relaxation of the
problem that considers only the pose of the movable object relative to the hand.

5.1 Configuration Lattice Construction

DESPOT uses upper and lower bounds to focus its search on belief states that
are likely to be visited by the optimal policy. We exploit this fact to avoid
constructing the entire lattice. Instead, we interleave lattice construction with
planning and only instantiate the lattice edges visited by the search, similar to
the concept of lazy evaluation used in motion planning [3, 15].

We begin with no pre-computation and run DESPOT until it queries the
transition model Tlat, observation model Ωlat, or reward function Rlat for a
state-action pair (xr, alat) that has not yet been evaluated. When this occurs,
we pause the search and check the feasibility of the action by running the local
planner φ(xr, alat). We use the outcome of the local planner to update the Lat-
POMDP model and resume the search. Figure 1 shows the (a) full lattice and
(b) subset evaluated by DESPOT, only a small fraction of the full lattice.

It is also possible to use a hybrid approach by evaluating some parts of
the lattice offline and deferring others to be computed online. For example, we
may compute inverse kinematics solutions, kinematic feasibility checks, and self-
collision checks in an offline pre-computation step. These values are fixed for a
given support surface and, thus, can be used across multiple problem instances.
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5.2 Hand-Relative Upper Bound

Recall from Section 4 that the motion of the end effector and the object is
independent of the pose of the end effector xr or the robot configuration q. We use
this insight to define a hand-relative POMDP, Rel-POMDP, (Srel, Alat, O, Trel,
Ωrel, Rrel) with a state space that only includes the pose xo,rel = x−1

r xo ∈ Srel

of the movable object relative to the hand. The hand-relative transition model
Trel, observation model Ωrel, and reward function Rrel are identical to the original
model when no un-modelled contact occurs.

Rel-POMDP is identical to the hand-relative POMDP models used in prior
work [17, 24, 25] and is equivalent to assuming that environment is empty and
the robot is a lone end effector actuated by an incorporeal planar joint. As a
result, Rel-POMDP is a relaxation of Lat-POMDP:

Theorem 2. The optimal value function V ∗

rel
of Rel-POMDP is an upper bound

on the optimal value function V ∗

lat
of Lat-POMDP: V ∗

rel
[b] ≥ V ∗

lat
[b] for all b ∈ ∆.

Proof. We define a scenario ψ = (s0, ψ1, ψ2, . . . ) as an abstract simulation tra-
jectory that captures all uncertainty in our POMDP model [33, 43]. A scenario is
generated by drawing the initial state so ∼ b(s0) from the initial belief state and
each random number ψ1 ∼ uniform[0, 1] uniformly from the unit interval. Given
a scenario ψ, we assume that the outcome of executing a sequence of actions
is deterministic; i.e. all stochasticity is captured in the initial state s0 and the
sequence of random numbers ψ1, ψ2, . . . .

Suppose we have a policy π for Rel-POMDP that executes the sequence of
actions alat,1, alat,2, . . . in scenario ψ. The policy visits the sequence of states
srel,1, srel,2, . . . and receives the sequence of rewards R1, R2, . . . .

Now consider executing π in the same scenario ψ on Lat-POMDP. Without
loss of generality, assume that π first takes an infeasible action or makes un-
modelled contact with the environment at timestep H. The policy receives the
same sequence of rewards R1, R2, . . . , R2, . . . , RH−1,−1,−1, . . . as it did on Rel-
POMDP until timestep H. Then, it receives −1 reward for taking an infeasible
action, transitions to absorbing state sinvalid, and receives −1 reward for all time.

Policy π achieves value V πrel,ψ =
∑

∞

t=0 γ
tRt on Rel-POMDP and V πlat,ψ =

∑H−1

t=0 γtRt −
γH

1−γ on Lat-POMDP in scenario ψ. Since Rt ≥ −1, we know that

V πrel,ψ ≥ V πlat,ψ. The value of a policy V π = Eψ[V
π
ψ ] is the expected value of π

over all scenarios.
Consider the optimal policy π∗

lat of Lat-POMDP. There exists some Rel-
POMDP policy πmimic that executes the same sequence of actions as π∗

lat in
all scenarios. From the reasoning above, we know that V πmimic

rel ≥ V ∗

lat. We also
know that V ∗

rel ≥ V πmimic

rel because the value of any policy is a lower bound on
the optimal value function. Therefore, V ∗

rel ≥ V πmimic

rel ≥ V ∗

lat. ⊓⊔

This result implies that any upper bound V̄rel is an upper bound on the
value of the optimal value function V̄rel ≥ V ∗

rel ≥ V ∗

lat. Therefore, we may also
use V̄rel as an upper bound on Lat-POMDP. The key advantage of doing so is
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that the V̄rel may be pre-computed once per hand-object pair. In contrast, the
same upper bound on V̄lat must be re-computed for each problem instance.

5.3 Hand-Relative Lower Bound

We exploit the fact that the value function of any policy is a lower bound on the
optimal value function to define Vlat. We use offline pre-computation to compute
a rollout policy on πrollout for Rel-POMDP once per hand-object pair, e.g. using
MDP [31] or point-based [17, 25] value iteration.

Given πrollout, we construct an approximate lower bound Vlat for Lat-POMDP
by estimating the value V πrollout

lat of executing πrollout on Lat-POMDP via Monte
Carlo rollouts. Approximating a lower bound with a rollout policy is commonly
used in POMCP [41], DESPOT [43], and other online POMDP solvers.

6 Experimental Results

We validated the efficacy of the proposed algorithm by running simulation ex-
periments on HERB [44], a robot equipped with a 7-DOF Barrett WAM arm [39]
and the BarrettHand [46] end-effector. The robot attempts to push a bottle into
the center of its palm on a table littered with obstacles.

6.1 Problem Definition

The state space of the problem consists of the configuration space Q = R
7 of the

robot and the pose of the object Xo relative to the end effector. The robot begins
in known configuration q0 and xo is drawn from a Gaussian distribution centered
in front of the palm with a covariance matrix of Σ1/2 = diag[5 mm, 10 cm].

Transitions Model. At each timestep, the simulated robot chooses an action
alat that moves 1 cm at a constant Cartesian velocity in the xy-plane. The motion
of the object is simulated using the Box2D physics simulator [7]. We simulate
uncertainty in the model by sampling the hand-object friction coefficient and
center of the object-table pressure distribution at each timestep [12, 24].

Configuration Lattice. These actions define a lattice centered at Tee(q0) with
a resolution of ∆xr = ∆yr = 1 cm. To construct this lattice, we select a config-
uration qlat(xr) using an iterative inverse kinematics solver initialized with the
solution of an adjacent lattice point. Then, we use a Cartesian motion planner
to find a trajectory that connects adjacent points while satisfying the action
template. As described in Section 5.1, the kinematic structure of the lattice is
computed offline, but all collision checking is deferred until runtime. Forward
kinematics, inverse kinematics, and collision detection is provided by the Dy-
namic Animation and Robotics Toolkit (DART) [1].

Observation Model. The simulated robot receives binary observations from
contact sensors on its fingertips. We assume that the sensors perfectly dis-
criminate between contact and no-contact [24, 25], but provide no information
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about where contact occurred on the sensor. The robot must take information-
gathering actions, by moving side-to-side, to localize the object.

Discretization. We discretize Srel, as in prior work [17, 25], to speed up evalu-
ation of the model and to enable calculation of the QMDP [31] and SARSOP [26]
policies. We discretize a region of size 20 cm× 44 cm centered around the palm
at a 1 cm resolution (Figure 3a). To do so, we compute a discrete transition
model, observation model, and reward function by taking an expectation over
the underlying continuous state. States outside of this region are considered to
be sinvalid.

6.2 Baseline Policies

We compare Lat-DESPOT against several baseline policies:
Rel-QMDP chooses the action at each timestep that greedily optimizes the

Q-value of the MDP value function defined by Rel-POMDP [31]. QMDP does
not perform multi-step information-gathering actions, but has been shown to
perform well in domains where information is easily gathered [13, 20].

Rel-SARSOP uses SARSOP [26], a point-based method, to compute an of-
fline policy for Rel-POMDP that is capable of taking information-gathering
actions. SARSOP has been shown to perform well on Rel-POMDP in prior
work [17, 25]. As in that work, we used the implementation of SARSOP pro-
vided by the APPL toolkit and allowed it to run for 10 minutes offline.

Rel-DESPOT uses DESPOT [43] to plan for Rel-POMDP using Rel-QMDP
as an upper bound and rollouts of Rel-QMDP as a lower bound. We use the
implementation of DESPOT provided by the APPL toolkit and tuned its pa-
rameters on a set of training problem instances distinct from these results.

Lift-QMDP and Lift-SARSOP use the state lattice to evaluate the feasibility
of the action returned by Rel-QMDP and Rel-SARSOP, respectively, before
executing it. If the desired action is infeasible, instead execute the feasible action
with the next highest Q-value. This represents a heuristic solution for modifying
a Rel-POMDP policy to avoid taking infeasible actions.

Lat-DESPOT, the proposed algorithm, uses DESPOT [43] to plan for Lat-
POMDP using Rel-QMDP as the upper bound and rollouts of Lift-QMDP as
the lower bound. This algorithm considers both kinematic constraints and un-
certainty during planning.

6.3 Rel-POMDP Experiments

We begin by considering Rel-POMDP to isolate the effect of uncertainty from
that of kinematic constraints. First, we confirm that our POMDP formulation
faithfully encodes our goal. Next, we demonstrate information-gathering is nec-
essary to achieve good performance. Finally, we verify that DESPOT—an online
method—does not sacrifice the solution quality achieved by offline methods.

Figure 3b shows the value achieved by each policy in a 100 timestep simu-
lation of the discretized Rel-POMDP problem. Figure 3c shows the probability
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Fig. 3: Performance of Rel-QMDP (RM ), Rel-SARSOP (RS ), and Rel-
DESPOT (RD ) on Rel-POMDP. (a) Discretization of Rel-POMDP used
during planning. (b) Value Vrel achieved by each policy after 100 timesteps on
the discretized Rel-POMDP problem. Note that the y-axis is inverted; lower (less
negative) is better. (c) Probability p = Pr(st ∈ Xgoal) that the movable object
is in the goal region at each timestep on the continuous Rel-POMDP problem.
Results are averaged over 500 trials and error bars denote a 95% confidence
interval. Best viewed in color.

that the movable object is in Xgoal at each timestep when simulated using the
continuous model. As expected, the higher value achieved by Rel-SARSOP (
) and Rel-DESPOT ( ) on the discretized problem translates to those algo-

rithms achieving a higher success rate than Rel-QMDP ( ) on the continuous
problem. This result suggests that discretizing the state space does not harm a
policy’s performance on the continuous problem.

Rel-QMDP ( ) performs poorly on this problem, achieving < 30% suc-
cess probability, because QMDP does not take multi-step information-gathering
actions [31]: the robot pushes straight without localizing the object.

Rel-SARSOP ( ) and Rel-DESPOT ( ) execute information-gathering
actions by moving the hand laterally to drive the movable object into one of the
fingertip contact sensors, then push the object into the goal region. These results
replicate those in prior work [17, 25] by confirming that information-gathering is
necessary to perform well on this problem. Our POMDP formulation provides a
principled method of automatically constructing policies that gather information
when necessary to complete the task.

Our intuition is that it is more difficult to solve Lat-POMDP than Rel-
POMDP. Therefore, it is important that we verify that DESPOT solves Rel-
POMDP before applying it to Lat-POMDP. Our results confirm Rel-DESPOT
( ) achieves comparable value and success probability to Rel-SARSOP ( ).

6.4 Lat-POMDP Experiments

We evaluate the proposed approach (Lat-DESPOT) on Lat-POMDP in four
different environments: (a) an empty table, (b) obstacles on the right, (c) ob-
stacles on the left, and (d) more complex obstacles on the right. Unlike in the
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(d) Complex Obs.

Fig. 4: Performance of Rel-QMDP (RM ), Rel-SARSOP (RS ), Rel-
DESPOT (RD ), Lift-QMDP (LM ), Lift-SARSOP (LS ), and
Lat-DESPOT (LD ), the proposed algorithm, on four Lat-POMDP environ-
ments. (Top) Value achieved by each policy after 100 timesteps on the discretized
problem (less negative is better). (Middle) Probability p = Pr(st ∈ Xgoal) that
the movable object is in the goal region at each timestep on the continuous prob-
lem. (Bottom) Probability that execution is feasible. Lift-QMDP, Lift-SARSOP,
and Lat-DESPOT are omitted because they do not take infeasible actions. Re-
sults are averaged over 500 trials and error bars denote a 95% confidence interval
and axis labels are shared across the plots in each row. Best viewed in color.

Rel-POMDP experiments, kinematic constraints are present in the form of reach-
ability limits, self-collision, and collision between the arm and the table. Scenes
(b), (c), and (d) are constructed out of objects selected from the YCB dataset [6].

Figure 4 shows results for each scene. Figure 4-Top shows the value Vlat
achieved by each policy on the discretized Lat-POMDP. Figure 4-Middle shows
the probability that the movable object is in Xgoal at each timestep, treating
instances that have terminated as zero probability. Figure 4-Bottom shows the
proportion of Rel-QMDP, Rel-SARSOP, and Rel-DESPOT policies that are ac-
tive at each timestep; i.e. have not yet terminated by taking an infeasible action.

Rel-QMDP (RM ) and Lift-QMDP (LM ) perform poorly across
all environments, achieving < 30% success probability, because they do not take
multi-step information-gathering actions. Figure 4 confirms this: both QMDP
policies perform poorly on all four environments. This result demonstrates that it
is important to gather information even when kinematic constraints are present.

Rel-SARSOP (RS ) and Rel-DESPOT (RD ) perform well on envi-
ronments (a) and (b) because they hit obstacles late in execution. The converse
is true on environments (c) and (d): both policies hit obstacles so quickly that
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they perform worse than Rel-QMDP! This result highlights that it is important
to consider kinematic constraints even when uncertainty is present.

Lift-SARSOP (LS ) performs near-optimally on environments (a) and
(b) because it does not take infeasible actions and gathers information. How-
ever, it performs no better than Rel-QMDP on problem (d). This occurs be-
cause Lift-SARSOP myopically considers obstacles in a one-step lookahead and
may oscillate when blocked. Small changes in the environment are sufficient to
induce this behavior: the key difference between environments (b) and (d) is the
introduction of a red box that creates a cul-de-sac in the lattice.

Our approach, Lat-DESPOT ( ), avoids myopic behavior by considering
action feasibility during planning. Lat-DESPOT performs no worse than Lift-
SARSOP on environments (a) and (b) and outperforms it on environments (c)
and (d). Unlike Rel-SARSOP, Lat-DESPOT identifies the cul-de-sac in (d) dur-
ing planning and avoids becoming trapped in it. In summary, Lat-DESPOT is
the only policy that performs near-optimally on all four environments because it
considers both uncertainty and kinematic constraints during planning.

Our unoptimized implementation of Lat-DESPOT took between 200 µs and
2.4 s to select an action on a single core of a 4 GHz Intel Core i7 CPU. The
policy was slowest to evaluate early in execution, when information-gathering
is necessary, and fastest once the movable object is localized because the upper
and lower bounds become tighter. The QMDP and SARSOP policies, which are
computed offline, took an average of 1.6 µs and 218 µs to evaluate respectively.

We are optimistic about achieving real-time performance from Lat-DESPOT
by optimizing our implementation of the algorithm in future work. Since DESPOT
is an anytime algorithm, speeding up the search will both improve the quality
of a solution given a fixed time budget and reduce the time required to find a
solution of a desired quality.

6.5 Upper Bound Validation

Finally, we combine the data in Figure 3-Left and Figure 4-Top to empirically
verify the bound we proved in Theorem 2. The value of Rel-SARSOP ( )
and Rel-DESPOT ( ) on Rel-POMDP (Figure 3-Left) are greater (i.e. less
negative) than the value of all policies we evaluated on Lat-POMDP (Figure 4-
Top). The data supports our theory: the optimal value achieved on Rel-POMDP
is no worse than the highest value achieved on Lat-POMDP in environment (a)
and greater than the highest value achieved in environments (b), (c), and (d).

7 Discussion

In this paper, we formulated the problem of planar contact manipulation under
uncertainty as a POMDP in the joint space of robot configurations and poses
of the movable object (Section 3). For computational efficiency, we simplify the
problem by constructing a lattice in the robot’s configuration space and prove
that, under mild assumptions, the optimal policy of Lat-POMDP will never



14

take an infeasible action (Section 4). We find a near-optimal policy for Lat-
POMDP using DESPOT [43] guided by upper and lower bounds derived from
Rel-POMDP (Section 5).

Our simulation results show that Lat-DESPOT outperforms five baseline
algorithms on cluttered environments: it achieves a > 90% success rate on all
environments, compared to the best baseline (Lift-SARSOP) that achieves only
a ∼ 20% success rate on difficult problems. This highlights the importance of
reasoning about both object pose uncertainty and kinematic constraints during
planning. However, Lat-DESPOT has several limitations that we plan to address
in future work.

First, our approach assumes that the robot has perfect proprioception and
operates in an environment with known obstacles. In practice, robots often have
imperfect proprioception [4, 22] and uncertainty about the pose of all objects in
the environment. We hope to relax both of these assumptions by replacing the
deterministic transition model for robot configuration with a stochastic model
that considers the probability of hitting an obstacle. This extension should not
significantly affect computational complexity because DESPOT—as with most
online solvers—does not scale directly with the size of the state space.

Second, we are excited to scale our approach up a larger repertoire of ac-
tion templates (including non-planar motion), solving more complex tasks, and
planning in environments that contain multiple movable objects. Solving these
more complex problems will require more informative heuristics. We are opti-
mistic that more sophisticated Rel-POMDP policies, e.g. computed by Monte
Carlo Value Iteration [2], could be used to guide the search. Additionally, we are
interested in using macro actions [30] consisting of the repeated execution of an
action template to reduce the effective horizon of the search and methods that
operate on a continuous action space to incrementally densify the lattice [40].

Third, our approach commits to a single inverse kinematics solution qlat(xr)
for each lattice point. This prevents robots from using redundancy to avoid kine-
matic constraints. We plan to relax this assumption in future work by generating
multiple inverse kinematic solutions for each lattice point and instantiating an
action template for each. Our intuition is that many solutions share the same
connectivity and, thus, may be treated identically during planning.

Finally, we plan to implement Lat-DESPOT on a real robotic manipulator
and evaluate the performance of our approach on real-world manipulation tasks.
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