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Abstract—In assistive teleoperation, the robot provides assis-
tance by predicting the user’s intent. Prior work has focused on
improving prediction by adapting it to the user’s behavior. In this
work, we investigate adaptation in the opposite direction: training
the user’s behavior to the prediction. Results from our user study
suggest that users can significantly improve the performance of
a simple static predictor after brief exposure to its behavior. In
addition, we find this improvement to be more significant when
the cognitive load of teleoperation is reduced.1
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I. INTRODUCTION

We view intent prediction as a collaborative activity be-
tween the actor and the observer. While the observer (here, a
robot) tries its best to predict the actor’s intent (here, a user of
the robot), the user can also attempt to make his or her intent
more legible to the robot. Although much work has focused
on the robot’s predictor [1], [7], the quality of the prediction
is inherently limited by ambiguity in the user’s behavior. In
this work, we investigate the idea of training user behavior to
be less ambiguous (more legible or intent-expressive) to the
predictor.

We focus on the assistive teleoperation domain, where
control is semi-supervisory. The user provides input to the
robot, and the robot blends this input with its own plan to
execute the user’s intent [2]. It is this tight coupling between
user and predictor that provides incentive to the user to provide
legible input. This idea has strong parallels in the IUI literature,
in the observation that users can alter their actions when they
want their plan to be recognized [6]. In search systems too,
users are able to adapt to degraded search systems in order to
improve the quality of information retrieval [4].

User adaptation, however, can be harmful if unguided. For
example, hyperarticulation in speech, which helps a human
listener, can lead to lower accuracy from a speech recognition
system [3]. This stresses the importance of guiding adaptation
with feedback from the predictor: users must provide input
legible to the robot rather than to another human.

In addition, since user adaptation is a learning process,
cognitive load can hinder its effectiveness. Attention given
to teleoperating the robot takes away from the capacity to
understand the predictor. For our user study, we test this
intuition by modulating the ease of control.

Our results suggest that users can significantly improve the
performance of a simple static predictor after brief exposure
to its behavior.

1Parts of this work appear in a paper conditionally accepted to JHRI.
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Fig. 1: System overview and study results

II. EXPERIMENTAL DESIGN

Hypotheses. We investigate two hypotheses:

H1: Users can improve the legibility of their input when
given real-time feedback on prediction correctness and
confidence.

H2: Improvement of legibility is greater for teleoperation
requiring lower cognitive load.

Dependent Measure. In order to quantify legibility of user
input, we define a metric capturing how well the robot can
make predictions based on the input. Given the trajectory of
user inputs so far, ξS→Q, the robot computes a confidence
for each possible goal G, C(ξS→Q, G), and predicts the goal
with the highest confidence (Fig.1(d)). A user’s input trajectory
ξS→G∗ is legible if the robot can predict the intended goal G∗
with high confidence at every point Q along the trajectory.
Therefore, we define the metric of legibility to be the mean
confidence in the goal G∗ along the trajectory:

M =
1

Z

∑

Q∈ξS→G∗

C(ξS→Q, G
∗)

with Z being the number of points along the trajectory.
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We implement the prediction algorithm proposed by [2]
and use its scaled probability estimates as confidence. In our
study we use the sum of squared velocity magnitudes as the
cost of a trajectory.

Methods. We use a teleoperation interface that allows users
to control HERB [5], a robot with 7DOF arms, through a
whole-body interface that tracks the user’s skeleton (OpenNI,
www.openni.org), yielding an arm configuration which serves
as the user input (Fig.1(a)).

In order to examine H1, we allowed users to first practice
teleoperating HERB by moving towards target locations. After
becoming familiar with the interface, users went through an
initial testing phase, during which we recorded the legibility
of their input as they performed a pre-defined set of tasks
involving maneuvering HERB’s hand towards one of two goal
locations. In order to obtain unbiased estimates of the user’s
trajectories, we did not inject any assistance into the system.

In the training phase, users performed a different set
of similar tasks, now with a visual indicator displaying the
robot’s confidence projected around the predicted goal location
(Fig.1(b)). During this phase, the experimenters encouraged the
users to find ways to improve this confidence.

Lastly, the prediction indicators were removed, and the
users went through a final testing phase, in order to test
whether training improved input legibility. This phase was
simply a replication of the initial testing phase.

Participants of the above experiment belonged to the high
cognitive load group. In order to test H2, we repeated the
experiment with an interface requiring reduced cognitive load.
The low cognitive load group teleoperated a virtual robot with
kinematics that matched the user, drastically increasing the
ease of control (Fig.1(c)).

Subject Allocation. We recruited 8 participants, 6 female and
2 male. Their ages ranged from 20-33, and none of them had
prior experience with robots. The participants were equally and
randomly partitioned into the two between-subject groups.

III. RESULTS

Improvement in legibility To test H1, we performed a re-
peated measures ANOVA to determine whether the training
factor was significant. We included two repeated measures, the
subject and the task. In order to control for practice effects, the
time taken to complete the task was included as a covariate.
We found that participants moved significantly more legibly
during the final condition (F (1, 22) = 11.71, p = .002),
while the time taken to complete the task was not a significant
effect (F (1, 22) = 1.11, p = .303). These results suggest that
exposure to the intent-predictor allowed users to improve the
predictor’s confidence by producing more legible motion.

Effect of cognitive load To test H2, we used the improvement
in legibility as a dependent measure, and performed a repeated
measures ANOVA to determine the effect of the cognitive load
factor on this measure. We found that the improvement was
significantly greater for users in the low group (F (1, 46) =
5.18, p = .027) (Fig.1(e)).

IV. DISCUSSION, LIMITATIONS, AND FUTURE WORK

Our study shows that users significantly improved their
input after a training phase, during which users have access
to feedback from the predictor. However, it is still unclear
whether users are learning to become legible to the predictor,
or they are simply producing motion that would be legible
to other humans. If a robot’s predictor is intuitive and its
predictions are similar to a human’s predictions, becoming
legible to it may require little or no training. On the other
hand, learning to be legible to unintuitive predictors may not
be possible at all. Future work must formalize the notion of
intuitiveness for prediction algorithms and investigate its effect
on input legibility improvement.

We also examined the effect of cognitive load on legibility
improvement. Without the cognitive load of teleoperating a
real robot with dissimilar kinematics, users achieved a greater
improvement in legibility. This effect suggests that it may
not be easy for users to naturally adapt to a predictor in
a practical setting, where cognitive load is normally high.
Instead, a dedicated training session in a simplified setting,
where users pay full attention to the predictor, would be more
effective.

Though the improvement was significant overall, some sub-
jects were outliers. One subject employed a basic memoriza-
tion strategy of what type of input was best in what situation,
rather than attempting to generalize the mapping found during
the training phase. This resulted in poor performance during
testing, highlighting the importance of intuitive predictors and
appropriate training as opposed to natural adaptation. Another
subject explained that she found correct predictions to be
“good enough” for the task. Since assistance was removed
in the study, the utility of confident predictions may not have
been apparent to the participants. For future work it would be
worthwhile to understand how the robot’s assistance interacts
with this user adaptation, and whether explicit feedback is
really needed.

Overall, our study took a small step towards a better under-
standing of this under-exploited resource of improving learners
by improving their user’s behaviors. We look forward to more
in-depth analysis of the factors that affect this improvement.
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