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Abstract—During operation of robots large amounts of
data are produced and processed for instance in perception,
actuation, or decision making. Nowadays this data is typically
volatile and disposed right after use. But this data can be
valuable and useful later. Therefore we propose a database
system that taps into common robot middleware to record any
and all data produced at run-time. We present two examples
using this data in fault analysis and performance evaluation and
describe real-world experiments run on the domestic service
robot HERB.

I. INTRODUCTION

Autonomous mobile robots produce an astonishing amount
of run-time data during their operation. Data is acquired
from sensors and actuator feedback, processed to extract
information, and further refined as the basis for decision
making or parameter estimation. In today’s robot systems,
this data is typically volatile. It is generated, used, and
disposed right away. However, some of this data might be
useful later, for example to analyze faults or evaluate the
robot’s performance. A system is required to store this data
as well as enable efficient and flexible querying mechanisms.

In particular, such a data store must have the following
capabilities: (C1) ability to store any and all data produced
on the robot in real-time; (C2) powerful retrieval features
to query specific data; (C3) integration with typical robot
middleware; (C4) no or minimal configuration; (C5) easy
adaptation to evolving data structures; (C6) distributable
among multiple robots and off-board machines; (C7) inde-
pendence towards robot platform and software context.

Motivated by these requirements, we propose an architec-
ture for data storage and retrieval based on MongoDB [1],
a state-of-the-art document-oriented, schema-less database.
MongoDB groups related value fields into documents and
stores them without predefined or enforced data schemas.
By giving up strong ACID properties (atomicity, consistency,
isolation, and durability) prevalent in competing relational
systems, MongoDB can create choices that can focus on
availability and speed first and consistency second [2]. Com-
bined with flexible data structure definitions, we can store
any and all robot run-time data at very high data-rates in
real-time (C1). For its ability to query depending on arbitrary
combinations and conditions on fields and by supporting
the MapReduce [3] paradigm, MongoDB provides excellent
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retrieval capabilities (C2). MongoDB documents have a
striking similarity to data structures used in robot middleware
allowing for a one-to-one mapping to MongoDB documents
(C3). Given the middleware’s capability to list all existing
communication channels, by tapping those channels we can
virtually eliminate the need for configuration (C4). Because
no particular schema is enforced, evolving data structures,
that are prevalent in robotics due to the high speed of
innovation and development, can be accommodated (CS5).
MongoDB was designed to be highly scalable, supporting
replication as well as sharding where documents only exist
on a subset of all database instances (C6). We have im-
plemented generic recording facilities for the well-known
robot operating systems ROS [4] and Fawkes [5]. Run-time
generated data is stored by tapping the communication mid-
dleware, listening for exchanged messages without requiring
modifications to any existing component. The stored data is
independent of the particular robot system (C7).

For a variety of problems such a data store can be useful.
It can provide, for example, input for reinforcement learning
during robot idle times, or a robust and persistent world
model to store acquired information for a longer time [6]. A
particular example we briefly present is an approach to use
the database for systematic manual fault analysis. Another
example we detail is the application in performance evalu-
ation, especially for the case that the relevant parameters or
the time range of interest are not known a-priori. Recently,
a related cross-platform data store was proposed to compare
simulated and real-world results in robotic surgery [7].

We make the following contributions: 1) a generic robot
database, which fits naturally with robot middleware systems
to record any and all data generated at run-time, providing the
ground for many new applications; 2) its application in fault
analysis, using a Data—Information—Knowledge hierarchy
as a data flow model for robot data processing, and in
performance evaluation using the MapReduce paradigm.

We are excited about this research direction. We believe
that it lays the foundation for organizing the diverse, large-
scale data that is produced by modern autonomous robots. In
the future we imagine robots that share common databases
among each other or with nodes in cloud-computing infras-
tructure leveraging its vast amounts of processing power and
data [8] to cope with future robotic challenges.



II. GENERIC ROBOT DATABASE

In this section we describe the chosen database system,
how it fits nicely with typical robot middleware, and how
data is stored and queried.

Relevant Features of the Database MongoDB

MongoDB is a document-oriented, schema-less database
which fits particularly well with robot middleware.

Document-oriented means that key-value pairs (fields) are
grouped into entities called document. The keys are names
used to access a certain value as well as selectors to retrieve
a particular document. The values are of basic types like
numbers or text, or nested documents. For example, in
Figure 1 the content-related keys “frame”, “child_frame”,
“translation”, and “rotation” represent the location and orien-
tation of a child coordinate frame with respect to another. The
frame and child_frame keys reference text values holding the
name of the frames, while the translation and rotation fields
contain sub-documents consisting of number values repre-
senting Cartesian translation and rotation. Readers familiar
with ROS might see the striking similarity to its transform
message type. Indeed this very similarity is a strength of
the document-oriented nature which we are going to exploit
later on. Since there is a one-to-one mapping between the
two it is very easy to store and retrieve communicated data.
A similar argument applies to the Fawkes framework.

Documents are schema-less, meaning there is no a-priori
declaration or enforcement of a particular structure. This
is quite contrary to classic relational database management
systems where semi-static schemas to which applications
have to comply are enforced by the database. Documents
in MongoDB tend to have structure derived from the stored
data, the schema is hence implicitly and dynamically defined
by the application. For instance, even though the schema
for the document in Figure 1 has not been explicitly de-
fined, other transforms will likely have the same structure.
Documents of a similar or the same dynamic structure are
typically grouped into collections. Then, the application has
a first frame of reference of what to expect from documents
from a particular collection. But the schema is not enforced,
and this property is particularly useful for fast changing
robotic applications using a database. As we often see, data
structures used for component interaction and communica-
tion are more or less frequently modified. Were the schema
enforced, changing the type of a value or adding or removing
keys could pose a problem. In the case of a schema-less
database, we can store these documents of similar (but still
different) structure in the same collection. The differentiation
can then be shifted towards the application, either defining a
query in a way that only certain forms of the document are
retrieved, or formulating appropriate checks in the processing
code. MongoDB also provides capped collections which are
collections of a fixed maximum size. When the maximum
size is reached, new records replace the oldest entry. When
continuously logging, such a specified maximum can prevent
accidentally exceeding the available storage capacity.
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{

_id: "4f55e28ffa24ebb2e469d331",

_ _recorded: "2011-11-11T17:17:17z .2342",

frame: "/rx28/tilt",

child_frame: "/kinect/image",

translation: { x: 0.1, y: 0.2, z: 0.3 },

rotation: { x: 0.0, y: 0.0, z: 0.0, w: 1.0 }
}

Fig. 1. MongoDB document example for a coordinate transform

Indexing is a database feature particularly relevant for
query performance. MongoDB maintains indexes over col-
lections for specified combinations of document fields. If
new applications create new query patterns, corresponding
indexes can easily be generated as needed.

One of the original intents to create document-oriented
stores was to ease replication. Denormalization of documents
and hence creating independence between documents makes
this very efficient. In our particular case of a robot database
we imagine that replication could be useful for applications
like a shared, distributed world model among a group of
robots, more than failure safety during database downtime.
Nevertheless, this feature is outside the scope of this paper,
as it would also require to consider the connections between
consistency, availability, and partitioning (cf. CAP conjec-
ture [2]). For now, we focus on the single-robot case allowing
us to ignore these questions.

Robot Software Context

Robot systems often employ software frameworks and
middleware for inter-component and tool communication.
The proposed database architecture has been implemented
in two such frameworks, ROS and Fawkes.! The particularly
interesting aspect is the communication middleware.

ROS [4] uses a messaging middleware. Topics are reg-
istered with a central broker. Each topic has a message
type defined hierarchically of elementary data types such as
numbers and text strings or other message types (without
cyclic dependencies). Subscribers of a topic connect to all
publishers communicating in a peer-to-peer fashion.

Fawkes [5] uses a hybrid blackboard-messaging middle-
ware. Shared memory areas (interfaces) are created labeled
with a type which defines their data structure. Interface types
are shallow and consist of elementary types such as numbers
or text strings. Data is then exchanged via read and write
transactions on a central blackboard. Messaging is used for
command queuing.

In the following we focus on ROS for reasons of brevity.

MongoDB Recording and Robot Middleware

Both ROS and Fawkes already provide data recording
facilities. However, these tools store data in binary streams
to a file, copying chunks of volatile memory to disk. This
can be very useful for certain tasks like recording sensor
data for later repeated playback to test processing applica-
tions, but they lack advanced querying features and platform
independence which are important for many applications.

ISource code and documentation for ROS and Fawkes are available at
http://www.fawkesrobotics.org/projects/mongodb-1log/



db.behavior.find(
{behavior: "grab",
status: "failed"}
) .sort ({___recorded:

object: "bottle",

-1}).1limit (1)

db.tf.find(
{frame: "/kinect/depth",
child_frame: "/object/bottle",

__recorded: {$gte: start, $lte: end}})

Fig. 2. MongoDB example queries for the latest failed attempt to grab a
bottle and coordinate transforms in a defined time range

A requirement for acceptance of an online storage system
operated continuously along the robot software is no or only
minimal configuration. We can achieve this by exploiting
two properties of the middleware. First, message types can
be introspected at run-time, meaning that we can iterate
over the fields of the structure and their respective values.
Second, both frameworks provide a method to retrieve a list
of existing topics or interfaces. Hence, to start recording all
data automatically, we get this list and start a recording agent
for each entry. On each message for a topic or update for
a blackboard interface received, the agents can iterate over
the structure’s fields and create a corresponding MongoDB
document, which is then stored in the database.

Specifically, in the case of ROS we have created a generic
tool which can record any and all messages transmitted via
topics. A master instance spawns one recording node per
topic. Each node connects to all publishers of the specified
topic and stores all received messages in the database. Some
optimizations are described in Section IV.

Data Inquiry and Retrieval

A particularly important feature is efficient and yet flexible
data inquiry and retrieval. The binary data stores provided
by ROS and Fawkes allow for a sequential advance or search
through the recording only.

By using MongoDB, we gain the ability to formulate
complex queries based on arbitrary document fields, even on
the pure existence of such. By using indexes, these queries
are very fast compared to sequential searches. In Figure 2 we
show two example queries. The first retrieves the document
which contains information about the last failed execution
of grabbing a bottle. The second extracts all positions of a
bottle which were recorded in a specified time range, for
example during the time the failed behavior was executed.

MongoDB supports the MapReduce paradigm [3] which
is suitable for condensing answers out of large data sets.
Based on a set of input documents, determined by a regular
query, the two higher order functions map and reduce are
used to process the data. First, map applies a given function
to each of the input documents emitting tuples of a grouping
key and a transformed, extracted, or otherwise preprocessed
document. Then the reduce function is applied to merge
sets of emitted documents with the same grouping key. The
resulting value can be input for other invocations and the
process continues until a single result record emerges. The
reductions are necessarily independent of each other and can
therefore be easily parallelized. MongoDB supports running
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a finalize function on the reduction result for each key, for
example to compute one-step values like averages. Not only
is MapReduce used to boost query performance, but it is
also an intuitive way of processing data for certain applica-
tions. An example is provided in Section III (Performance
Evaluation).

III. APPLICATIONS IN FAULT ANALYSIS
AND PERFORMANCE EVALUATION

Many applications of a generic robot database are conceiv-
able. We now give two examples we implemented employing
the database in fault analysis and performance evaluation.

Data-driven Fault Analysis

In this section we describe a novel approach to perform a
systematic guided fault analysis by inspecting data recorded
at run-time. We look at the frequent and time consuming sub-
class of robot failures caused by wrong data, for instance
by an error in a software component, or by unforeseen or
low-quality input from sensors or actuator feedback. The
goal is to identify the component or sensor which caused
the bad data. Considering the large amount of data robot
systems produce nowadays, we strive for a solution to
increase development and debugging efficiency by reducing
the amount of irrelevant data to look at and making relevant
data appear more prominent in our search.

We model the data flow using the Data-Information-
Knowledge-Wisdom (DIKW) hierarchy [9], [10]. The in-
tent is to understand the emergence of Actionable Knowl-
edge [11], that is Knowledge the robot can use to make
decisions and act upon to achieve its tasks [12]. We classify
content of the robotic mind into a hierarchy. Typical robot
data processing pipelines build trees in a bottom-up fashion.
We will now explain this process along Figure 3, showing
the establishment of a belief of the position of a soda can.
As a start, Data is acquired, that is color and depth images, a
point cloud, and the associated transforms with respect to a
common coordinate frame. Actuators like a pan-tilt unit for
the camera might also contribute. The Data is processed to
extract useful Information combining the transforms with the
positional information from the sensors, e.g. the position in
the depth frame. Obstacle subtraction using voxel grids might
also be on this level. The Information is further refined to
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Fig. 4. Online data storage and post mortem fault analysis using the database

Knowledge by means of a weighted average of the extracted
positions to gain higher accuracy. Note that this is only one
particular way to gain Knowledge. Other methods might
include tracking objects over time or combining Information
with background knowledge, for example grasps that can be
applied to an object. Ultimately the robot bases behavioral
decisions on subsets of its Knowledge. For different behav-
iors this subset might be specific and we call this Actionable
Knowledge which depends on the particular behavior. In
the background of the figure we depict the typical DIKW
pyramid. For this paper we conclude our hierarchy at the
Knowledge level. In future work this might be extended, for
example to consider machine learning results used by the
robot as Wisdom. We also understand that for contemporary
robot systems the extracted Information is often used without
further refinement, therefore we do not insist on or proclaim a
well-defined boundary between Information and Knowledge
in all situations. With regard to the desire to primarily ex-
plain Actionable Knowledge, we take a pragmatic approach
and allow promotion of Information to Knowledge without
further processing.

Now imagine that the robot is to grab a soda can and fails,
e.g. its grasp is off by a few centimeters. We assume that this
is caused by an error somewhere along the data processing
path. To analyze this kind of error, we employ a fop-down
guided search through the DIKW hierarchy based on the data
stored in the database. The goal is to minimize the amount
of data we need to look at. We classified all the data that
is produced, extracted, and refined by the robot a-priori into
the Data, Information, and Knowledge levels and modeled
their relations. In our experiments this was a manual step, it
might pose an interesting research question to find a way to
do this classification automatically.

Robots need some kind of behavior execution system, for
example a system like the Lua-based behavior engine [13].
It provides a reactive layer which takes commands from a
higher level (deliberative) agent and instructs and monitors
low-level components like locomotion. Consider Figure 4
which sketches analysis of the fault while grasping the
soda can. Several sensor processing components analyze the
scene and build up knowledge trees (1). All of this run-
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time data is continuously stored in the database (2). The
relevant Actionable Knowledge for grasping the cup are the
object’s and the robot’s positions (3). This is used by the
behavior component to make decisions and instruct the lower
level components. It also records additional information like
behavior execution start and end times to the database (4).
Now the grasping fails and we are going to analyze the
cause of the problem. The recorded behavior information
allows to create a timeline and query the time range of
the failed behavior (5). For this particular time range we
now query the recorded Knowledge from the database (6).
Then we make use of the DIKW hierarchy to guide our
search for the reason of the failure (7). We start with the
soda can position and analyze its credibility and plausibility.
To quickly verify data from the database, visualization tools
could be useful, for example like ROS’ rviz replaying the
scene at the time of the error. We advance to the Information
level and retrieve the separate positions, from which we find
that the RGBD and laser range finder data agree, but the
monoscopic camera deviates. Hence we descend further into
the camera’s Data layer. Looking at the recorded images and
bounding boxes of the detected object we quickly see that
they match. Consequently we investigate further Data and
look at the transformation, for example using the second
query from Figure 2. We see that the expectation and the
observed values do not match. Finally, we find that the
camera mount has shifted over time, for example because
a screw got loose. A barely visible horizontal shift of the
camera by only 3 ° can already cause a 5 cm positional error
at 1 m distance to an object.

Even though the root cause of the problem is simple,
consequences can be severe and investigation can be tedious.
Incorrect data which propagates and cascades through the
system and manifests in failed robot behaviors is the partic-
ular class of errors we strive to make easier to diagnose using
the proposed guided approach. In our example we could
prune the depth and point cloud sub-trees of the knowledge
tree. We have presented a problem which is persistent. But
often problems cannot be as easily reproduced. In both cases,
a continuously recording database which provides flexible
query abilities supports faster post mortem diagnoses.



map = function () {
emit (this.behavior,
{successes: this.success ? 1
fails: this.success ? 0 1,
duration: this.duration,
dursqg: this.duration * this.duration });

0,

}

reduce = function (key, values) {
var result = { successes: 0, fails: 0,
duration: 0, dursqg: 0 };

values.forEach( function (value) {
result.successes += value.successes;
result.fails += value.fails;
result.duration += value.duration;
result.dursqg += value.dursqg;
1)
return result;
}
finalize = function (key, value) {
var N (value.successes + value.fails);
value.duration_avg value.duration / N;
value.duration_dev
Math.sqgrt ( (value
Math.pow (value
return value;

}

.dursq / N) -

.duration_avg, 2));

Fig. 5. MongoDB MapReduce performance query example

Performance Evaluation

Performance evaluation means to analyze criteria that
determine how good the robot is at accomplishing its task.
As a simple example we will set the goal to analyze, for the
task to grab a soda can and bring it to a human, the success
rate of the last month and the average time taken.

As performance evaluation often includes aggregation of
data, the MapReduce paradigm proves useful for this task.
We extract information about all behaviors executed in a
certain time range and count the number of successes and
failures as well as the average time the behavior took
and its standard deviation. In Figure 5 the corresponding
MapReduce query is shown. First, map emits a count 1 or 0
for success and failure depending on the behavior’s outcome,
as well as duration and squared duration information (for
deviation). The reduce function is then applied, using the
name of the behavior as the key to group the emitted records,
to compute cumulative values for each behavior.

After reduction has completed, one result record for each
behavior containing the accumulated data is stored. For each
such record the finalize function is called once, enriching it
with average duration information and its standard deviation.
The resulting records are then stored in a new collection for
retrieval.

IV. EXPERIMENTS AND DATABASE EVALUATION

Experiments were conducted on the domestic service robot
HERB [14] depicted in Figure 6, using ROS. Its sensors
are an RGBD and monoscopic camera as well as a rotating
3D laser range finder mounted on a stationary mast. It
features two 7 DoF arms for bimanual manipulation and a
wheeled base. Three high-performance mobile workstations
with hyper-threaded quad-core processors make up the pri-
mary compute capacity. Each laptop features 8 GB of RAM.
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Fig. 6.
Personal Robotics Lab at Carnegie Mellon University

HERB 2.0: A bimanual mobile manipulator developed at the

For the experiments, HERB’s task was to bring bottles from
a table to a human user.

The generic recording facilities for ROS were written
in Python to exploit message introspection which is un-
available in the C++ APIL. However, deserialization of the
network streams into usable representations can be expensive
in Python depending on the message type and size (cf.
benchmark below). Hence, for message types like images or
transforms which can grow quite large or are sent at a very
high frequency, specialized loggers have been written in C++.
In our experiments, the recording started with only minimal
configuration which excluded duplicate topics, e.g. to avoid
storing the uncompressed image of an already recorded
compressed image. The behavior system was extended to
directly record start and end times, outcome, and potential
error messages to the database in one document per executed
behavior for more convenient queries.

The system supports automated generation of performance
graphs like the ones in Figure 7 using RRDtool [15]. The up-
per graph shows the almost constant growth of the database
during operation. The growth rate on HERB typically is
about 120 MB/min. At peak times up to 500 MB/min were
recorded. Although this was caused by too high update
frequencies of some components, it shows that the system
can even cope with such a high throughput. The lower graph
shows the number of insert operations performed during
normal operation which averages at about 4300 inserts/min.
To overcome current resource limitations (due to slow Python
ROS message deserialization, see below) a distinguished
logging machine was used. With today’s high network band-
width capabilities and transparent middleware networking
support this is feasible.

Figure 8 shows the results of benchmarks performed on
an Intel E6750 with 8 GB of RAM and a local hard disk.
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A single topic was recorded using ROS’ native rosbag, the
generic Python MongoDB logger as well as an optimized
C++ MongoDB logger, all running at the same time with
messages produced at 100 Hz and a size of about 480 B each.
In the upper graph the rosbag CPU line (orange) is almost
hidden behind the accumulated C++-Logger/MongoDB line
(red), showing that both approaches cause a similarly low
CPU load. The C++ logger averages at 10 MB memory usage
and the Python logger at about 35 MB. The Python logger
also requires an order of magnitude more CPU time, as seen
by the purple lines. This is a problem of ROS message
parsing in Python, which is computationally expensive. A
solution could be to implement C++ ROS message intro-
spection and a generic C++ logger. Since this already exists
in Fawkes it does not suffer from this problem. The lower
graph shows the throughput overhead of MongoDB of about
30 %. Note that we recorded two topics to MongoDB, but
only one using rosbag. A considerable overhead is produced
by rosbag storing the type definition with each message.
Error scenarios were investigated using the approach out-
lined in Section III. The ability to query specific data sets,
especially when referencing a time range from a failed
behavior, helped to decrease investigation time. However, it
became apparent that future work needs to address that vi-
sualization is necessary to understand the data more quickly.

V. CONCLUSION

In this paper we have presented a system based on the
highly scalable, document-oriented, schema-less database
MongoDB which is able to record the data generated at
run-time for later use and to fulfill the required capabilities
stated in Section I. The system was run in real-world
experiments on the domestic service robot HERB producing
large amounts of data handled at typical rates of about
120 MB/min, and at peak rates of 500 MB/min. Synthetic
benchmarks demonstrated the system’s low overhead.

We have provided two specific application examples. For
one, the recorded data is used in post mortem fault analysis.
For another we described how to use the data to retrieve
quantitative performance data of the robot’s behavior show-
ing the value of the MapReduce query paradigm.

Future work might go towards better visualization support
for even easier fault analysis, or automatic diagnosis or
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DIKW classification of run-time data. It is also worthwhile
to investigate cloud-computing integration for various robot
tasks, for example by distributing the database.
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