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Abstract—Much robotics research has focused on intent-
expressive (legible) motion. However, algorithms that can au-
tonomously generate legible motion have implicitly made the
strong assumption of an omniscient observer, with access to the
robot’s configuration as it changes across time. In reality, human
observers have a particular viewpoint, which biases the way
they perceive the motion. In this work, we free robots from
this assumption and introduce the notion of an observer with
a specific point of view into legibility optimization. In doing
so, we account for two factors: (1) depth uncertainty induced
by a particular viewpoint, and (2) occlusions along the motion,
during which (part of) the robot is hidden behind some object. We
propose viewpoint and occlusion models that enable autonomous
generation of viewpoint-based legible motions, and show through
large-scale user studies that the produced motions are signifi-
cantly more legible compared to those generated assuming an
omniscient observer.

I. INTRODUCTION

The development of new robotic systems that operate in
the same physical space as people highlights the emerging
need for robots that can integrate seamlessly into human
group dynamics. An important factor of successful human-
robot interactions is communication of intent. Previous studies
have shown that humans have a universal tendency to interpret
each other’s actions as intentional and goal-directed [1], [2],
[3], [4], [5], [6], [7]. Intent-expressive motion, sometimes
referred to as legible [8], readable [9] or anticipatory [10], has
repeatedly been cited as essential for robots that work around
humans [11], [12], [13], [14].

Previous work [8] proposed a model to evaluate the leg-
ibility of a goal-directed motion based on the theory of
action interpretation [15] in psychology, the result having
strong motivations in the principle of rational action [16] and
teleological reasoning [15]. This led to an algorithm that can
autonomously generate legible motion, enabling a robot to
successfully communicate its intent to the observer. Fig. 1
(top left) shows an example, in which the robot exaggerates the
motion to the right to make to better convey that its goal is the
bottle on the right. This works well when the observer looks at
the scene from above, or sits across from the robot. Imagine,
however, being side by side with the robot and observing the
scene from the second viewpoint in the figure (top right). The
exaggeration in the motion is barely perceptible in this case.

When generating this motion, the robot assumes an om-
niscient observer, with direct access to the robot’s actual
configuration as the robot is moving. This assumption is rarely
accurate, however: a person on a wheelchair with an installed
robotic arm, an EOD operator teleoperating a robot through
an on-board camera and a mechanic working with a robotic
assistant in the assembly line are examples of observers that
have limited perception of the robot’s actual configuration. The
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Fig. 1. Legible trajectories for two viewpoints. The red trajectory (top) is
generated by an optimizer that assumes an omniscient observer. It exaggerates
the motion to the right to convey that the robot is about to grasp the
object on the right. This works well in the first viewpoint (left), but remains
ambiguous in the second viewpoint (right). The green trajectory accounts for
the observer’s viewpoint, finding a way to exaggerate the motion that makes
the robot’s goal clear in the second viewpoint.

importance of viewpoint and its relation to the expressiveness
of a motion has also deep roots in character animation [17],
[18], [19], [20]. Staging, one of the twelve Disney principles
of animation [21], emphasizes the importance of each action
being presented “in the strongest and the simplest way ...
communicating to the fullest extent with the viewers.”

Whereas in animation the focus has mostly been on select-
ing a viewpoint that maximizes clarity, in robotics applications
we typically cannot control for the viewpoint of the observer.
Instead, we can enable robots to generate motion informed
by and tailored to a given viewpoint. In this work, we
introduce a framework for the mathematical underpinnings of
this aspect of staging. Specifically, we introduce the notion
of an observer with a specific point of view into legibility
optimization (Fig. 1). This raises two challenges: accounting
for that particular viewpoint and the induced depth uncertainty,
and accounting for occlusions. We make the following three
contributions: a viewpoint model, an occlusion model, and a
user study evaluation testing the two.

Viewpoint Model. Our first contribution is legible motion
optimization in the observer’s viewpoint. We produce the
motion via functional gradient optimization in the space of
trajectories, echoing earlier works in motion planning [22],
[23], [24], [25], [26], [27], [28], [29], with legibility as an
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optimization criterion. A key difference is that, rather than
applying the principle of rational action in the world space,
we model the viewplane of the observer and project the robot
trajectory and goals to the viewplane. We then apply the
principle of rational action in that space to generate viewpoint-
based legible motion (Sec. III). Fig. 1 (bottom right) shows
an example outcome of this optimization: the robot finds a
different way of exaggerating, given the same constraints on
efficiency, which is more legible in the second viewpoint.

Occlusion Model. Our second contribution is incorporating
occlusions into legibility optimization. How does legibility
change when the observer can only observe parts of it? We
model the inference process that the human is making while
the robot is about to enter, is inside, and has exited an area
that occludes the trajectory. We then introduce generation of
occlusion-based legible motion, taking into account occlusion
in different parts of the robot trajectory (Sec. V).

User Study Evaluation. We conduct large-scale user stud-
ies to evaluate the legibility of trajectories generated with
the proposed algorithms. Our results suggest that trajectories
generated when accounting for the observer viewpoint, which
we call viewpoint-based, and the occlusion region, called
occlusion-based, are significantly more legible than trajecto-
ries that assume an omniscient observer (Sec. VI, VII).

In summary, we introduce the notion of an observer’s
viewpoint into robot motion planning. We propose a view-
point model and an occlusion model that enable autonomous
generation of viewpoint-based legible motions, and test the
models through large-scale user-studies. Results suggest that
the produced motions are significantly more legible compared
to those generated assuming an omniscient observer.

II. LEGIBLE MOTION

In this section, we discuss the notion of legibility in robot
motion, and briefly present the algorithm introduced in [22]
for generation of legible motion through iterative optimization.

Measuring Legibility. If the observer sees the actor as a
rational agent, applying the principle of rational action [16],
they expect the actor to be efficient. Efficiency can be modeled
via a cost functional C : Ξ → R+ with lower costs signifying
more “efficient” (and thus more expected/predictable to the
observer) trajectories ξ. Using the principle of maximum
entropy, C induces a probability density over trajectories ξ ∈ Ξ
given a goal G as P (ξ|G) ∝ exp

(−C(ξ)
)
. Using Bayes’ rule,

we can model the probability that a human observer would
assign to a goal candidate based on an ongoing trajectory ξ:
P (G|ξ) ∝ P (ξ|G)P (G). The legibility of the trajectory tracks
the probability assigned to the actual goal GR across time:
trajectories are more legible if this probability is higher, with
more weight being given to the earlier parts of the trajectory
via a function f(t) (e.g. f(t) = T − t, with T the total time):

LEGIBILITY(ξ) =

∫
P (GR|ξS→ξ(t))f(t)dt∫

f(t)dt
(1)

In [8], the authors showed that a robot motion with a higher
LEGIBILITY score is indeed more legible to users, i.e. users
can more quickly infer the robot’s goal.

(a) Side view (b) Top view (c) Range of views
from top to side

Fig. 2. (a-b) Incorporating observer viewpoint in trajectory generation. The
green trajectory, optimized for the side view, appears more legible to a human
viewing the motion from the side than the red trajectory, which is optimized
for an omniscient observer. (c) Legible trajectories generated for 21 viewpoints
starting from elevation 90◦and azimuth 0◦to elevation 10◦and azimuth -90◦,
in decrements of 4◦and 4.5◦.

Generating Legible Motion. The LEGIBILITY score is a
functional and following [22], we can generate a legible tra-
jectory by starting from an initial trajectory ξ0 and iteratively
improving its score via functional gradient ascent.

ξi+1 = ξi +
1

η
A−1∇̄LEGIBILITY (2)

A is used to measure the norm of a trajectory, ||ξ||2A = ξTAξ.
Expected Cost C. Generating legible trajectories assumes
access to the cost C that the human approximately expects
the robot to optimize. Following previous work [22], [29],
we use sum squared velocities as the cost functional C(ξ) =
1
2

∫ ||ξ′(t)||2dt. This cost encourages smooth trajectories that
go straight to the goal, matching user expectations [8].

III. HUMAN OBSERVER VIEWPOINT

We described in Sec. II that we model the observer as
expecting the robot to move efficiently, where efficiency is
modeled via a cost functional C. In this section, we derive
a viewpoint-based legibility functional by first generalizing
the notion of trajectory efficiency for the case of different
viewpoints, and then using that to model the probability that
a human observer would assign to the robot’s goal.

A. Viewpoint-based Cost.
First, we apply a transformation on trajectories, T : Ξ → Ξ̄,

so that ξ̄ = T (ξ) is the projected trajectory onto the viewplane
of the observer. We do this by transforming the waypoints of
trajectory ξ from world to camera space, and then projecting
them onto the 2D viewing plane [30].

We then define a cost function C̄(ξ) which computes the
cost of the projected trajectories onto the observer viewing
plane: C̄(ξ) = C(ξ̄) = C(T (ξ)). With the new definition,
we posit that the observer’s expectation is not on the actual
trajectory, but on its projection on the observer’s viewplane.

B. Viewpoint-based Legibility.
We compute the viewpoint-based Legibility from Eq. (1),

where P (G|ξ) ∝ P (ξ|G)P (G). The probability distribution
over trajectories given the goal G is now defined as: P (ξ|G) ∝
exp

(−C̄(ξ)
)
, i.e. it is defined in the observer’s viewpoint.

We can then use the algorithm of Sec. II to generate legible
trajectories that account for the observer’s viewpoint.
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C. Implications.

In Fig. 2 we show an example of a generated trajectory
considering the viewpoint of an observer, who views the
scene from the side. The red trajectory assumes an omniscient
observer and exaggerates the motion to the right. But because
of the viewpoint, the red trajectory does not clearly convey
the goal. Optimizing for viewpoint-based legibility yields the
green trajectory instead. The bottle that is further away from
the observer appears on the 2D viewplane to be higher than
the other. Thus, by exaggerating upwards, instead of to the
right, the green trajectory appears more legible to the observer
from their viewpoint (but it is less legible to an omniscient
observer). Both green and red trajectories have the same actual
cost C(ξ).

IV. LEGIBILITY COMPUTATION UNDER OCCLUSION

We saw in Sec. II that the legibility of a trajectory ξ
is computed by the integral of P (G|ξS→ξ(t)) along time
(Eq. (1)). In cases where the observer cannot see the ongoing
trajectory, the probability distribution over goals is different
from the case of full observability. In this section, we derive
how P (G|ξS→ξ(t)) changes in such a case.

An occlusion region induces three parts to the trajectory ξ:
(i) the robot has not entered the occlusion area, (ii) the robot is
inside the area, and (iii) the robot has exited the area (Fig 3).
We use the derivation on these cases as building blocks to
compute P (G|ξS→ξ(t)) for the general case, where the robot
enters and exits multiple occlusion regions.

A. Robot has not entered the occlusion region

When the robot trajectory thus far has been fully visible to
the observer (Fig. 3(a)), we compute P (ξS→Q|G) as the ratio
of all trajectories from S to G that pass through ξS→Q to all
trajectories from S to G [8]:

P (ξS→Q|G) =
exp

(−C(ξS→Q)
) ∫

ξQ→G
exp

(−C(ξQ→G)
)

∫
ξS→G

exp
(−C(ξS→G)

)
(3)

where ξS→Q is the trajectory segment from the start configu-
ration S to the current configuration Q.

We can simplify Eq. (3) by approximating C(ξX→Y ) by
its second order Taylor series expansion around ξ∗X→Y =
arg min
ξX→Y

C(ξX→Y ) [31]:

∫
ξX→Y

exp
(−C(ξX→Y )

) ≈ exp
(−VY (X)

) √
2πk√|HX→Y |

(4)

where HX→Y the Hessian of the cost function around ξ∗X→Y ,
and VY (X) = minξ∈ΞX→Y

C(ξ). When the cost is quadratic,
the Hessian is constant and Eq. (3) simplifies to

P (ξS→Q|G) =
exp

(−C(ξS→Q)− VG(Q)
)

exp
(−VG(S)

) (5)

The probability P (ξS→Q|G) is equal to the cost of going
through the current trajectory and continuing optimally to the
goal, over the optimal cost from the start to the goal.

Using Bayes’ rule, we can compute the probability of the
actual goal of the robot GR given the observed trajectory:

P (GR|ξS→Q) =
1

Z

exp
(−C(ξS→Q)− VGR

(Q)
)

exp
(−VGR

(S)
) P (GR)

(6)
with Z a normalizer across all candidate goals G.

B. Robot is inside the occlusion region
Let us assume that at time t, the robot is at some config-

uration ξ(t) inside the hidden area, as shown in Fig. 3(b).
The observer has viewed a trajectory snippet ξS→U , where U
is the last visible point before the robot enters the area. We
compute P (ξS→ξ(t)|G) as the ratio of all trajectories from S
that include ξS→U and pass through the occlusion region. To
do that, we integrate over all configurations xt of the set Xt

inside the occlusion region that the robot may be at time t:

P (ξS→ξ(t)|G) =
P (ξS→U )∫

ξS→G
P (ξS→G)

×∫
Xt

Pxt

∫
ξxt→G

P (ξxt→G)

(7)

Pxt
is the probability of being in state xt at time t when

the last visible state was U . It is equal to the integral of the
probabilities of all trajectories starting from U and ending at
xt, at timepoint t: Pxt

=
∫
U→xt

P (ξU→xt
). Eq. (7) can be

written as:

P (ξS→ξ(t)|G) =
exp

(−C(ξS→U )
)∫

ξS→G
exp

(−C(ξS→G)
)×

∫
Xt

Pxt

∫
ξxt→G

exp
(−C(ξxt→G)

) (8)

Whereas the observer does not directly observe the current
robot configuration, they know how much time has passed
since the robot became occluded. To account for that, we use
a Hidden Markov Model and compute Pxt

via filtering. The
HMM has initial state U and transition probabilities:

P (st+1|st, G) =
1

Z
exp

(−C(ξst→st+1
)
)

∫
ξst+1→G

exp
(−C(ξst+1→G)

) (9)

Z is a normalizing constant. Eq. (9) stems from the principle of
maximum entropy, applied for the case of a human predicting
a trajectory segment from state st to st+1, given a goal G [32].
In this work, we assume a binary observation model, where no
observation is given when the robot is inside the occluded area
and a perfect observation is given when the robot is outside.

By approximating C(ξst+1→G) as in Sec. IV-A and includ-
ing the Hessian in Z, Eq. (9) simplifies to:

P (st+1|G, st) =
1

Z
exp

(−C(ξst→st+1
)
)
exp

(−VG(st+1)
)
(10)

Eq. (8) becomes:
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(a) Robot has not entered the occlusion region (b) Robot is inside the occlusion region (c) Robot has exited the occlusion region

Fig. 3. Different cases when robot path is occluded. The human does not see the robot, when it is inside the occlusion region.

P (ξS→ξ(t)|G) =
exp

(−C(ξS→U )
) ∫

Xt
Pxtexp

(−VG(Xt)
)

exp
(−VG(S)

)
(11)

Using Bayes Rule, we have for the robot goal GR:

P (GR|ξS→ξ(t)) =
1

Z
exp

(
VGR

(S)
)

∫
Xt

Pxt
exp

(−VGR
(Xt)

)
P (GR)

(12)

Therefore, at time t we can estimate the inference the human
is making about a goal G, having observed a part of the robot
trajectory from S to U .

C. Robot has exited the occlusion region
We assume that part of the robot trajectory has been

occluded but the robot is now visible (Fig. 3(c)).

P (ξS→W |G) =P (ξS→V ∧ ξV→W |G)

=P (ξS→V |G)P (ξV→W |G, ξS→V )
(13)

For additive cost functions:

P (ξS→W |G) = P (ξS→V |G)P (ξV→W |G) (14)

To compute the first term P (ξS→V |G) in Eq. (14), we note
that the human has seen ξS→U , but has no information on the
actual trajectory followed inside the occlusion region from U
to V . Therefore, we integrate over all possible trajectories from
U to V inside the occlusion region:

P (ξS→V |G) = exp
(−C(ξS→U )

)×∫
ξU→V

exp
(−C(ξU→V )

) ∫
ξV →G

exp
(−C(ξV→G)

)
∫
ξS→G

exp
(−C(ξS→G)

) (15)

We have for P (ξV→W |G):

P (ξV→W |G) =

∫
ξW→G

exp
(−C(ξW→G)

)×
exp

(−C(ξV→W )
)∫

ξV →G
exp

(−C(ξV→G)
) (16)

Using the the approximation described in Sec. IV-A on
Eq. (15) and (16), Eq. (14) becomes:

P (ξS→W |G) =
exp

(−C(ξS→U )− VV (U)
)

exp
(−VG(S)

)
c

×

exp
(−C(ξV→W )− VG(W )

) (17)

where c is a constant accounting for the Hessian term in
Eq. (4). Using Bayes’ rule, we have

P (GR|ξS→W ) =
1

Z

exp
(−C(ξS→U )− VV (U)

)
exp

(−VGR
(S)

) ×

exp
(−C(ξV→W )− VGR

(W )
)
P (GR) (18)

Note that, once the robot exits the hidden area and becomes
visible again at point V , the human inference of the goal
P (GR|ξS→W ) is independent of the actual trajectory ξU→V

followed inside the invisible area. We show that this is actually
the case in User Study I of Sec. VI.

D. General Case

In the general case, the robot can execute any arbitrary
trajectory, entering and exiting different occlusion regions. In
that case, we can combine the derivations from the previous
sections: We split the trajectory into segments, using as
dividing points the entry and exit points of each occlusion
region previously entered, and use an HMM to do inference
for the part of the trajectory that is currently occluded, if any.

For instance, assume that after point W, the robot becomes
hidden again. As in Sec. IV-B and IV-C, we integrate over
all possible trajectories from U to V inside the first occlusion
region, as well as over all configuration points xt of the set
Xt inside the new occlusion region that the robot is at time t:

P (ξS→ξ(t)|G) =
exp

(−C(ξS→U )
)∫

ξS→G
exp

(−C(ξS→G)
)×

∫
ξU→V

exp
(−C(ξU→V )

)
exp

(−C(ξV→W )
)×∫

Xt

Pxt

∫
ξxt→G

exp
(−C(ξxt→G)

)
(19)
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P (GR|ξS→ξ(t)) =
1

Z

exp
(−C(ξS→U )− C(ξV→W )

)
exp

(−VGR
(S)

) ×

exp
(−VV (U)

)∫
Xt

Pxt
exp

(−VGR
(xt)

)
P (GR)

(20)

We compute Pxt using filtering on an HMM with start state
W . We see that the terms exp

(−C(ξS→U )
)
, exp

(−VV (U)
)
,

exp
(−C(ξV→W )

)
that refer to the trajectory part ξS→W ,

are goal-independent and cancel out when divided by the
probability sum Z over all goals G. Therefore, P (GR|ξS→ξ(t))
can be described using Eq. (12) in Sec. IV-B. We can show
likewise that when the robot has exited an occlusion region for
the second time, the probability of the goal does not depend on
the past trajectory, therefore is independent from the number
of occlusion regions and the trajectory followed inside.

E. Implications
Fig. 4 shows the probability P (GR|ξS→ξ(t)), as it changes

with time for the robot trajectory of Fig. 3. We compare
against Pomni(GR|ξS→ξ(t)) computed for the same trajectory
assuming that the robot is always visible [8]. We see that until
the robot enters the occluded region the two probabilities are
identical. Then, the probability of the goal computed with the
proposed model increases at a lower rate, since the human
observer has no reason to believe that the robot will keep
exaggerating to the right, but instead makes an estimate on the
current state of the robot, as described in Sec. IV-B. When the
robot exits the occluded region, the probability of the correct
goal becomes the same as in the omniscient case, because now
the observer has all the information relevant to the inference.

Fig. 4. Computation of the probability of the goal, as it is changes with time,
for the robot trajectory in Fig. 3. The probability of GR computed using the
proposed model is in blue color and the one assuming an omniscient observer
is in red color. P (GR|ξS→ξt ) keeps increasing while the robot is occluded
since, based on the entry point of the robot and the transition model of the
HMM, the most probable states are closer to the GR.

V. GENERATING VIEWPOINT-BASED LEGIBLE MOTION

As described in Sec. II, Eq. (2), the update rule for ξi+1 is:

ξi+1 = ξi +
1

η
A−1∇̄LEGIBILITY (21)

The LEGIBILITY score is given from Eq. (1). We describe
below the generation of legible motion for each of the three
cases of Sec. IV: the robot has not entered the occlusion area,
the robot is inside the area, and the robot has exited the area.

A. Robot has not entered the occlusion region

The gradient of legibility functional was shown to be [22]:

∇̄LEGIBILITY(t) = K ∗ exp
(
VGR

(S)− VGR
(ξ(t))

)
(∑

G exp
(
VG(S)− VG(ξ(t))

))2
∑
G

(
exp

(−VG(ξ(t))
)

exp
(−VG(S)

) (V ′
G(ξ(t))− V ′

GR
(ξ(t)))

)
P (GR)f(t)

(22)

where K = 1∫
f(t)dt

, with f(t) a function that assigns more

weight to the earlier parts of the trajectory.

B. Robot is inside the occlusion region

∇̄LEGIBILITY can be computed as follows:

∇̄LEGIBILITY = K

(
∂P
∂ξ

− d

dt

∂P
∂ξ′

)
(23)

with P(ξ(t), t) = P (GR|ξS→ξ(t))f(t), where

P (GR|ξS→ξ(t)) is given by Eq. (12), and K = 1∫
f(t)dt

.

δP
δξ

(ξ(t), t) =
g′h− h′g

h2
P (GR)f(t) (24)

with g, h as follows:

g = exp
(
VGR

(S)
) ∫

Pxt
exp

(−VGR
(xt)

)
and

h =
∑

G exp
(
VG(S)

) ∫
Pxt

exp
(−VG(xt)

)
.

When the robot is inside the occlusion region, the values of
g and h do not depend on ξ, thus g′ = 0, h′ = 0. This leads
to ∂P

∂ξ (ξ(t), t) = 0. Additionally, d
dt

δP
δξ′ = 0, since P is not a

function of ξ′. Therefore:

∇̄LEGIBILITY(t) = 0 (25)

C. Robot has exited the occlusion region

We saw in Sec. IV-C, that

P (GR|ξS→W ) =
1

Z

exp
(−C(ξS→U )− VV (U)

)
exp

(−VGR
(S)

) ×

exp
(−C(ξV→W )− VGR

(W )
)
P (GR)

Including in the normalization term Z the goal-independent
terms VV (U) and exp

(−C(ξS→U )
)

we end up with:

P (GR|ξS→W ) =
1

Z

exp
(−C(ξV→W )− VGR

(W )
)
P (GR)

exp
(−VGR

(S)
)

This equation is similar to Eq. (6), therefore the derivation
of the gradient is identical to the one followed in Sec. V-A
and described in [22].
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D. Implications

We observe that the LEGIBILITY gradient of the trajectory
is 0 when the robot is inside the occlusion region. This
result reflects our intuition, that when the robot is not visible,
changes in its trajectory do not result in a change in its
legibility, as perceived by the human observer. Therefore, the
robot will exaggerate its motion when outside the occlusion
region, but follow a straight line inside. Fig. 5(a) shows the
trajectory generated with the proposed algorithm (green) and
the one ignoring occlusion (red). Both trajectories have the
same cost. The lack of exaggeration in the occlusion region
allows the green trajectory to exaggerate more in the visible
regions. Although the gradient for the trajectory points inside
the region is 0, the points are not stationary, as the gradient of
the visible points outside the region propagates to the points
inside through the metric tensor A in the update rule of Eq. (2).

(a) (b)

Fig. 5. (a) Generated occlusion-based trajectory in green color and baseline
trajectory in red color. Both trajectories have the same cost C. (b) A trajectory
optimized for both viewpoint and occlusion (green), compared to viewpoint
only (blue) and occlusion only (olive). The goal of the robot is the bottle that
is farther away and appears to be higher than the other.

Integrating Occlusion and Human Observer Viewpoint.
The results of Sec. IV and V hold for the general case
where the observer does not have information on parts of the
robot trajectory. We can combine the occlusion and viewpoint
models by using in the equations of this section the cost C̄(ξ)
of the trajectory projected to the observer’s viewplane, instead
of C(ξ), as described in Sec. III. Fig. 5(b) shows an example
of a viewpoint-based only, an occlusion-based only and a
combined trajectory, all of the same cost C. The occlusion-
based only trajectory ignores the viewpoint by exaggerating
in the horizontal plane, and the viewpoint-based only keeps
exaggerating inside the occlusion region. The combined one
does all the exaggeration before entering the occlusion region
and goes straight to the goal when inside the region.

VI. FROM THEORY TO USERS

We conduct a large-scale user study to evaluate the legibility
of trajectories generated with the proposed algorithms. We test
that trajectories generated when accounting for the observer
viewpoint (Sec. III), called viewpoint-based, and the occlu-
sion region (Sec. V), called occlusion-based, are significantly
more legible compared to trajectories assuming an omniscient
observer. To control for confounds arising from timing and
efficiency, all trajectories have the same duration and cost.

Time(sec)
0 6 12 18

0.4

0.6

0.8

1

Fig. 6. Computation of the probability of the goal with the model of Sec. IV,
for the occlusion-based trajectory υ (blue color) and baseline trajectory ψ
(red color) of User Study I. We note that the confidence score plot for User
Study I in Fig. 8 (left) is in line with the proposed model.

A. Hypotheses

H1. Participants will find the occlusion-based trajectory sig-
nificantly more legible than the baseline.
H2. Participants will find the viewpoint-based trajectory sig-
nificantly more legible than the baseline.

B. User Study I: Occlusion Test

We present users with a point robot entering an occlusion
region with a small “window,” as shown in Fig. 7. The actual
goal GR is on the right. We run the algorithm of Sec. V,
and produce a trajectory that goes through the window, since
passing through the window generates a steep rise in the
perceived probability of the right goal, as shown in Fig. 6.
On the other hand, the baseline algorithm that assumes an
omniscient observer, ignoring occlusion, exaggerates to the
right missing the window.
Dependent Measures. We measured the legibility of the
trajectory that takes into account occlusion, which we call
“occlusion-based,” and the one that assumes an omniscient
observer, called “baseline.” We showed users three videos of
the trajectory, stopping the video after 6, 12 and 18 sec (out
of 22 sec). We asked them to predict the robot goal (Fig. 7),
briefly explain their prediction and rate their confidence on
their prediction on a Likert scale from 1 to 7. We then
combined the three answers into a single legibility score
metric, by computing a weighted sum of the ratings. The
weights decreased linearly with the time of the rating, thus
assigning more weight to earlier responses [22]. We assigned
a score of 0 to incorrect predictions.
Subject Allocation. We chose a between-subjects design in
order to not bias the users with trajectories from previous
conditions. We recruited 100 participants through Amazon’s
Mechanical Turk service, and took several measures to ensure
reliability of the results. All participants were located in the
USA to avoid language barriers, and they all had an approval
rate of over 95%. We asked users a control question that tested
their attention to the task, and eliminated data associated with
wrong answers to this question, as well as incomplete data,
resulting in a total of 94 samples.
Analysis. An unpaired two-tailed t-test supported H1, showing
that the robot trajectory had a significant effect on the legibility
score of the users (t(92) = 2.648, p = 0.010). As shown in
Fig. 8, the confidence score and prediction success rate in the
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(a) T = 6 sec (b) T = 12 sec (c) T = 18 sec (d) Complete Trajectories

Fig. 7. Environment and trajectory waypoints of User Study I(top) and II(bottom). Left/Center: The human subject is asked to predict the actual goal of the
robot in each of the three timepoints. Right: Complete trajectories. In User Study I/II, the occlusion-based/viewpoint-based trajectory is in green color and
the baseline in red color. Both trajectories are overlayed for clarity, but each user watched only one of the trajectories. In User study I, the user views the
trajectories from the top and they do not see the trajectory waypoints that are inside the grey occlusion region. In User Study II, the user views the trajectories
from the side.

first and third timepoints of the trajectory are nearly identical.
The gap between the scores of the two trajectories increases
in the second timepoint, and becomes very small in the third
timepoint when the robot exits the occlusion area. This result
is in line with the computed inference of the goal (Fig. 6),
based on the model described in Sec. IV. This supports the
prediction of our model that, once the robot is visible again, the
path inside the hidden area does not affect human inference.

C. User Study II: Viewpoint Test

We used the same environment of the previous study, but
this time we removed the occlusion area, and changed the
viewpoint to 9◦ elevation and -90◦ azimuth (side view, Fig. 7).

We then compared the viewpoint-based trajectory to the
baseline.
Dependent Measures. Users were asked to predict the goal
of the robot, briefly explain their prediction, and rate their
confidence, identically to Case Study I. A legibility score was
computed in the same way as in Sec. VI-B.
Subject Allocation. The subject allocation and data selection
were the same as in Case Study I, resulting in a total of 196
samples from Amazon Mechanical Turk.
Analysis. An unpaired two-tailed t-test supported H2. The leg-
ibility score of the viewpoint-based trajectory was significantly
higher (t(194) = 2.06, p = 0.040). We noticed that the score
decreased for both trajectories at the third timepoint (Fig. 8),
when the point-robot moved downwards as shown in Fig. 7(c).
Looking at the open-ended responses, several subjects noted
that in the third timepoint the robot “appeared to be changing
goals.” Similarly to how going up allowed subjects to infer that
the robot was moving farther away, moving down seemed to
have the opposite effect. We hypothesize that this effect could
be mitigated by having the robot going on top of the goal
and then moving vertically downwards, rather than following
a curved path to the end, and leave this for future work.

VII. GENERALIZATION TO ARM MOTION

The previous studies revealed that the mathematical model
for generation of viewpoint-based legible motion performs

well in practice. In this section, we show that the proposed
mathematical model generalizes beyond a simple 2D robot
character, by applying the model to the 7DOF right arm
of a simulated mobile bi-manual manipulator (Fig. 9). We
generated trajectories for a side (elevation, azimuth: 22◦, -90◦)
and a 3/4 viewpoint (29◦, -118◦).
Hypothesis. Participants will find the viewpoint-based trajec-
tories significantly more legible than the baseline.
Dependent Measures. Users were asked to predict the goal
of the robot, briefly explain their prediction, and rate their
confidence, identically to Case Study II. A legibility score was
computed in the same way as in Sec. VI-B.
Subject Allocation. We chose a between-subjects design, with
different groups for each trajectory. The subject and data
selection were the same as in Case Study II, resulting in a
total of 189 samples for the side viewpoint and 89 samples
for the 3/4 viewpoint.
Analysis. A two-way ANOVA showed no significant inter-
action effects between the viewpoint factor and viewpoint
optimization factor. Additionally, the test showed a statisti-
cally significant main effect of both viewpoint (F (1, 274) =
14.40, p < 0.001) and viewpoint optimization (F (1, 274) =
43.17, p < 0.001) on trajectory legibility, supporting our
hypothesis. Interestingly, the average success rate of the goal
prediction in the omniscient trajectory was 20%, as opposed
to 44% for the viewpoint trajectory. Whereas these results
show a significant improvement in legibility, they also indicate
that for some viewpoints simply changing the motion of the
arm might not be sufficient to guarantee successful inference.
In these cases, adding secondary actions, a technique widely
used in animation [21], by jointly optimizing the trajectories
of the robot arm, head, and torso, could significanly improve
the communication of intent, but we leave this for future work.

VIII. DISCUSSION

Limitations. In real-world environments, humans use environ-
mental cues to assess the 3D position of objects. Additionally,
even if the robot end-effector is occluded, the observer may
make an estimate of its position based on the angle of the
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Fig. 8. Confidence scores and success rate of goal prediction for the three timepoints of User Study I (left) and II (right), averaged over all subjects of each
group. We assigned a confidence score of 0 to incorrect goal predictions.

Fig. 9. A full-arm depiction of omniscient (left) and viewpoint-based (right)
legible trajectories for the 3/4 viewpoint.

base and the noise of the motors. We plan to address these
issues by extending the proposed model to partial observability
domains, where the spectator is making inferences based on
noisy estimates of the robot trajectory.
Implications. Motion clarity has been a key element of
Disney’s animation principle staging [21]. While at Disney
this was initially achieved by staging actions in silhouette,
3D animation evolved the principle, by placing the camera so
that the entire motion would be clear to the spectator [17]. We
showed how to automatically generate viewpoint-based legible
motions, but the proposed models could also be used to solve
the inverse problem: given a motion, find the legibility-optimal
viewpoint. We are additionally excited to explore applications
of this work in theater and puppeteering. Finally, exploiting
occlusion opens an exciting range of possibilities for genera-
tion of purposefully ambiguous or deceptive motion [33].
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