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Abstract

Grasping an object is usually only an intermediate goal for a robotic manipulator. To finish the task, the robot needs to
know where the object is in its hand and what action to execute. This paper presents a general statistical framework to
address these problems. Given a novel object, the robot learns a statistical model of grasp state conditioned on sensor
values. The robot also builds a statistical model of the requirements for a successful execution of the task in terms of
uncertainty in the state of the grasp. Both of these models are constructed by offline experiments. The online process then
grasps objects and chooses actions to maximize likelihood of success. This paper describes the framework in detail, and
demonstrates its effectiveness experimentally in placing, dropping, and insertion tasks. To construct statistical models, the
robot performed over 8,000 grasp trials, and over 1,000 trials each of placing, dropping, and insertion.
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1. Introduction

We study the problem of post-grasp manipulation, where a
robotic manipulator performs a task with a grasped object,
such as setting down a mug, inserting a key into a hole, or
flipping a pancake with a spatula. In each of these exam-
ples, knowing the pose of the object in the robot’s hand, the
grasp state, is often critical. Intuitively, harder tasks demand
a more accurate estimate of the grasp state than simpler
ones. For example, in Figure 1, balancing a pen on a table
requires more accuracy than dropping it into a container.
More generally, consider a manipulator, an object to
manipulate, a task, and a parameterized set of actions
designed to accomplish the task. In this paper we build a
data-driven framework to automate the process of deciding
whether the task is solvable with the available hardware and
set of actions, and find the action most likely to succeed.
The statistical framework proposed in this paper is suited
to model post-grasp manipulation tasks such as those
described above. We model these tasks by breaking them
into two independent steps. First, estimate the state of the
grasp with available sensor information, and second, model
the accuracy requirements that the particular task imposes
on our state estimation. This separation yields the bene-
fit that we can use the same model of state estimation for
different tasks, and the same model of task requirements
for different manipulators. Using this framework, each sen-
sor reading generates a probability function in task action

space, enabling us not only to find the optimal action, but to
understand just how likely that action is to succeed.

Figure 2 illustrates the process for the task of placing an
object. First, we use sensors in the hand to estimate the
probability distribution of the pose of the grasped object,
which will be referred to as the belief state. Second, we
predict the probability of succeeding at a task given the
pose uncertainty. Both of these are computed based on data-
driven models. Finally, we combine these probability func-
tions to predict the probability of success of each available
action, and choose the action most likely to succeed.

In this paper we test the framework with three different
manipulation tasks: placing an object, dropping it into a
hole, and inserting it, all three described in Section 1.2. The
experimental setup in Figure 2 consists of a simple gripper
(Rodriguez et al., 2010; Mason et al., 2012) mounted on a
robotic arm that iteratively grasps an object from a bin, esti-
mates the distribution of the pose of the object, computes
the probability of success for all available actions, chooses
the optimal one, and executes it.
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(b)
Fig. 1. Two manipulation tasks (a) dropping and (b) balancing,

with different required accuracy of the pose of the manipulated
object.

1.1. Motivational simple example

Let us first look at the simple example in Figure 3. A two-
fingered planar gripper holds a rectangular object to insert
it into a hole. We assume the object always makes face con-
tact with the palm of the gripper, so that once it is in the
hand, it has only one degree of freedom, which we call grasp
state x. One of the fingers of the gripper has a noisy angle
sensor z. The angle z informs us of the position of the
rectangular block. The question we study in this paper is,
given a sensor reading z, where should we move the gripper
(how do we choose action @) to maximize the probability
of success of inserting the object, and how likely are we to
succeed. Note that there are two main factors that influence
the probability of success:

e How accurately can we estimate the pose of the object?
In the rest of the paper, we will refer to this factor as the
sensing capabilities of the hand.

e What is our margin for error when inserting the object?
In the rest of the paper we will refer to this factor as the
task requirements.

Both are empirically modeled with the output of tailored
experiments.

If there is no noise in the sensor reading z, and the geome-
tries of both hand and object are known, we know with zero
uncertainty the state of the grasp x, i.e. the location of the
object. While not true in general, for the simple example
in Figure 3 there is a one-to-one mapping between z and
x, and we can therefore recover x perfectly. However, with
the addition of noise, the estimate of object pose becomes
a distribution P(x|z), rather than an isolated configuration.
Figure 4 shows how that distribution changes for three dif-
ferent sensor noise models P(z|x). Section 3.1 details the
process to derive the belief state P(x|z) from the observa-
tion model P(z|x).

The second factor to consider is the margin of error the
task allows. Note that we can effectively change that margin
of error by varying the shape of the hole. Figure 5(a) shows

Sensor Observation

Task
Requirements

Probability
of Success in
Action Space

Fig. 2. Procedure to choose the optimal action to accomplish a
manipulation task. First, we estimate the belief state of the grasp,
that is, a probability distribution of grasp state from sensor read-
ings. Second, we learn how robust our task is to state uncertainty.
Finally, we combine them to estimate the probability of success of
all available actions and choose the best one.

three differently shaped holes that induce three different
task requirements. The larger the hole, the less accurately
we need to know the object location. In this case, the action
is parameterized by a, the gripper position we choose. Fig-
ure 5(b) shows that the probability of successful insertion
varies with the error € in the estimate of the object pose.
We can now combine the probabilistic models for the
sensing capabilities of the gripper (Figure 4(b)) and task
requirements (Figure 5(b)) to find the optimal placement
a of the gripper to maximize the probability of success-
ful insertion. Figure 6 shows the result for the three sensor
noise models in Figure 4(a) and the three holes in Figure
5(a). Note that even when the estimation of the pose is
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Fig. 3. Motivational simple example in Section 1.1. A two-
fingered planar gripper grasps a rectangular object with the goal
of inserting it into a hole. The horizontal freedom of the part is
parameterized by x. One of the two fingers has a noisy angle sen-

\

sor z, which we use to estimate the location of the object in the
hand. We note with action a the horizontal position of the gripper
that we choose to vertically insert the object in the hole. Finally,
€ represents the error in a with respect to the optimal value that
would align the centers of object and hole. The goal is to esti-
mate the likelihood of successful insertion using action a given
the sensor reading z.

uncertain, if the hole is wide the chance of success remains
high. Likewise, if the hole is a perfect fit for the part, even
the smallest amount of noise in the sensor reading will make
it impossible to insert the part in the hole.

The example is a simple model to illustrate the principles.
Real scenarios are more complex and assumptions are often
violated, making it difficult to solve analytically or through
simulation. We leverage analytical models to define the
structure of the statistical framework, but the actual mod-
els are learned directly from observed data. Our goal is for
a robot to learn these probabilistic models on its own so it
can predict the likelihood of success for a given post-grasp
manipulation task.

1.2. Experimental manipulation tasks

We evaluate the proposed framework on three different
real manipulation tasks: placing, dropping, and inserting
an object. In all three cases the object is a highlighter
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(a) Noise Model P(z|x) (b) Posterior P(z|z)

Fig. 4. Sensor model for the gripper in the motivational example
in Figure 3. (a) The observation or noise model P(z|x) is the dis-
tribution of possible values z we read from the sensor, assuming
the object is at x. The level of noise in the sensor determines the
sharpness of the distribution P(z|x). (b) The posterior distribution
P(x|z) of the pose of the object x is obtained by inverting the obser-
vation model. If the sensor has no noise (top row), for the simple
gripper in Figure 3 which has no sensor aliasing, we recover the
position of the object with zero uncertainty. The higher the level
of noise, the less certain we are about the location of object in the
hand.
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Fig. 5. (a) Three different hole shapes. (b) Precision required in
the estimation of the pose of the object for a successful insertion,
induced by the three holes. Here P( Success|e) is a model of the
probability of successful insertion as a function of the error € in
that estimate. The top hole has the exact same size as the part,
which requires perfect accuracy of object position, the middle hole
is wider, and requires less accuracy. The corners of the bottom hole
are chamfered, which also allows for some deviation where, for the
purpose of this example, we assume a continuous degradation of
the probability of success as the error increases.

marker, such as that shown in Figure 7(a). The grip-
per used in the paper is prototype 3 of the MLab Hand
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Fig. 6. Probability of successful execution of the simple task in
Figure 3 as a function of the chosen action a. The matrix shows
the probability of success over choice of action for different com-
binations of noise models (rows) and hole shapes (columns). As
expected, both the sensing capabilities of the hand, and the task
requirements affect the predicted probability of success. Accurate
sensors (top row) allow us to reliably execute difficult tasks, and
simple tasks (central column) allow for noisier sensors.

(Rodriguez et al., 2010; Mason et al.,, 2012), the sim-
ple gripper shown in Figure 7(b). It has three fingers
all compliantly connected to a single actuator. When the
hand grasps an object, the fingers “fall where they may”
around the object. Both the fingers and the actuator have
encoders, and by looking at those sensor values, we esti-
mate the pose of the grasped object. In this paper we
use the encoders in the three fingers as the input to the
learning system.

The placing task consists of picking a marker from a bin
full of markers, and balancing it vertically on top of a plat-
form. As illustrated in Figure 8, we use an intermediate step
where we push the marker against the platform, to make
sure that there is enough clearance to execute the placing
action.

The second experimental task is to drop a marker inside
a relatively large hole, as illustrated in Figure 9. We will see
that the experiments corroborate the intuition that dropping
is simpler than placing, in the sense that it can get away with
a more noisy estimation of the pose of the marker.

Finally, insertion is a horizontal version of the peg-
in-hole problem, where the hand tries to insert the
grasped marker into a relatively small hole, as shown in
Figure 10. Again, experiments will corroborate that inser-
tion is a more demanding manipulation task than either
placing or dropping.

Note that, in the three cases, the goal is to execute the
task and accurately predict the probability of success using

(a) (b)

Fig. 7. (a) A highlighter marker used as an object in the experi-
ments in the paper. (b) Prototype 3 of the MLab Hand.
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Fig. 8. Diagram of the strategy used to place a highlighter marker.
(1) The hand picks a marker out of the bin, and estimates its loca-
tion. The rest of the strategy is open loop. (2) Reorientation of
the hand so that the marker is perpendicular to and centered with
the placing platform. (3) Push against the platform to center the
location of the marker along its axis. (4) Rotation of 180° and
recentering with respect to the platform. (5) Push again against
the platform. (6) Release marker.
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Fig. 9. Diagram of the strategy used to drop a highlighter marker
into a hole. (1) The hand picks a marker out of the bin, and
estimates its location. The rest of the strategy is open loop. (2)
Reorientation of the hand so that the marker is centered with the
hole. (3) Release marker.

only feedback from in-hand sensors. For the experiments in
this paper we assume that the highlighter marker always lies
flat against the palm of the hand.

The configuration space of a cylindrical object lying flat
on the palm is four dimensional: the two polar coordinates
of the axis of the cylinder, the location of the cylinder along
the axis, and the rotation with respect to that same axis.

However, in this paper we only consider the first two
dimensions, since the last two dimensions are unobserv-
able to the sensors, and not relevant for the execution of the
three tasks. Note that for placing and insertion we included
an intermediate pushing step to explicitly reduce the uncer-
tainty of the cylinder along its axis (see Figures 8 and
10). This reduction has computational and data-requirement
benefits, as discussed later in Section 6.4, and is beneficial
for visualization purposes and clarity of exposition.

The chosen state representation is then that of a sym-
metrical cylinder in the plane as parameterized by the polar
coordinates x = (r,0) of its axis, as in Figure 11. That is
x € X =R x SO(2).

1.3. Paper outline

We break up the rest of the paper as follows. Section 2
reviews previous work. Section 3 gives an overview of the
proposed statistical framework. Section 3.1 explains how
we learn the sensing capabilities of the hand. Section 3.2
explains how we learn the task requirements for the three
different post-grasp manipulation tasks: placing, dropping
into a hole, and insertion. Section 3.3 shows how to com-
bine these probabilistic models to predict success. Section 4
presents experiments that validate the proposed framework,
and Sections 5 and 6 conclude and discuss future directions.

A
v
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v
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Fig. 10. Diagram of the strategy used to insert a highlighter
marker into a hole. (1) The hand picks a marker out of the bin,
and estimates its location. The rest of the strategy is open loop.
(2) Reorientation of the hand so that the marker is perpendicu-
lar to and centered with the placing platform. (3) Push against
the platform to center the location of the marker along its axis.
(4) Alignment of the axis of the marker with the axis of the hole.
(5) Insert marker.

cylinder axis

Fig. 11. Parameterization of the pose of the cylindrical marker
in the hand. We assume that the marker is always flat against the
palm, and parameterize its location by the polar coordinates (r, )
of its axis. We will ignore the exact location of the marker along
the axis, which is unobserved both by the parameterization and the
sensors in the hand.
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2. Related work

This paper is a revision and extension of Paolini et al.
(2012), and is part of the “Simple Hands” project described
in Mason et al. (2012) and Rodriguez et al. (2010, 2011).

This paper develops a statistical approach to model
grasping and manipulation, with a focus on how uncertainty
affects post-grasp manipulation. The importance of uncer-
tainty in manipulation has long been recognized. Incor-
porating stochastic models into modeling, perception and
control was attempted even in the 1970s, for example using
Kalman filters in industrial assembly (Simunovic, 1979;
Whitney and Junkel, 1982). For more recent work using
either Kalman filters or particle filters see (Gadeyne et al.,
2005).

Numerous early experiments illustrated the necessity of
modeling uncertainty. Most notable was Inoue’s peg inser-
tion work (Inoue, 1974) which inspired the pre-image
backchaining approach (Lozano-Perez et al., 1984; Erd-
mann, 1986). Preimage backchaining adopted a possibilis-
tic approach, representing the robot’s belief state by a set of
possible configurations. Later work extended the approach
to probabilistic models (LaValle and Hutchinson, 1998).

The 1980s and early 1990s saw several projects explor-
ing grasping and manipulation under uncertainty, using
both possibilistic and probabilistic models (Brost, 1988;
Goldberg, 1990; Goldberg and Mason, 1990; Brost and
Christiansen, 1996; Christiansen, 1992; Christiansen and
Goldberg, 1995; Mason, 1986; Trinkle et al., 1988; Peshkin
and Sanderson, 1988; Brost, 1991; Erdmann and Mason,
1988; Christiansen, 1990). Among these, the closest to the
present work are probably Goldberg and Mason (1990),
Christiansen and Goldberg (1995), and Brost and Chris-
tiansen (1996), which develop Bayesian decision-theoretic
techniques, applied to planar grasping problems and the
problem of an object sliding in a tilting tray. Dogar and
Srinivasa (2011) applied similar ideas to clutter and uncer-
tainty in the context of push-grasping. Kang and Goldberg
(1995) used a random sequence of parallel-jaw grasps to
classify grasped objects using a Bayesian process.

Goldfeder and Allen (2011) approached the problem of
grasp planning from a data-driven perspective.

There is a substantial literature on statistical frameworks
to model uncertainty. Partially observable Markov decision
processes (POMDPs) (Cassandra et al., 1994) are a general
framework that describes the current problem well. Hsiao
et al. (2011) used a POMDP framework to track the belief
of the pose of an object and tactile exploration to localize it
by planning among grasping and information-gathering tra-
jectories. Predictive state representations (PSRs) (Wingate,
2008; Boots et al., 2011) are also introduced as a gen-
eral framework to learn compact models directly from
sequences of action—observation pairs without the need for
a hand-selected state representation. LaValle and Hutchin-
son, (1998) advocate information spaces to formalize the
process of propagating uncertainty along motion strategies.
Grupen and Coelho (2002) explored the application of opti-
mal control policies in information space, derived from

changes in observable modes of interaction. Platt (2007)
has worked on Markov decision process planning, with
actions expressed relative to contact locations, and on com-
pliant hand motion. Petrovskaya et al. (2006) have worked
on belief state estimation for uncertain manipulation task
geometry.

Stulp et al. (2011) learned motion primitives to optimize
the chance of grasping an object with Gaussian uncertainty
on its location.

Some work has been done on analyzing the grasp out-
come as well. Morales et al. (2004) used real grasps on a
collection of objects to predict the reliability of the grasp
process.

Balasubramanian et al. (2012) noted that different tasks
lead humans to different initial grasps, and Faria et al.
(2012) were able to estimate the best part of an object to
grasp based on the task using human trials.

In the context of post-grasp manipulation, Jiang et al.
(2012) looked at scenes to determine good locations to
place objects. However, they did not study how robust the
final process of actually placing an object is, which is the
subject of our work. Fu et al. (2007) addressed the problem
of batting an object to a goal in the presence of uncer-
tainty. They first maximized information gain in an obser-
vation step, and then chose the action most likely to suc-
ceed. Holladay et al. (2013) used inverse motion planning
to determine the optimal placement of a robot’s other hand
to increase the probability of successfully placing objects.

3. Statistical framework

Given a manipulation task and a sensor observation z € Z
of the state of the task, our goal in this paper is to find
the action a from a set of available actions .4 that maxi-
mizes the expected performance of accomplishing the task.
The following diagram illustrates three different strategies
to approach the problem:

_—

[—— > P(alz)

Zx A XxA

(z,a) (x,a) P(alx)
I Bel(X) x A o
(P(xlz),a) (alP(x|z))

The first and most straightforward strategy is to model
the performance of an action directly as a function of sen-
sor observations. The decision on what action to execute
and how likely it is to succeed is based upon the history
of sensor readings. It makes the least assumptions about the
system but also uses the least knowledge about the structure
of the problem. It is also the most difficult to implement,
since the complexity of the model depends strongly on the
dimension of both the sensor and action space, which might
be large.
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The second strategy introduces an intermediate step
where sensor inputs z are first projected into a more com-
pact representation of state, denoted here by x, and all infor-
mation not captured by that representation is assumed to
be irrelevant for planning optimal actions. In this work, we
chose x to be the pose of the grasped object. The probabil-
ity of success of an action is then modeled as a function of
the most likely pose of the object x rather than the sensor
observations z directly. The intermediate representation x
potentially reduces the model complexity, since the dimen-
sion of state space is generally smaller than that of sensor
space. On the other hand, it introduces the possibility of
information loss or lack of observability. It also fails to
address uncertainty in the system induced by noisy sensors.

In this paper, we implement a third approach, which
encapsulates uncertainty by representing the system by its
belief state P(x|z) rather than just by its most likely value x.
By explicitly considering uncertainty in the state of the task
we can make a more informed and accurate prediction on
the probability of success of a given action.

The dimension of the space of belief distributions Bel(X)
is too large to model the probability of success of an action
P(a|z) directly as a function of the belief P(x|z). We can
alleviate this problem by marginalizing the probability of
success of an action P( a|z) with respect to the true state of
the system x:

P(alz) = / P(alz,x)-P(x|z) dx
X

= / P(alx)-P(x|z) dx (1)
X

where, in the last step, we make the assumption that the state

representation x is informative enough that the output of an

action is conditionally independent of sensor observations

z, given the true state x.

This assumption enables the computation of the proba-
bility of success P( a|z). Note, however, that for some tasks
the pose of an object is not always fully representative of the
grasp state. For example, in a compliantly actuated gripper,
the state of the actuators also contains information on how
stiff the grasp is, which is not captured by the pose of the
object and might be relevant to determine the outcome of
an action.

It is key to note that (1) divides the problem of modeling
the performance of an action P( a|z) into two simpler ones:
modeling the distributions P(x|z) and P(a|x). Respectively,
these represent the sensing capabilities of the gripper and
the task requirements for a successful task execution. The
following subsections detail the approach to model them,
as well as the process to combine them to give an accurate
estimate of P(a|z).

3.1. Sensing capabilities

The shape of the belief state P(x|z) depends on several
factors, including the geometries of the manipulator and
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Fig. 12. Three grasps of a highlighter marker, and the correspond-
ing estimated beliefs of the pose of the object. Note that grasps
where the object is localized or constrained by geometric features
of the hand yield sharper beliefs. These tend to correspond to more
stable grasps.

object, the location and type of sensors, and the type
of grasp. Assuming fixed geometries for the manipulator,
object, and sensors, we will see that different grasps yield
differently shaped beliefs.

We will pay special attention to the sharpness of the
belief as an indicator of the confidence we get on the pose
of the object. As illustrated in Figure 12 the choice of grasp
has an important effect on that confidence. We will say that
some grasps are more informative than others.

In this section, we describe the process to model P(x|z)
from experimental data. Learning P(x|z) directly is usu-
ally data intensive, since it can be arbitrarily shaped and
the complexity of the model depends on the dimension of
sensor space. To simplify the process, we use Bayes rule to
flip the conditioning in P(x|z) to P(z|x), the likelihood or
observation model of the system.

P(z|x) is the distribution of sensor readings given the true
state of the system. Unlike the posterior distribution P( x|z),
which can be arbitrarily complex due to possible lack of
observability or sensor aliasing, the likelihood P( z|x) tends
to be simpler and we assume here to follow a Gaussian dis-
tribution P(z|x) ~ N(z; u(x),o%(x)). In order to make the
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learning feasible, we also assume independence between
sensors. This leads us to the following equation for the
posterior distribution:

P(x|z) = %
P(x)

ZN(Z;M(X),02(X))-P(Z)

P

L
e MG CRAC)

k=1

L
~ P(x)- [ [N (26 (), 07 () )
k=1

where P(x) is the state distribution prior to any sensor
observations, both w; and o} are functions of the true state
of the system x, and L is the number of sensor dimensions.
Since P(z) is independent of x, we omit it and normal-
ize P(x|z) a posteriori. In the rest of the paper whenever
we use the expression N(z; u(x),o2(x)), we will refer to
the decomposition induced by the independence between
sensors assumed in (2).

We now detail the process of estimating the prior dis-
tribution P(x) and the observation model P(z|x) from a
collected dataset C; = {(zi,xi) }[ of pose/sensor readings
pairs. Figure 14 shows the data of 2,000 grasps collected
for C; (see the dataset in Multimedia Extension 1).

3.1.1. Learning the prior distribution P(x). The prior dis-
tribution P(x) is the distribution of the state of the system
before considering sensor information. In our case, it is a
reflection of the distribution of stable grasps yielded by the
combined geometries of object and gripper. Figure 13 illus-
trates the three most stable configurations or grasp types
for the hand and object used in this paper. The expectation
is that the prior distribution P(x) will cluster around those
three grasp types.

We regress P(x) by estimating the density of the pose of
the object in state space. We use kernel density estimation
to model P(x) as a sum of kernels:

1 ¢ —x!
P(x)=E2K(xhx) G)

where K is a Gaussian kernel, /4 is the bandwidth parameter
and x’ are the state points in the dataset C;. The bandwidth
parameter is chosen automatically to minimize the mean
integrated squared error following the algorithm of Botev
et al. (2010). Figure 14 illustrates the learned prior distribu-
tion. As expected, it shows three clusters corresponding to
grasp types L, I, and III in Figure 13.

3.1.2. Learning the observation model P(z|x). Equation
(2) yields an approximation of the observation model and
expresses it in terms of functions wx(x) and oy (x):

(b) (c)
Fig. 13. The three most stable configurations of the object/gripper
pair used in our experiments: (a) grasp type ; (b) grasp type II; (c)
grasp type III.
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Fig. 14. (a) Distribution of grasp states in dataset C. Each dot
corresponds to the final pose of the marker after an experimental
grasp. (b) Corresponding prior distribution P(x) estimated with
kernel density estimation. The three clusters in the distributions
correspond to the three expected grasp types in Figure 13.

L
Pzl ~ [ TN (zis ()., 07 (x)) @)
k=1
We use Gaussian processes (GPs) (Rasmussen and
Williams, 2006) to regress functions wi(x) and oy (x) for
each sensor. Throughout this paper, we use the Gaussian
Processes for Machine Learning toolbox (Rasmussen and
Nickish, 2010), which also makes use of a non-linear opti-
mization solver by Carbonetto (2007). For that we again
use the dataset C;. The process is detailed in the following
steps.

1. Use a GP on half of the data points in C; to estimate
the mean of the observation model P(z|x), puy : X —
Zy. This implies training one independent GP for every
sensory input, as a function of » and 6, which computes
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Fig. 15. (a) Example grasp with its corresponding estimated (b)
likelihood P(z|x) and (c) posterior distribution P(x|z). The dot
corresponds to the most likely pose of the object.

the most likely sensor values for every possible state of
the system x. Note that we will get a better estimate of
the observation model for the regions of the state space
that are most often observed, since those areas will be
more populated with the collected data.

2. Complement the other half of the dataset C; with the
sensor readings zZ = u(x’) predicted by the learned
observation model, and the squared error yielded by that
prediction A’Z' = (2 — 2%, Cf = {(Z,x',Z, A*Z) },.

3. Use Gaussian process regression (GPR) on C; to
regress the variance of the observation model o}

X — A2Z. Again, this implies training one inde-
pendent GP for every sensor in the system.

By following these steps, we can now estimate P(z|x)
as in (4) (see Multimedia Extension 2 for example code).
Figure 15(b) and (c) illustrate the estimated observation
model and posterior distribution P(x|z) for the example
grasp in Figure 15(a).

3.2. Task requirements

We now model the probability of success of an action,
P(alx). This will tell us how accurate the estimation of
the state of the grasp must be for an action to successfully
execute the task.

While not required in general, we choose to state parame-
terize the set of actions. For example, for the task of placing
a cylindrical object, we design an action a so that given
the true state of the grasp it first turns the cylinder so it
is upright with respect to the ground, and then sets it down.

We will note an action parameterized by state as a,,, where
p indicates the state of the system for which the action was
designed.

In general, the success of an action depends both on the
specific action a, itself and the true state of the grasp x.
However, in order to reduce the complexity of the process,
we will assume that, if the true state of the system is x, the
probability of success of action a, only depends on (x — p),
the difference between the real and assumed state of the
grasp. For example, when placing a cylinder whose esti-
mated axis is 1° off from its true state, we are more likely
to succeed than if we try to place an object several degrees
off.

We model the outcome of an action a, as a Bernoulli
random variable of parameter ¢,, that depends on the true
state x, so that

P(ap =1x)= ¢ap(x)= d(x—p) ®)

The use of state parameterized actions also allows us to
introduce controlled noise in the space of mismatches € =
(x—p). To learn ¢( €), during each task execution, if the true
state of the grasp is x, instead of choosing the action a,, we
execute action a, with p = x + €, where € is a uniformly
distributed error in the space of system states.

We now detail the process of estimating the task require-
ments model ¢(€) from a dataset C, = {(¢€',)/) },, where
€' is the error in system state and ¥ € {0, 1} is the suc-
cess/failure output of the trial (see the dataset in Multi-
media Extension 3). For each task, we uniformly sample €
from £ = [— Armax, AVmax] X [—Abmax, ABmax]. We choose
Armax and ABp,, to be large enough to cover the range of
errors we care about, and assume everything falling outside
that range to be a failure.

We use a Gaussian Process to regress the function ¢( €)
from dataset C, containing the outcome of more than 1,000
executions for three manipulation tasks: placing, dropping,
and insertion (see Multimedia Extension 4 for example
code). Although the number of successes of a Bernoulli
trial is a Binomial distribution, as the number of trials gets
large, this approximates a normal distribution, which is the
assumption a GP makes. As y' € {0, 1}, this allows us
to directly estimate the probability of success for a given
amount of error. The results are illustrated in Figure 16.
As expected, when |x — p| increases, the likelihood of task
success decreases. Note that for the dropping task the prob-
ability decreases much slower than for placing or insertion.
This indicates that dropping a marker into a hole is eas-
ier than balancing it on a platform or inserting into a small
hole. The task tolerates more error.

The task requirements for insertion resemble the shape of
an X. This can be explained by noting that if we incorrectly
try to insert the marker too high, but also tilt it downward,
the end of the marker still manages to fit in the hole. In
addition to enabling accurate estimates of the probability
of successful task execution, computing these task require-
ment distributions also give us insight in to what types of
errors the task execution is robust against.
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Fig. 16. Learned task requirements for three manipulation tasks: dropping, placing and insertion. Second row: Dataset C, of task
execution with perturbed states. Dark points are successes and light ones are failures. Note that the range of perturbations is different
for each task. Third row: Distribution of task requirements P(a, = 1|x) as a function of the error in state estimation. Fourth row:
Average standard deviation of the regression of the Bernoulli parameter of P(ap = 1]x) obtained with a GP. This is used as a rough

estimate of the convergence of the algorithm and stoping criteria.

In general, the more data we use the more accurate
the regressed distributions of task requirements are. The
magnitude of the variance returned by the GPR can be used
to define a stopping criteria. In our case, we use the

average standard deviation to assess how certain we are
about the learned distribution. The bottom graphs in
Figure 16 shows how the average standard deviation
changes with the number of experiments for each task.
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3.3. Matching task requirements with sensing
capabilities

Here we combine the models of P(x|z) and P(a|x) to esti-
mate the probability of success of an action a,. For that, we
extend (1) as follows:

P(a, =1|z)= v/);P(ap = 1|x) P(x|z) dx

_ . UGN
= [ #G=p Nz
= [sON G+ +e) “E D de

(6)

where we apply the change of variables € = x — p, and
N(z; u(x), 0%(x)) represents the decomposition in (2).

In the experiments we approximate the integral numeri-
cally (see Multimedia Extension 5 for example code). We
grid the space of mismatches between real and estimated
states into N, x Ny. Letting €;; be the corresponding error,
we can approximate the integral in (6) as

Ny Ny
P(a, = 112> > > () N(z: ju(p + &) »
i=1 j=1

P(p +€;)

2 y
i) ————AA 7
(P +e) —p 7)

where AA is
4ArmaxA9max

AA =

(Np = D(N- = 1)

Once we compute P(alz) we find its maximum in action
space to choose the optimal action to execute. Depending on
that maximum probability we can decide either to execute
the task with the optimal action or to abort the execution.
Figure 17 shows the complete process for an example grasp.

The presented framework decouples the learning of the
sensing capabilities of the hand from the learning of the
requirements of the task. For a given hand and object, we
only need to compute its sensing capabilities once. For any
given new task, we only have to compute the task require-
ments, and then follow the described procedure to estimate
the overall probability.

Another possible scenario where the decoupling between
both models is useful is in sharing models of task require-
ments between different robots. For example, an industrial
robot could learn in a room for days at a time, and a mobile
manipulator could reuse those learned models.

4. Experimental validation

To validate the proposed framework, we use the hand and
object in Figure 7 to complete three different manipulation
tasks. This requires one training set for the sensing capabil-
ities of the hand, P(x|z), and three training sets to estimate
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Fig. 17. Complete process to compute the probability of success
at placing a marker. (a) Example grasp. (b) Learned belief P(x|z)
of the pose of the object. (c) Learned task requirements, P(alx),
for the placing task. (d) Estimated probability of success for the
parameterized set of placing actions. The white dot corresponds
to the optimal action to execute.

the task requirements, P(a|x), one for each of the tasks.
After learning these functions, for any new grasp, we can
predict the action most likely to successfully execute a task
and its expected probability of success.

We are interested in evaluating the accuracy of the pre-
dicted probability of success. For that we execute each task
500 times according to the action most likely to succeed
as predicted by the learned models. After each execution,
we note down both the predicted probability of success
and the actual outcome of the experiment (see the data in
Multimedia Extension 6).

To test the validity of the predictions, we group grasps by
their predicted task success probability and compare it with
their correspondent experimental success rate. For example,
if we take all grasps that were predicted to succeed at an
action around 60% of the time, the average experimental
success rate for those grasps should ideally be around that
same 60%.

Figure 18 compares the experimental success ratios with
the predictions by the learned models. We see that for the
three tasks, the experimental probability follows the pre-
dicted probability, supporting the validity of the framework.
Our results for insertion do not follow the predicted proba-
bility as closely as dropping or placing. It is possible that the
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Fig. 18. Top: Comparison between the experimental and predicted probability of success. The shaded region is a 95% confidence
interval of the estimation of the Bernoulli parameter, according to a binomial distribution. The plots show that the predictions follow

the experimental observations quite well. Bottom: Precision-recall curves of the success in task execution formed by only considering

task executions whose predicted probabilities were above certain thresholds. The plot shows that we can increase the success rate in task

execution by rejecting low-probability grasps in the three tasks.

insertion task violates some of our assumptions, or we sim-
ply did not collect enough data to accurately characterize
the task.

Both the quality of the in-hand sensor feedback and the
difficulty of the manipulation task determine the range of
values of the probability of success. From Figure 18, we see
that dropping is the easiest of the three tasks, followed by
placing, and lastly insertion. This could have been predicted
by looking at the task requirements and noting that drop-
ping has the widest distribution of success in the presence of
pose error. The plots in Figure 18 indicate that the proposed
framework successfully predicts the probability of success
of actions independently of the complexity of the task.

Predicting the probability of success of an action allows
us to make an informed decision on what action to execute
and improve the overall system performance. The bottom
row of Figure 18 shows the precision-recall curves of the
three tasks. They reveal that we can effectively increase the
success rate in task execution if we decide to abort exe-
cutions whose predicted probability of success are below
a certain threshold. By changing that threshold, we can
move along the precision-recall curve, and achieve a desired
performance. Dropping increases from 80% to near 100%
success, placing increases from 40% to 60%, and insertion
increases from 50% to 60%.

5. Conclusion

In this paper, we introduce a general statistical frame-
work to model the problem of post-grasp manipulation. The
framework is composed of the following three steps.

e Off-line learning of sensing capabilities. We learn a
model to estimate the belief state of the grasp from
in-hand sensor information. The training process cre-
ates two models: first, a prior distribution of the
expected final grasp states; and, second, an observation
model of the hand/object pair that relates grasp states to
expected sensor readings. Both models are constructed
from experimental data, and the combination allow us to
estimate the distribution of the state of the grasp P(x|z)
from sensor readings.

e Off-line learning of task requirements. We also learn
a model of the object pose accuracy required to execute
a specific post-grasp manipulation task. The model cap-
tures how the probability of successful task execution
degrades as a function of object pose error. We train
this model by systematically introducing controlled per-
turbations in the state of the grasp, and recording
the relationship between the noise introduced and the
success/failure outcome.
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e On-line estimation of the probability of success. Dur-
ing execution time, we use the off-line learned models
for the sensing capabilities of the hand and the task
requirements to make accurate predictions of the proba-
bility of success. That prediction can be used, for exam-
ple, to choose the optimal action to execute from a set
of actions or to improve the overall performance of the
system by deciding to abort runs when the predicted
probability is too low.

We implemented the framework and tested it on three
different post-grasp manipulation tasks: dropping, placing,
and insertion. To validate the framework, the robot per-
formed over 8,000 real grasps, and over 1,000 trials each
of placing, dropping, and insertion.

6. Discussion
6.1. Insights

The proposed statistical framework is general, and is
designed to be implemented on a real system. The unpre-
dictability of the real world, especially when contact and
physical interaction are involved, strengthens the case for a
statistical framework.

The sensing capabilities of a hand/object pair help us
understand which grasps are informative and which are not.
This can inform both the design of hands, as well as the
design of grasp policies, by being aware of what it means to
be a good grasp from the point of view of grasp observabil-
ity. Different hands and strategies can then be tested to see
exactly which configurations give us the most certainty in
object state, which would improve post-grasp manipulation
tasks down the road.

Learning the accuracy requirements of a task by artifi-
cially adding noise is an excellent tool to identify weak-
nesses in task execution. We can discover, for example, that
placing tends to fail when the object is in a certain pose, so
adding a move to avoid that pose could improve the overall
task success rate.

We can combine these two models, sensing capabilities
and task requirements, to predict the probability of success-
ful task execution. The separation of the two models allows
us to mix and match different tasks and hands. If we reuse
the same hand, for each new task, we only need to learn its
task requirements. Conversely, if we are executing the same
task with different hands, for each new hand, we only need
to learn its sensing capabilities.

Estimating the probability of success is powerful, since
it allows the robot to increase its overall task success rate
by not taking unnecessary risks. We can, for example, find
an optimal policy to minimize mean time to success in an
abort and retry scheme, similar to Rodriguez et al. (2011).
In addition, since we estimate the probability of success
for the complete set of actions, we could consider opti-
mization with different cost functions, or in the presence
of constraints.

6.2. Implementation

Designing a robust system to collect all of the neces-
sary data was both important and challenging. The amount
of data required to learn probability functions forced us
to carefully design experimental setups requiring minimal
human intervention. For the three post-grasp manipulation
tasks we had to focus on three different aspects: object
acquisition, task execution, and post-task reset. Having a
human in the loop to hand objects to the robot was not
an option, since we needed to execute thousands of exper-
iments and it would also possibly introduce bias in the
process.

We solved the object acquisition problem by having a
large bin of objects and training an open-loop grasping
strategy that singulates a marker out of the bin approxi-
mately 40% of the time. For task execution, it was important
to make sure that the hand did not collide with the environ-
ment, regardless of the pose of the marker or action chosen
by the robot.

Finally, for resetting the system after task execution, dif-
ferent strategies were used depending on the task. For plac-
ing, the object was placed at the top of a ramp and knocked
back into the bin. For dropping, after some constraining
moves, the object was grasped out of the hole and dropped
back into the bin. For insertion, the object was held the
entire time and then dropped back in. It is important to note
that a fair amount of time was spent in designing robust
experiments, and this should not be overlooked when trying
to collect data in a real setting.

6.3. Assumptions

While the proposed framework is general, we make a few
simplifying assumptions to implement it on a real sys-
tem. The goal of these assumptions is to reduce the total
amount of data required to learn, with minimal sacrifices to
functionality. Here is a summary of those assumptions.

e We assume that the probability of success of an action
is conditionally independent of sensor readings given
the true state of the system, P(alx,z)= P(alx). This
is reasonable when the chosen state is a good rep-
resentation; however, if it is incomplete, the estimate
of P(a|x) may be suboptimal. For example, the loca-
tion of the center of mass of the marker relative to the
center of the hand seemed to have an effect on the prob-
ability of success of the dropping task. However, the
state representation (7, 0) we choose in the paper does
not capture it, and consequently it is not observable.
This is treated as noise in the process, and although
we are still able to give accurate predictions of the
probability of dropping success, they could be better.

e We assume that the observation model P(z|x) for an
object/hand pair is unimodal and normally distributed.
If the grasp is at a fixed and known state x, the distri-
bution of readings z that we get from the sensors in the
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hand is induced by the sensor noise, which we assume
here to be Gaussian. Note that the framework still holds
without the Gaussian assumption. It is, however, a com-
mon convenience to reduce the amount of data needed
to learn the observation model.

e We assume independence between in-hand sensors.
This is generally not true. Still it is a common simpli-
fication to reduce the complexity of the distribution to
learn. It effectively restricts the type of distributions we
can learn, since instead of learning a distribution in the
joint space of all sensors, we learn a single dimensional
distribution for each sensor and multiply them.

e Finally, we assume that the set of actions designed to
execute a task is state parameterized. This is often true,
but again it is a convenience that allows us to reduce
the dimension of the model of task requirements. The
framework still holds for sets of actions not parameter-
ized by state. However, to estimate P(a|x), we would
need to sample the product space of actions and states,
rather than just the space of mismatches between action
and state.

6.4. Scalability

As this paper is based on data, we briefly discuss the scal-
ability of this framework for varying dimensionality in
sensor space, state space, and action space.

e Sensor dimension. If L is the number of sensors in the
hand, we learn 2L GPs to compute the sensing capabili-
ties of the hand, corresponding to the mean and variance
of P(z|x) for each sensor. Note that when we add addi-
tional sensors to our hand, while the number of GPs
increases linearly, the amount of data used to train each
GP is still the same, so it does not affect the accuracy
of our estimates. If for example we remove a sensor,
the belief is now much less peaked, because we would
indeed know less about the state of the object. While the
overall success rate may change based on the absence
or addition of sensors, the accuracy of the predictions
should not change.

e State dimension. Increasing the dimension of the state
space on the other hand can have an effect on the accu-
racy. First, the sensing capabilities would now need to
handle an additional dimension when computing the
mean and variance of P(z|x). It has been shown that
the number of data points required to achieve the same
accuracy for a GP grows exponentially with the state
dimension (Gyorfi et al., 2002). In the case of sensing
capabilities we can do slightly better, as often the state
is clustered in small areas of the space, or has an under-
lying lower-dimensional representation. If the state is
truly uniform, then data needs grow exponentially to
maintain the same level of accuracy.

In the case of task requirements, the data requirement
also grows exponentially with dimension, since we are
uniformly sampling errors in each dimension.

e Action dimension. If we assume actions are state
parameterized, then the action dimension increases with
the state dimension, and all of the statements above hold
true. If instead, actions are not state parameterized, then
increasing the dimension of the action space will again
cause the data required to learn our task requirements
to a given accuracy to grow exponentially. Note that
increasing the action dimension will not affect sensing
capabilities.

e Computational dependence on dimension. In addi-
tion to the data requirement, another factor that can-
not be ignored is the computational complexity of
calculating these probability functions. As the num-
ber of data points increases, the computation time
for the GPs used to compute the sensing capabilities
and task requirements suffer as O(n*). GPs are much
more dependent on the number of data points com-
pared with the dimension of each data point, so both
sensor and state dimension do not have too much of
an impact.

Conversely, when trying to combine task require-
ments and sensing capabilities together, that integral
is directly dependent on the state dimension. Cur-
rently, we are gridding up the state space finely in
each dimension and numerically approximating the
integral. This is exponential with dimension, and puts
a large requirement on time and memory (if things
are being precomputed). Given that we are comput-
ing the integrals of probability distributions, we should
be able to lessen this requirement by using particle
and Monte Carlo-based approaches. This will enable
us to sample only in relevant regions and increase
efficiency.

6.5. Future directions

One area we would like to explore in the future is under-
standing the statistical significance of the distributions the
robot learns. During experiments, we had no analytical
means of knowing when we had enough data. While we
were able to show that our probability estimates improved
with more data, more analysis is needed to quantify how
data density affects performance.

Carrying statistical significance through all of the distri-
butions would enable us to compute a confidence bound
on our final probability distribution in action space. This
would expand the usefulness of our framework and help
us understand how collecting more data affects our esti-
mates. Another direction that we are interested in exploring
is using active learning to selectively sample so as to reduce
overall data requirements.

Finally, when the robot encounters a situation where the
probability of success is not acceptable, the only options
to increase it are either to abort and retry, to design better
actions, or to use better hardware. Instead we could consider
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a scenario where, based on the computed probability distri-
butions, the robot decides to execute extra actions aimed at
improving the expected probability of success rather than
aimed directly at solving the task.

In particular, we are interested in developing robots with
regrasping capabilities. Inserting a key into a lock is nearly
impossible if you are holding it by its teeth rather than its
head. Being able to regrasp objects, either to reduce state
uncertainty or change configuration, would greatly increase
the capabilities of current autonomous robotic systems.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at

http://www.ijrr.org
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