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Abstract A simple hand is a robotic gripper that trades off generality in function
for practicality in design and control. The long-term goal of our work is to explore
that tradeoff and demonstrate broad manipulation capabilities with simple hands.
This paper describes two prototype simple hands. Both hands have thin cylindrical
fingers arranged symmetrically around a low friction circular palm. The fingers are
compliantly coupled to a single actuator. Our experiments with both hands in a bin-
picking scenario demonstrate that we can achieve robust grasp classification and
in-hand localization using simple statistical techniques. We further show how the
classification accuracy increases as the grasp proceeds by exploiting information
obtained online. We finally evaluate the relative importance of observing the full
state of the hand rather than just observing the state of the actuators.

1 Introduction

Simple hands trade off generality in function for practicality in design and control.
Because simple hands have fewer actuators and sensors than complex hands, and
because their control strategies are simpler than those of complex hands, simple
hands inevitably are less capable than hands without such constraints. Nonetheless
some manipulation capabilities remain. Our goal in this paper is to explore this
tradeoff through the analysis of a simple hand [14] in a bin-picking application.
Our approach to grasping might be called, “Let the fingers fall where they may”.
We close the hand, and expect the details of the grasping process to be determined
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by the mechanics of the emergent interaction between hand and object. Once those
details have been worked out, we use sensing and statistical techniques to determine
the outcome of the grasp.

Analogously, the more common or traditional approach to grasping could be
called, “Put the fingers in the right place”—use knowledge of object shape and pose,
and models of the mechanics of stable grasp, to plan contact points on the object,
and then drive the fingers to those contact points. Assuming accurate sensors, mod-
els and controls, all the details of the entire grasping process are determined a priori
by the planner. “Put the fingers in the right place” is intensive in its dependence
on accurate sensors, models, and controls. Small errors can lead to failure. The ap-
proach is mostly suited to complex hands, so that the fingers have the necessary
freedoms, actuators and sensing to execute the planned motions.

On the other hand, “Let the fingers fall where they may” is well suited to simple
hands, and less dependent on accurate sensing, models, or controls. Taken to the
extreme, the approach would seldom work—the fingers would almost always fall
someplace useless. The robot has to initiate the grasp at a promising spot, which
implies at least some expectation of the likely evolution of the grasping process.
However, that expectation can be much less detailed and error-prone than in the
traditional approach. (This paper sidesteps the issue by using an application where
promising spots are plentiful.)

The authors have argued the case for simplicity in the design of robotic hands [14]
and proposed a design for a simple hand aimed to reduce the set of possible grasp
outcomes: thin cylindrical fingers arranged symmetrically around a low-frictional
circular palm, all compliantly coupled to a single actuator. This paper compares the
performance of two prototype implementations (P1 and P2) of the proposed simple
hand in a bin-picking application.

The central goal of this paper concerns the last stage of the “let the fingers fall
where they may” approach: determining the grasp outcome. An offline learning sys-
tem runs several grasping trials, visually observing the grasp outcome and recording
the corresponding hand pose. From this data it infers a map allowing it to interpret
online kinesthetic data, addressing two objectives:

o Grasp classification: Distinguish between successful and unsuccessful grasping
attempts.
e [n-hand localization: Identify the pose of a grasped object.

The main results of the paper are the performance of prototypes P1 and P2 measured
by those two objectives in a bin-picking task (Fig. 1). The hands grasp blindly inside
a bin full of identical objects (whiteboard markers) with the goal of singulating an
object and localizing it.

Section 3 describes our approach to the bin-picking problem and details the de-
signs of P1 and P2. We then describe the bin-picking experimental setting in Sect. 4.

Section 4.4 addresses an interesting refinement of the approach—determining
the grasp outcome before the grasping process is complete, by using the entire time
series or kinesthetic signature of the grasping process. As the grasp proceeds and
additional kinesthetic data accumulates, the confidence also increases. In some cases
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it is possible to confidently predict the outcome of the grasp before the end of the
grasping process.

Section 5 discusses the results obtained and lessons learned in the process of
designing and experimenting with P1 and P2. We conclude in Sect. 6 with a list of
ideas we want to explore in subsequent work.

Fig. 1 Bin-picking scenario

2 Related Work

Discussions of the tradeoff between generality and simplicity have been present
since the first robotic hands were being developed. One early example can be found
in the context of the Utah/MIT Dexterous Hand [11] were Jacobsen et al. raised
the question of the relationship between cost and increased functionality by adding
complexity to an end-effector. The tradeoff between generality and simplicity, how-
ever, has not become a driving factor for the design of robotic hands until recent
years. The increasing interest in service and domestic robotic applications [12], in
which weight, size, and cost are important factors, make of simplicity a key design
goal.

After a few decades of focusing on the design of fully articulated anthropomor-
phic hands, there has been some recent interest towards a more minimalist approach
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where fewer actuators are used to drive more degrees of freedom, and compliance
takes care of shape adaptation. In exchange, part of the functionality of the hand is
hard coded into its mechanical structure.

In their work on joint coupling design [8], Dollar and Howe did a comprehensive
survey on underactuated hands. They classified hands based on the number of free-
doms, number of actuators, coupling scheme and source of compliance. The Barrett
Hand [1], an offspring of Ullrich’s seminal work on grasping with mechanical intel-
ligence [19], is probably the most commercially successful example of an underac-
tuated gripper. Other prolonged attempts to input simplicity into the design are the
SARAH hand [13], recently turned into the commercial Adaptive Gripper [16], or
the prosthetic SPRING hand [4].

The robotic hands found in the literature that are closest to our work on simple
hands are: Dollar and Howe’s SDM hand [9], with four two-jointed fingers all com-
pliantly coupled to a single actuator; Ciocarlie and Allen’s [S5] two-fingered gripper
with three joints per finger all compliantly coupled to a single actuator; Xu, Deyle
and Kemp’s [20] end-effector designed to robustly capture a large and carefully cho-
sen set of household objects; and Theobald et al.’s simple gripper Talon [18] with
two facing sets of fingers driven by a single actuator, for grasping rocks of varying
shape and size.

In our approach to grasping, we estimate the outcome of the grasp based on
kinesthetic sensor data. Bicchi, Salisbury and Brock [2] explored a similar problem:
assuming known finger shape and location, they estimate the contact point from a
measured applied wrench, a technique known as intrinsic contact sensing. This con-
tact information can be used to infer the pose of a known shape. Our work can be
viewed as a generalization of intrinsic contact sensing, where we map directly from
kinesthetic sensor data to object pose, bypassing the estimation of contact points.
While previous work on intrinsic contact sensing has generally been model-based,
our approach is based on machine learning. Assuming availability of the object for
the offline learning process, this statistical data-driven approach neatly incorporates
numerous sources of information that would be very challenging to capture other-
wise, including the effect of the grasping motion and that of surrounding clutter.

In-hand sensor information has previously been shown to improve grasping per-
formance of simple hands [10]. However, some degree of manipulability is always
lost when opting for a simple rather than a complex hand. In this paper we show
how with enough sensor information, very simple hands are still capable of accom-
plishing complex tasks.

3 Simple Hand

The main objective of this work is to explore manipulation capabilities with simple
hands. In particular, we have chosen a bin-picking task, where the goal is to singulate
an object from a bin and to localize its pose in the hand. In this section we describe
the approach used to address the bin-picking problem and the design of P1 and P2.
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3.1 Approach

The following are the key elements of our approach to the bin picking problem:

e Simple hand designed with a low-friction palm and fingers to reduce the number
of stable poses of the object in the hand.

e Grasp first and ask questions later. We close the hand until some stall torque is
exceeded and then analyze the outcome of the grasp. (Sect. 4.4 addresses an early
termination refinement.)

e Offline learning of the map from kinesthetic sensor data to stable grasp poses
with a data-driven approach.

e Repeat strategy until the learning algorithm detects the successful grasp of a
single object in a predictable pose.

Central to our approach is the notion of grasp stability. The gripper design needs
to take into account the fact that, after the grasping process, we have to answer
questions regarding the outcome of the grasp. By reducing the number of stable
poses, the hand design simplifies the mapping from hand poses to possible grasp
outcomes, and facilitates learning.

To explore the mapping from hand poses to object poses, we analyze the stable
grasp of a simple object, a sphere. We model the interaction of the hand with the
object as N linear springs in parallel, all connected to the actuator, as in Fig. 2.
After driving the actuator of the hand to a stall torque and given the geometry of the
hand and object, we can identify the statically stable position of the fingers and the
compression of each spring.

kg
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Fig. 2 Compliance model: parallel compliance scheme that models the interaction of the hand with
the object. In our simulations we normalize the constant of the finger springs to ky =1 Ib.rad™!
and the motor is driven to a stall torque of 7 = 10 Ib.in.

The compliance model yields the total potential energy as the sum of the potential
energies stored in the N springs. In the presence of any dissipative force, stable poses
occur at local minima of the potential energy. Figure 3 shows plots of the potential
energy of grasps of the simple hand, both with 3 and 4 fingers, grasping a sphere
translating in their palm.

The plots present a unique stable grasp of the sphere, i.e. a unique local minimum
of the potential energy function, both for the three-fingered and four-fingered cases.
The plots reveal a few interesting points. First, the potential wells in the immedi-
ate vicinity of the equilibrium are comparable. Adding fingers is not sufficient to
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Fig. 3 Potential field surface and contour plots of the grasp of a sphere with left) three fingered
version of the simple gripper and right) four fingered version of the simple gripper. The radius
of the palm measures 1 inch while the radius of the small and large spheres measure 0.5 inches
and 1 inch respectively. The spring constants are normalized to ky = 1 Ib.rad ™" and the hands are
driven to a stall torque of T = 10 lb.in. The lower half of the figure is the zoomed version of the
upper half.
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steepen the potential well and thereby increase stiffness of the grasp. However, the
global structure is altered, yielding a larger basin of attraction which is less easily
escaped.

Nonetheless, the primary design goal is to support grasp recognition and pose es-
timation. With some object shapes, the addition of a fourth finger should “sharpen”
the bottom of the potential well, adding precision to both grasp recognition and pose
estimation. This is not the case with a sphere as the plot well illustrates.

3.2 Prototypes PI and P2

Prototype P1, Fig. 4, has three fingers. The actuation is transmitted from the motor
to the fingers through a series of gears. Torsional springs coupling the fingers with
the gear assembly introduce compliance which allows for moderate conformability
of the hand.

Prototype P2, also in Fig. 4, has four fingers. The actuation is transmitted through
a leadscrew connecting the motor to an individual linkage for each finger. The link-
age has been optimized to maximize the stroke of the fingers and, at the same time,
equalize the transmission ratio from the vertical motion of the leadscrew to the ro-
tational motion of the finger. One of the links in each finger linkage is elastic (black
link in the close up of the transmission mechanism of P2 in Fig. 4) and provides
moderate conformability to the hand.

In [14] the authors propose a list of eight characteristics of general-purpose
grasping to be used to characterize either the requirements of an application or
the capabilities of a hand: stability, capture, in-hand manipulation, clutter, object
shape variation, multiple/deformable objects, recognition/localization and placing.
We make use here of that set of general-purpose dimensions to compare the designs
of P1 and P2.

Table 1 characterizes the bin-picking task as well as P1 and P2 in terms of those
characteristics. Due to the fourth finger, P2 has a theoretical advantage both in its
capture region and grasp stability, as measured by the basin of attraction. However,
we can also expect it to perform worse in the presence of clutter. And while P2
might have improved recognition and localization for some objects, we shall see in
Sect. 4 that for whiteboard markers the performance is worse, which we attribute to
the “self-clutter” effect: fingers interfere more often with each other when the hand
has four fingers than when it has three.

Sensing the state of the hand is key for our approach. We need to know the
state of the hand for mapping it to known stable poses of the object. For that, P2 is
equipped with absolute encoders on each finger and in the actuator. The combination
of finger encoders and motor encoder, gives us an estimate of the compression of the
compliant source for each finger. In Sect. 4.2 we evaluate the improvement in grasp
classification that full observability of the hand pose yields with respect to just the
state of the actuator. Fig. 5 shows the grasp signature of a typical grasp motion and
an estimate of finger deviation from resting position due to hand-object interaction.
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P1 P2

Fig. 4 Prototypes P1 and P2. Top 3D model and close up of the transmission mechanism. Mid
Side view. Bottom Front view.
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Table 1 Dimensions of general-purpose grasping. A checkmark indicates either a task requirement
or a hand capability. T indicates an improvement of P2 with respect to P1, and || otherwise.
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Fig. 5 Grasp signature of a representative singulation attempt. In the absence of any external dis-
turbance, motor and finger encoders should be proportional. Deviations from that proportionality
are correlated with external forces applied to the fingers. a) P2’s motor and finger encoder sig-
nals during a complete grasp motion. Y units are encoder “ticks”, normalized for visualization
purposes. b) Estimate of finger deviation from the resting position due to hand-object interaction.

4 Experiments

In this section we describe the implementation and results obtained in our approach
to the bin-picking problem. Bin-picking is characterized by high clutter and high
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pose uncertainty, making it a challenging task for the conventional model-driven
“put the fingers in the right place” approach. As we shall see the “let the fingers
fall where they may” approach handles high clutter and pose uncertainty, and also
benefits from the target rich environment inherent to bin-picking.

The experimentation is divided in two parts: First an offline learning process
creates a data-driven model of the relationship between signature and outcome of the
grasp. Second, once the model is estimated, the robot grasps blindly inside the bin
until it detects a singulated object in a recognizable pose. Grasp classification and
in-hand localization capabilities are key to the success of our approach. In the next
sections we evaluate and compare the performance of P1 and P2 in both capabilities.

4.1 Experimental Setting

In the experimental setup, the gripper is attached to a 6 DOF industrial manipulator.
A preprogrammed plan moves the gripper in and out of the bin repetitively while
the gripper opens and closes. At each iteration we record the state of the gripper
over the entire grasp motion, and also note the outcome of the grasp—the number
of markers grasped and their pose within the gripper.

The system architecture is built within the framework Robot Operating System
(ROS) [15]. The system runs a sequential state machine that commands four sub-
systems interfaced as ROS nodes:

e Robot controller: Provides an interface for absolute positioning of the robotic
arm holding the gripper.

e Grasp controller: Interfaces the motor controller that drives the gripper. It also
logs the signature of the grasp by capturing the state of the motor and finger
encoders along the entire grasp motion.

o Vision system: Provides ground truth for the learning system both on the number
of markers grasped and their position within the hand.

e Learning system: After offline training, the learning system classifies grasps as
singulated or not singulated as well as gives an estimation of the orientation of
the marker within the hand for singulated grasps.

The robot follows a preprogrammed path to get in and out of the bin. While ap-
proaching the bin, the gripper slowly oscillates its orientation along the vertical axis
with decreasing amplitude as a strategy for dealing with clutter. During departure,
the gripper vibrates to reduce the effect of friction and to help the object settle in a
more stable position.

For each of the prototypes, we run 200 repetitions of the experiment. The grasp
signature and outcome of those experiments make up the dataset used to evaluate the
system in terms of singulation detection in Sect. 4.2 and pose estimation in Sect. 4.3.
Table 2 shows the distribution of the number of markers grasped both with P1 and
P2 and Fig. 6 shows the most representative types of singulated grasps obtained.
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Table 2 Distribution of the number of markers grasped in the 200 runs of the bin-picking experi-
ment.

0 markers 1 marker 2 markers 3 markers 4 markers
P1 57 83 43 17 0
(28.5%) (41.5%) (21.5%) (8.5%) (0.0 %)
P2 37 84 49 27 3
(18.5%) (42.0%) (24.5%) (13.5%) (1.5 %)

(b) P2

Fig. 6 Representative types of singulated grasps for a) P1 and b) P2.

4.2 Experimental Results: Grasp Classification

In this section we detail the analysis on the classification between successful and
failed grasps. We use a supervised learning approach to learn the distinction based
on the signature of the grasp. The signature of P1 is the final pose of the three fingers.
P2 has a much more complete signature—the value of the four fingers and motor
encoders during the entire grasp motion.

After labeling each run of the experiment as success or failure we train a Support
Vector Machine (SVM) with a Gaussian kernel [7, 3] to correctly predict singula-
tion. In the case of P2 the dimension of the signature is too large for the amount
of training data captured and we use Principal Component Analysis (PCA) [17] to
compress the signature, reduce its dimensionality and speed up the learning process.
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The performance of the system is evaluated using leave-one-out cross-validation.
The hyperparameters C and y are tuned using cross-validation on the training set in
each training round. The parameter C controls the misclassification cost while y
controls the bandwidth of the similarity metric between grasp signatures. Both pa-
rameters effectively trade off fitting accuracy in the training set vs. generalizability.
The analysis yields similar accuracies for P1 (92.9%) and P2 (90.5%).

To evaluate the relative importance of observing the full state of the hand (motor
+ finger encoders) with respect to observing only the state of the actuators (motor
encoder), we train a new SVM for P2 where the feature vector contains only the
signature of the motor and no information about the position of the fingers. The
accuracy detecting singulation decreases in this case from 90.5% to 82%.

4.3 Experimental Results: In-hand Localization

In this section we regress the orientation of the grasped marker with the signature of
the grasp. We focus only on those grasps that have correctly isolated a marker, i.e.
the second column in Table 2, and assume that the marker lies flat on the palm of the
gripper. Judging by the outcomes of the singulated grasps, the assumption holds well
for P1 and is violated occasionally for P2, where the marker is sometimes caught on
top of a finger or on one of the “knuckles” at the finger base.

Due to the almost cylindrical shape of the marker, we only attempt to estimate its
orientation up to the 180 degree symmetry. We use Locally Weighted Regression [6]
to regress the orientation. The orientation of the marker is estimated as a weighted
average of the closest examples in the training set, where the weights depend on the
distance between signatures.

The leave-one-out cross-validation error obtained for P1 and P2 are 13.0 degrees
and 24.1 degrees respectively. While no improvement of P2 over P1 can be expected
for cylindrical shapes, the fact it performs so much worse is unexpected. Section 5
discusses some possible reasons.

4.4 Experimental Results: Early Failure Detection

P2 captures the state of the hand during the entire grasp motion. This gives us the
possibility of detecting early failure. There are situations where it becomes clear
long before the end of the grasp that the grasp is not proceeding as it should to
correctly singulate an object. If we can detect that, it can potentially be exploited
for early abort and retrial by confidently discarding unpromising grasps at different
instants in the grasp process.

We put in practice the early failure detection idea by training a classifier to predict
success or failure at several points during the grasp motion. At each instant we train
the classifier using only information available prior to that instant. Fig. 7 shows the
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accuracy of the singulation prediction as it evolves during the grasp, from random
at the beginning, to the already mentioned 90.5% at the end.

%100
95
90
85
80
75
70
65
60
55
50

0 3 6 9 12 15s

Fig. 7 Early failure detection: evolution of the accuracy of prediction of the outcome of the grasp.

5 Discussion

The main objective of this paper is to show manipulation capabilities with simple
hands. We have chosen a very particular scenario: bin-picking of whiteboard mark-
ers. The approach used is to blind-grasp inside the bin until recognized successful
singulation of a marker in a recognizable pose. Success relies on two enabling ca-
pabilities: detection of object singulation and regression of the pose of the object
within the hand.

We have performed experiments with two prototype simple hands P1 and P2.
Both are based on the same concept, thin cylindrical fingers symmetrically arranged
around a circular frictionless palm. The main difference is that P1 has three fingers
while P2 has four. Experimental results show similar accuracies for both prototypes
in singulation detection, both greater that 90%. On the other hand, pose regression
gives an estimation error of 13.0 degrees for P1 and 24.1 degrees for P2. The big dif-
ference between the performances of P1 and P2 comes as a surprise to us, although
might reflect the fact that sometimes simpler is better.

The idealized model used in the analysis of grasp stability has two simplifica-
tions: that the fingers are infinitesimally thin and that they do not interfere with each
other. After careful examination of grasp outcomes, we observed that fingers inter-
fere with each other much more often for P2 than for P1. Figure 6 shows examples
of how, even for the most common grasps of P2, fingers are resting on top of other
fingers, instead of on top of the object or the palm, as our idealized model assumes.
The different possible intertwined configurations for the finger contacts introduces
noise into the learning process. Another source of noise that seems to have a greater
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effect on P2 than P1 is the marker caught on top of a finger or “knuckle” rather than
lying flat on the palm of the gripper.

We have seen that the observation of the full pose of an underactuated hand im-
proves the results in grasp classification. Adding the finger encoder signals when
training the classifier increases the experimental accuracy for P2 from 82% to
90.5%.

Finally we have also measured the system accuracy for detecting early failure,
i.e. situations where it becomes clear before the end of the grasp that the gripper is
not going to correctly singulate an object. Early failure detection enables early abort
and retrial, reducing the time to a successful grasp.

6 Future Work

P1 and P2 are prototypes, from which we hope to learn how to build a better P3.
While our evaluation is ongoing, we have already learned some valuable lessons.

We have yet to observe any improvement from adding a fourth finger. Still, anal-
ysis predicts that four fingers should give an improvement with respect to three in
extracting information from kinesthetic sensor data, for at least some shapes. We
would like to refine the design of P2 for that improvement not to be masked by the
self-clutter effect between the fingers.

We finish with a list of design issues that we might address with future proto-

types:

1. Non-interfering fingers. Whether we have three or four fingers, it seems clear
that the approach would benefit from fingers that do not interfere with each other.
The most straightforward way of doing it is by shortening their length, with the
consequent shrinking of the capture region. Other options include fingers that
retract or bend while they close.

2. Explore palm and finger form design to get more pronounced V-shaped potential
fields and increase grasp stability.

3. Placing. Bin picking is not complete without a placing strategy. The designs of
P1 and P2 do not address it.

4. Variable stiffness. Stiff fingers yield great stability while soft fingers can be used
as sensors. Variable compliance with stiffening springs would have both benefits.
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