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Abstract— We explore the control of a nonholonomic
robot subject to additional constraints on the state variables.
In our problem, the user specifies the path of a subset of the
state variables (the task freedoms xr), ie. a curve xp(s)
where s € [0,1] is a parametrization that the user chooses.
We control the trajectory of the task freedoms by specifying
a bilateral time-scaling s(t) which assigns a point on the
path for each time ¢. The time-scaling is termed bilateral
because there is no restriction on $(t), the task freedoms
are allowed to move backwards along the path. We design
a controller that satisfies the user directive and controls
the remaining state variables (the shape freedoms xp) to
satisfy the constraints. Furthermore, we attempt to reduce
the number of control switchings, as these result in relatively
large errors in our system state. If a constraint is close to
being violated (at a switching point), we back up xr along the
path for a small time interval and move xs to'an open region.
We show that there are a finite number of switching points
for arbitrary task freedom paths. We implement our control
scheme on the Mobipulator and discuss a generalization to
arbitrary systems satisfying similar properties.

I. INTRODUCTICN

The goal of the Mobipulator project is to build a
desktop assistant - a robot that manipulates commonplace
desktop items like paper and pencil. In [1], we described
the hardware and software architecture of a robot with four
independantly controlled wheels, none of them steered,
called the Mobipulator.

In [1], we implemented a configuration space planner
that moved the paper from a start location to a goal. When
the robot has two of its wheels on paper (called the hands)
and the other two on the desktop (calied the feer), the robot
is said to be in dual-differential drive mode (Fig. 1). In
this mode, the motion of the paper is unconstrained - the
wheel velocities span the space of the paper velocities. The
configuration space planner treated the paper as a trailer
hitched to the center of the hands and found paths for
the paper while steering the robot away from obstacles.

If the dual-differential drive mode was violated, the robot -

moved across the paper and continued the plan.

In this paper, we explore a more dynamic task - a
user controls the path of the paper remotely. We devise a
controller that executes the user’s directive and maintains
the robot in dual-differential drive mode.

We define the state variables that the user controls as
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Fig. 1
DUAL-DIFFERENTIAL DRIVE MODE[ 1]

the task freedoms and the remaining state variables the
shape freedoms. In our problem, the task freedoms are
the pose of the paper xp = (2p yp #p )7 and the shape
freedoms are the pose of the robot relative to the paper
xp = (zr yr Or ).

The decomposition of state variables into task and
shape variables was used by Nakamura[2] to study robot
arms. He termed the pose of the end effector as the
manipulation variable and studied the centrol of joint
angles to obtain desired paths.

In our problem, the user specifies the path of the paper,
i.e. a curve xp(s) in the task space where s € [0,1] is
a parametrization that the user chooses. Note that there
is no notion of time in the path specification. We control
the trajectory of the task freedoms by specifying a time-
scaling s(t) which assigns a point on the path for each
t € [0, 77, where T is the time to completion of the path.

The concept of time scaling was used by Bowbrow et
al.[3] to find time-optimal trajectories of a fully-actuated
manipulator along a specified path, subject to limitations
in actuator torque. They used a time-scaling s(t) with a
unilateral constraint § > 0, i.e. the end-effector was not
allowed to move backwards along the specified path.

We will show in §4 that for our problem we cannot im-
pose the unilateral constraint on the time-scaling function
and require bilateral time-scaling with § unconstrained.
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For example, in Fig. 2, the user specifies the path (ac —
ch—bd), we specify the time-scaling s(¢) and the resulting
trajectory is (ac — ¢b — be — eb — bd).

s(t)

..........
||||||||||

path : x,(s) = ac-cb-bd
trajectory ! x.(s(t)} = ac-ch-bc-ch-hd

Fig. 2
TIME-SCALING OF USER’S PATH

As the user is interested only in the motion of the paper,
we have an extra degree of freedom - four wheels control
the three paper degrees of freedom. The configuration
space planner used the extra freedom to hitch the paper
to the robot. We use it to maintain the shape freedoms
in dual-differential drive. Intuitively, this is similar to a
moving hitch placed optimally at each instant.

The idea of using redundant degrees of freedom to
optimize performance was used by Baillieut et.al.[4] in the
control of redundant manipulators. They used the extended
Jacobian technique to move the end effector along a
prescribed path and locally optimize an objective function.

In §4, we decompose the system into the task and
the shape subsystems. We rewrite the shape system as
a function of the task freedoms. The user controlled task
freedoms appear as a drift term in the shape system. We
use bilateral time-scaling to control this drift, and the extra
degree of freedom to move the shape freedoms to satisfy
dual-differential drive. In §5, we provide a control policy
that reduces the number of control switches required. We
explain the motivation for this policy in §2. §6 describes
an implementation of the control law on the real robot and
some of the problems faced. §7 explores a generalization
for arbitrary nonholonomic systems.

II. BACKGROUND OF NONHOLONOMIC SYSTEMS
A general form of a nonholonomic system is given by:

2 x=ufi (%) + - 4 upfn(x) )

where 2 < m < n, X = (ml---mn)T is the state
vector defined in an open subset S of R™, u; € R are
the control inputs, and fy,---,fy, are vector fields on
5. B is said to be completely nonholonomic if the rank
of the controllability Lie algebra generated by wu; -+« tiye
is n. A completely nonholonomic system is completely
controllable (Chow's theorem|5]).
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A. Motion planning

Motion planning for nonholonomic systems is com-
plicated by the fact that not all motions are feasible,
only those which satisfy the instantaneous nonholonomic
constraints. Nevertheless, the completely nonholonomic
assumption guarantees that feasible motions do exist
which steer an arbitrary initial state to a final state. We
refer the reader to Kolmanovsky et al.[6] for a detailed
review of motion planning for nonholonomic systems.

The motion planning problem for nonholonomic sys-
tems can be defined as : for every pair of points (p,%}
€ S, generate an open-loop control u(f) = {uy -+ up,)
that steers p to q.

One approach is to consider the extended system :

Yot x = wufi(x)+ -+ vpfm(x) +
Vg1 b1 (X) + - + 0 £e(X) (2)
where i, 41, -, f; are higher-order Lie brackets of the

f; chosen so that 3 (x),-- -, f.(x) span " for all x € S.
(2) can be sclved for the control v(t) that steers p to q.
The hard part is to generate Lie brackets from the
control inputs. Fast switchings of piecewise constant or
polynomial inputs[7] and high-frequency high-amplitude
periodic control inputs[8] are some of the techniques vused
to generate motions in the directions of the Lie brackets.

B. Motions of the Mobipulator

One motion along a higher-order Lie bracket for the
Mobipulator is akin to parallel parking the robot relative
to the paper. This is achieved by spinning the wheels re-
peatedly forwards and backwaids for small time intervals.
‘We use rubber O-rings on the wheels to help better grip
the paper. This also increases friction between the feet and
the deskiop and thus the wheels require a minimum torque
before they start spinning. As a result, fast switchings of
wheel torques cause a nonsmooth sideways maotion and
result in the wheels slipping. This produces errors in both
the pose of the robot and the paper. Hence, we would like
to aveid control switches for accurate motion.

I1I. PROBLEM STATEMENT

The kinematics for the Mobipulator in dual-diff drive
mode can be described as :

251
B ).CP _ 455 _
M: ().{R)fA(xR) o | = Aw ()
27

where xp = (zp yp Op)7 is the pose of the paper in the
world frame, xr = (zg ¥r #r)7 is the pose of the robot
relative to the paper, and the w; are the angular velocities
of the wheels,

M requires the robot to be in dual-differential drive

mode. The shaded region in Fig. 3 describes the allowable
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Fig. 3
ALLOWABLE {Zg yg) AT O = 27/3

pose of the robot relative to the paper for a given 5.
Each light rectangle represents the locus of the center
of the robot with one of the wheels touching the edge
of the paper. If the center lies in the interior of a light
rectangle, the corresponding wheel lies in the interior of
the paper. The shaded polygon is the locus of points with
the manipulating wheels (1 and 2} on the paper and the
locomoting wheels (3 and 4) on the deskiop.

The allowable region depends only on the relative pose
fr and the dimensions of the robot and the paper. The
shape freedom constraints can thus be written as :

He hi(on) < ( o ) <halln) @&

The problem can be stated as:

Given any user-specified paper path xp(s), is it
possible to construct wheel angular velocities w; that
attain the specified xp and satisfy the constraint H?
Furthermore, is it possible 1o construct @ control policy
that reduces the number of control switches required?

IV. CONTROL OF SHAPE FREEDOMS

In this section we will prove that we can control the
Mobipulator system to follow a user-specified xp(s) and
satisfy H. We will first consider the case where the
user has control of the velocity Xp(¢) and show that
the resulting system is ror smali time locally controifable
(STLQC). This negative result will provide us with insight
to modify the user’s control to a path xp(s). We will
show that the resulting system is STLC onty if there are
no constraints on §(t).

A. The shape and task subsystems

We decompose the Mobipulator system M into two
subsystems - the task system Af; and the shape system
M. M, comprises of the task freedoms the user controls
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(the xp) and M, comprises of the shape freedoms (the
xgr). We will analyze each of these subsystems separately.

. Xp N B
M ( R ) Aw = [ C ] w
M, *p = Buw
M s - ).{R = Cuw
B. The task subsystem
We first observe that B is of rank 3. This is beacause
the motion of xp is unconstrained in Ay, ie. if H is
satisfied, any desired Xp can be attained by a correct
selection of the wheel velocities, We create an augmented
rank 4 systemn by adding the nullspace vector of B, np,
and an additional scalar «« which we can conirol without
affecting the task freedoms.
2]

A/Im.‘ ( )2: ) ng

We can now invert the augmented system. Intuitively, o
represents the one degree of freedom that we have in
choosing w. We will use this freedom to satisfy H.

- [al () e

C. The shape subsystem

The shape freedoms can be rewritten in terms of the
task freedoms using Eqn. 6. '

B 17!/ xp
m (7)o

This can be arranged in a more intuitive form :

*xr = C

My, in=Fixp+go (8)

From Eqn. 8 we can se¢ that the motion of the task

freedoms appears as a drift term F Xp in the shape system

and the degree of freedom ¢ appears as the scalar control.
We can gain further insight on A, by studying g :

o { cos(Or) :
g=7 | sinlx) )
0

where ¢ is the radius of each wheel.

This field lets the robot move forwards and backwards
relative to the paper. For example, if there was no drift (i.e.
if Xp were (0}, then the onily robot motion that does not
manipulate the paper is this forwards-backwards motion.

D. A negative result

For H to be satisfied, we would like to be able to
control the shape freedoms (described by M., ) immaterial
of the drift generated by the user-controlled task freedoms.
If we allow the user to control %p(t), this requires M,,
to be STLC for all Xp and xg. We use the following
theorem to prove that this is rot true.



Theorem 1
controliable ar xg if and only if there exists some o
such that for all Xp

The system Mg, is small-time locally
0

0=Fxp+ga (10)

Proof : Refer Sussman[9]

Corollary 1 The system My, is not STLC

Proof : (10) is an overconstrained system with three
equations and one variable. Any non-zere choice of Xp
will yield ne soulution for af.

- Intuitively- this means that the drift field will always .

dominate and can force the system towards a constraint
boundary, and then violate it. Thus, if the user has control
of xp(t), it is not always possible to satisfy .

E. Time scaling

We overcome this problem by allowing the user to
contrel the path xp(s). We control the trajectory with a
time-scaling s(f) that assigns a point on the path for each
t € [0, 7], where T is the time to completion of the path.
The velocity at any time ¢ is given by :

*p(s(t)) = xp(s(t)) 5() (an

We control the the time-scaling rate $(¢). This in turn
provides us with control of the the velocity of the task
freedoms along the path.

We first restrict 5(¢) > 0, i.e. we cannot reverse the
motion of the paper along the path. Denoting $(¢) by 3,
we write the time-scaled shape system as :

e (5)=( )i (3)e 0

M., is a control-affine system with one unilateral control
A > 0. We can test STLC for this system :

Theorem 2 The systemm M., is small-time locally
controllable at xg, if and only if there exists some o°
and some 3% # 0 such that for all xp

o=(F’l‘5°)ﬁ°+(§)a° (13)

Proof : Refer Goodwine and Burdick[10]

Corollary 2 The system M, is not STLC

Proof : The last row of (13) can be 0 for any arbitrary

xp only if 3% = 0. Hence the system My, is not STLC.
We now remove the restriction on 4. This results in a

bilateral control 3. The untestricted system My looks like

.(12) but with 3 unrestricted. We rewrite it as :

My : ( w ) =13 B+ f, (14)

We prove this system is STLC with the following theorem:
Theorem 3  The system Mgy, is small-time locally con-
trollable at xg if the controllability Lie algebra generated
iterated Lie brackets of f3 and f, spans the state space.
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Proof : Refer Chow(5]

Corollary 3 The system Mg, is STLC

Proof : The brackets [£5], [£.], [f5.£,] and [fs, [£5.£,]]
span the 4-dimensional state space for all xp # 0.

F. Discussion

We have proved that we can follow any task freedom
path and satisfy the constraints. To show STLC, we
have had to use higher order brackets of fz and f,. An
application of these brackets will cause control switchings
andthe resulting motion will not be smooth. Hence we
must choose our control pelicy in such a way that we
minimize the use of the brackets. We will describe one
such policy in §5. Another point of concemn is that since
§ is unrestricted, we can move forwards and backwards
along our path. We will prove in §5 that any arbitrary path
can be completed in a finite amount of time.

V. CONTROL OF THE Mobipulator

Here we will propose control policies o and 3, for the
Mobipulator. We will show that control switchings can be
restricted to a finite number of switching points.

A. Control policy

Recall that the control vector field g (Eqn. 9) allows
the motion of the robot forwards and backwards relative to
the paper. This is shown as the line LL’ in Fig.4. We can
use ¢ 10 servo to any point on this line. LL’ intersects the
constraint boundaries at L., where the robot is farthest
from paper, and L,;, where the robot is closest to the
paper. Our policy servos the robot to the midpoint L;q.
This maximizes the minimum distance between the wheels
and the edges of the paper and is a safe policy that is less
severe to motion errors.

N

Fig. 4
CONTROL POLICY FOR &

For 3, we use the simple policy of 3 = 1 as long as
H is satisfied. The next sub-section describes the policies
chosen when H is violated.



B. Switching points

Note that with 5 = 1 we are deliberately allowing the
paper to drift. We do this to avoid motions that require
control switchings until imperative, H is violated when
Linin — Limgy and no further motion is possible along the
control g. This occurs either when a manipulating wheel
and a locomoting wheel touch edges of the paper () and
R in Fig.5) or when a manipulating wheel touches a corner
of the paper (P in Fig.5). We term these points switching
points as they mandate a switch in the control policy.

C. Conirol policy at switching points

At switching points, we move the paper backwards
along the path for a small time interval 8t by setting
[ = —1. Choice of « depends on whether we want net
motion forwards or backwards. To escape from P, we
neced to move along x g, while to escape from ¢}, we need
to move along —ygr. Consider P. The motion of the robot
along zg is given by :

ir = F(1)xpf + g(l)o (15)

F(1) and g{1) are the first row of F and g respectively.

For small §t, we can approximate F(1)xp and g(1) as
constants kr and kg respectively. At switching points we
first set 8 = —1 and « to a,. After §t, we set § =1 and
& to az. The net motion along =g is given by the sum :

dzp =~ Zpdt = krpfdt+ kyadt (16)
drp = —kptst -+ kga15t

kpdt + kgagdt

dxm + 02 = ky(on + )it Qa7

g

S R2

By servoing to L,,,,, we can obtain the largest positive
a and get the largest motion along zg. Conversely, by
servoing to Lonn, we can obtain the largest negative «
and get the largest motion along —z . Note that the net
motion obtained is immaterial of the motion of the paper
as kg is cancelled during motion.

We continue the motions until the wheel is sufficiently
clear of the constraining edge or vertex (defined by a
threshold w shown in Fig.5). Since each of the above-
mentioned motions produces the same net motion along
the desired direction, w will be attained in finite time.

V1. IMPLEMENTATION

The Mobipulator system has a camera that tracks
colored fiducials marked on the robot and the paper, and
provides pose information at [0 Hz. Our test path is a
hexagon whose width is 8 times the width of the robot.
The paper is rotated by 60° about its center at each vertex.
Note that, with the chosen path and the starting pose of
the robot, no switching points are encountered. We will
describe the effect of switching points separately.

3395

Switching points
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Fig. 5
SWITCHING POINTS

A. Open loop execution

We have written a simulator that inputs a user-specified
path, executes our control policies and outputs wheel
angular velocities. We fed the output to the robot. The
intended path (the solid hexagon in Fig.6(b}) and two runs
of the open-loop execution are shown. The path has large
error because slip between the robot and the paper causes
a loss of dual-differental drive. The error builds up as there
is no feedback. The maximum error between the start and
the goal was 16cm. and the angular error was 27°. The
robot took about 3 minutes to complete the path.

B. Error correction

Since the task system Af, is holonomic, errors in the
motion of the paper can be corrected by proportional
control. We used the pose information from the camera
to servo the paper to its intended path. At every cam-
era update, we computed the paper velocity required to
servo to the path. This velocity was fed to the simulator
which provided the necessary wheel angular velocities.
We applied these velocities until the camera updated the
pose again. Fig.6(c) shows four runs of the robot. The
maximum deviation from the path was 4.6cm. and the
maximum angular error was 4°. The time to completion
was comparable fo the open-loop implementation.

C. Switching points

We ran separate trials to test the accuracy of motion at
switching points. We ran 15 tests open-loop for the robot
in switching point R. None of the tests were successful.
This was because this motion required the wheels to be
placed vey close to the edge of the paper. The accumilated
slip caused a loss of dual-differential drive mode and the
motion fajled. When implemented with visual-servoing,
10 out of 15 tests were successful. However, the robot
required 18 repetitions of the motion described in §5.3
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Figure 6: Implementation of the control policy to move the paper in a hexagon whos width is 8 times the width of the robot. The
paper is rotated by 60° at each vertex. (a) shows the motion of the robot during one such rotation of the paper. (b) shows the paper
pose for open-loop execution. (c) shows the paper pose when the control policy is run with visual feedback.

which took about 1 minute to complete. The resulting error
in the location of the paper was 1.4cm.

VII. DISCUSSION

Our method decomposes the system state into task
freedoms and shape freedoms and analyzes each subsys-
tem separately. By doing so, we reduce a ncnholonomic
control problem to two subproblems - one of following a
holonomic path in task space and another of controtling
the nonholonomic shape freedoms to satisfy constraints.
We thus isolate the nonholonomy to a smaller set of
state variables. By designing a suitable control policy in
shape space we can also ensure that the task space path
is followed smoothly with reduced control switchings.
Furthermore, since the task system is holonomic, error
correction is easy.

The method outlined in §4 can be applied to any
nonholonomic system. The key lies in the fact that the
matrix B is full rank. Given a nonholonomic system
that looks like M, we can perform row operations on
the A and generate a full rank B. The corresponding
state variables can be treated as the task freedoms and
the remaining state variables can be treated as the shape
freedoms. We can then apply the same theoremns outlined
in §4 to prove STLC and gencrate control laws.

VIII. FUTURE WORK

We will work on policies and paths that minimize
control switchings. Currently, we use the safe policy of
using « to servo to L,,;4. One can imagine a mixed policy
that servoes the robot to L., when the robot is close to
a corner to increase the clearance between the robot and
the paper. It is unclear as to whether there exists a single
optimal policy for all possible paths. Another interesting
problem arises when the controller has the freedom to
choose the path - given a fixed policy, what is the path
that minimizes the number of switching points.
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