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Abstract-We explore the control of a nonholonomic 
robot subject to additional constraints on the state variables. 
In our problem, the user specifies the path of a subset of the 
state variables (the tosk freedoms xp) ,  i.e. a cnrve X P ( S )  

where s E [0,1] is a parametrization that the user chooses. 
We control the trajectory of the task freedoms by specifying 
a bilateral time-scaling s ( t )  which assigns a point on the 
path for each time t. The time-scaling is termed bilateral 
hecause there is no restriction on S(t), the task freedoms 
are allowed to move backwards along the path. We design 
a controller that satisfies the user directive and controls 
the remaining state variables (the shape freedoms xn)  to 
satisfy the constraints. Furthermore, we attempt to reduce 
the number of control switchings, as these result in relatively 
large errors in our system state. If a constraint is close to 
being violated (at a saitchingpoint), we back up X P  along the 
path for a small time interval and move xs to an open region. 
We show that there are a finite number of switching points 
for arbitrary task freedom paths. We implement our control 
scheme an the Mobipulnlor and discuss a generalization to 
arbitrary systems satisfying similar properties. 

I. INTRODUCTION 

The goal of the Mobipulator project is to build a 
desktop assistant - a robot that manipulates commonplace 
desktop items l i e  paper and pencil. In [I] ,  we described 
the hardwae and software architecture of a robot with four 
independantly controlled wheels, none of them steered, 
called the Mobipulator. 

In [ I ] ,  we implemented a configuration space planner 
that moved the paper from a start location to a goal. When 
the robot has two of its wheels on paper (called the hands) 
and the other two on the desktop (called the feet), the robot 
is said to he in dual-diferential drive mode (Fig. I ) .  In 
this mode, the motion of the paper is unconstrained - the 
wheel velocities span the space of the paper velocities. The 
configuration space planner treated the paper as a trailer 
hitched to the center of the hands and found paths for 
the paper while steering the robot away from obstacles. 
If the dual-differential drive mode was violated, the robot 
moved across the paper and continued the plan. 

In this paper, we explore a more dynamic task - a 
user controls the path of the paper remotely. We devise a 
controller that executes the user’s directive and maintains 
the robot in dual-differential drive mode. 

We define the state variables that the user controls as 

Fig. I 
DUAL-DIFFERENTIAL DRIVE MODE[ I ]  

the task freedoms and the remaining state variables the 
shape freedoms. In our problem, the task freedoms are 
the pose of the paper x p  = (XP yp Bp )T and the shape 
freedoms are the pose of the robot relative to the paper 

The decomposition of state variables into task and 
shape variables was used by Nakamura[2] to study robot 
arms. He termed the pose of the end effector as the 
manipulation variable and studied the control of joint 
angles to obtain desired paths. 

In our problem, the user specifies the path of the paper, 
i.e. a curve x p ( s )  in the task space where s E [0,1] is 
a parametrization that the user chooses. Note that there 
is no notion of time in the path specification. We control 
the trajectory of the task freedoms by specifying a time- 
scaling s ( t )  which assigns a point on the path for each 
t E [O, TI, where T is the time to completion of the path. 

The concept of time scaling was used by Bowbrow et 
a1.[3] to find time-optimal trajectories of a fully-actuated 
manipulator along a specified path, subject to limitations 
in actuator torque. They used a time-scaling s ( t )  with a 
unilateral constraint S > 0, i.e. the end-effector was not 
allowed to move backwards along the specified path. 

We will show in 54 that for our problem we cannot im- 
pose the unilateral constraint on the time-scaling function 
and require bilateral time-scaling with B unconstrained. 

XR = (ZR Y R  OR I T .  
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For example, in Fig. 2, the user specifies the path ( a c  - 
cb-bd) ,  we specify the time-scaling s ( t )  and the resulting 
trajectory is (ac  - cb - bc - cb - bd).  

path : xds) = ac-cb-bd 
trajectov : x.(s(t)) = ac-cb-bc-cb-bd 

Fig. 2 
TIME-SCALING OF USER'S PATH 

As the user is interested only in the motion of the paper, 
we have an extra degree of freedom - four wheels control 
the three paper degrees of freedom. The configuration 
space planner used the extra freedom to hitch the paper 
to the robot. We use it to maintain the shape freedoms 
in dual-differential drive. Intuitively, this is similar to a 
moving hitch placed optimally at each instant. 

The idea of using redundant degrees of freedom to 
optimize pelformance was used by Baillieul et.al.[4] in the 
control of redundant manipulators. They used the extended 
Jacobian technique to move the end effector along a 
prescribed path and locally optimize an objective function. 

In 54, we decompose the system into the task and 
the shape subsystems. We rewrite the shape system as 
a function of the task freedoms. The user controlled task 
freedoms appear as a drift term in the shape system. We 
use bilateral time-scaling to control this drift, and the extra 
degree of freedom to move the shape freedoms to satisfy 
dual-differential drive. In 55, we provide a control policy 
that reduces the number of control switches required. We 
explain the motivation for this policy in $2. 56 describes 
an implementation of the control law on the real robot and 
some of the problems faced. $7 explores a generalization 
for arbitrary nonholonomic systems. 

11. BACKGROUND OF NONHOLONOMIC SYSTEMS 

A general form of a nonholonomic system is given by: 

c : A = Ulf1(X)  +" '  + u m f m ( x )  (1) 

where 2 < m < n, x = (q.. .z,)~ is the state 
vector defined in an open subset S of R", ui E R are 
the control inputs, and f l , .  . . , f, are vector fields on 
S. C is said to be completely nonholonomic if the rank 
of the controllability Lie algebra generated by U] . . . U, 

is n. A completely nonholonomic system is completely 
controllable (Chow's tkeorern[5]). 

A. Motion planning 
Motion planning for nonholonomic systems is com- 

plicated by the fact that not all motions are feasible, 
only those which satisfy the instantaneous nonholonomic 
constraints. Nevertheless, the completely nonholonomic 
assumption guarantees that feasible motions do exist 
which steer an arbitrary initial state to a final state. We 
refer the reader to Kolmanovsky et a1.[6] for a detailed 
review of motion planning for nonholonomic systems. 

The motion planning problem for nonholonomic sys- 
tems can be defined as : for evely pair of points (p,$ 
E S, generate an open-loop control u(t) = (ul . . .urn) 
that steers p to q. 

One approach is to consider the extended system : 

c, : k = V l f l ( X )  + . . . + vmfm(x) + 
V,+l fm+l (x )+ . . .+v , f . (x )  (2) 

where f,+l, . . . , f, are higher-order Lie brackets of the 
fi chosen so that f l ( x ) ,  . . . , f,(x) span Rn for all x E S. 
(2) can be solved for the control v(t) that steers p to g. 

The hard part is to generate Lie brackets from the 
control inputs. Fast switchings of piecewise constant or 
polynomial inputs[7] and high-frequency high-amplitude 
periodic control inputs[X] are some of the techniques used 
to generate motions in the directions of the Lie brackets. 

B. Motions of the Mobipulator 

One motion along a higher-order Lie bracket for the 
Mobipulator is akin to parallel parking the robot relative 
to the paper. This is achieved by spinning the wheels re- 
peatedly forwards and backwards for small time intervals. 
We use rubber O-rings on the wheels to help better grip 
the paper. This also increases friction between the feet and 
the desktop and thus the wheels require a minimum torque 
before they start spinning. As a result, fast switchmgs of 
wheel torques cause a nonsmooth sideways motion and 
result in the wheels slipping. This produces errors in both 
the pose of the robot and the paper. Hence, we would l i e  
to avoid control switches for accurate motion. 

111. PROBLEM STATEMENT 

The kinematics for the Mobipulator in dual-diff drive 
mode can be described as : 

w1 \ 

M :  ( ) = A ( x R )  1 :: I = A w  (3) 

\ w4 

where xp = (xp yp Bp)T is the pose of the paper in the 
world frame, xR = (xR y R  is the pose of the robot 
relative to the paper, and the w. are the angular velocities 
of the wheels. 

M requires the robot to be in dual-differential drive 
mode. The shaded region in Fig. 3 describes the allowable 
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wheel 3 (the xp) and M, comprises of the shape freedoms (the 
XR). We will analyze each of these subsystems separately. 

0 = (wheel 1 &wheel 2 &!wheel 3 & !wheel 41 

Fig. 3 
ALLOWABLE (zn Y R )  AT O R  = 2 ~ 1 3  

pose of the robot relative to the paper for a given OR. 
Each light rectangle represents the locus of the center 
of the robot with one of the wheels touching the edge 
of the paper. If the center lies in the interior of a light 
rectangle, the corresponding wheel lies in the interior of 
the paper. The shaded polygon is the locus of points with 
the manipulating wheels (1 and 2) on the paper and the 
locomoting wheels (3 and 4) on the desktop. 

The allowable region depends only on the relative pose 
OR and the dimensions of the robot and the paper. The 
shape freedom constraints can thus be written as : 

The problem can be stated as: 
Given any user-specified paper path xp(s), is it 

possible to construct wheel angular velocities U; that 
attain the specped xp and satisfy the constraint H ?  
Furthermore, is it possible to construct a control policy 
that reduces the number of control switches required? 

IV. CONTROL OF SHAPE FREEDOMS 

In this section we will prove that we can control the 
Mobipulator system to follow a user-specified xp(s) and 
satisfy H .  We will first consider the case where the 
user has control of the velocity + ( t )  and show that 
the resulting system is not small time locally controllable 
(STLC). This negative result will provide us with insight 
to modify the user’s control to a path xp(s). We will 
show that the resulting system is STLC only if there are 
no constraints on S ( t ) .  

A. The shape and task subsystems 
We decompose the Mohipulator system M into two 

subsystems - the task system Mt and the shape system 
M,. Aft comprises of the task freedoms the user controls 

A4 : ( x p )  XR 
= A w =  [:]U 

Mt : %p = B w  
Ma : %R = CW 

B. The task subsystem 
We first observe that B is of rank 3. This is heacause 

the motion of xp is unconstrained in Me,  i.e. if H is 
satisfied, any desired ip can be attained by a correct 
selection of the wheel velocities. We create an augmented 
rank 4 system by adding the nullspace vector of B, nB, 
and an additional scalar a which we can control without 
affecting the task freedoms. 

We can now invert the augmented system. Intuitively, a 
represents the one degree of freedom that we have in 
choosing w. We will use this freedom to satisfy H .  

w = (6)  

C. The shape subsystem 

task freedoms using Eqn. 6. 
The shape freedoms can he rewritten in terms of the 

This can be arranged in a more intuitive form : 

M a e :  X ~ = F % p + g a  (8) 
From Eqn. 8 we can see that the motion of the task 
freedoms appears as a drift term F kp in the shape system 
and the degree of freedom a appears as the scalar control. 

We can gain further insight on M,, by studying g : 

(9) 

where c is the radius of each wheel. 
This field lets the robot move forwards and backwards 

relative to the paper. For example, if there was no drift (i.e. 
if xp were O),  then the only robot motion that does not 
manipulate the paper is this forwards-backwards motion. 

D. A negative result 
For H to be satisfied, we would like to he able to 

control the shape freedoms (described by Msa) immaterial 
of the drift generated by the user-controlled task freedoms. 
If we allow the user to control ip(t), this requires Maa 
to be STLC for all Cp and XR. We use the following 
theorem to prove that this is nor true. 
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Theorem 1 The system Ma, is small-time locally 
controllable at XR if and only if there exists some a' 
such that for  all i p  

0 = F kp + g CY' (10) 

Pmof : RefepSussman[Bl 
Corollary 1 The system M,, is not STLC 
Proof : ( IO)  is an overconstrained system with three 
equations and one variable. Any non-zero choice of XP 

will yield no soulution for CY'. 

Intuitively. this means that the drift field will always 
dominate and can force the system towards a constraint 
boundary, and then violate it. Thus, if the user has control 
of i p ( t ) ,  it is not always possible to satisfy H .  

E. lime scaling 
We overcome this .problem by allowing the user to 

control the path xp(s). We control the trajectory with a 
time-scaling s( t )  that assigns a point on the path for each 
t E [0, TI, where T is the time to completion of the path. 
The velocity at any time t is given by : 

. 

*P(.(t)) = xb(s(t)) S ( t )  (11) 

We contrnl'the the time-scaling rate S ( t ) .  This in turn 
provides us with control of the the velocity of the task 
freedoms along the path. 

We first restrict S ( t )  > 0, i.e. we cannot reverse the 
motion of the paper along the path. Denoting S ( t )  by 0, 
we write the time-scaled shape system as : 

M..:( "p )= (  " ; " ) p + (  : ) a  (12) 

M,, is a control-affine system with one unilateral control 
0 > 0. We can test STLC for this system : 
Theorem 2 The system M8u is small-time locally 
controllable at XR if and only if there exists some a' 
and some Po # 0 such that f o r  all xp 

Proof : Refer Goodwine and Burdick[ IO] 
Corollary 2 The system M,, is not STLC 
Pmof : The last row of (13) can he 0 for any arbitrary 
xp only if Po = 0. Hence the system Msu is not STLC. 

We now remove the restriction on S. This results in a 
bilateral control /3. The untestricted system M,b looks like 
(12) but with p unrestricted. We rewrite it as : 

We prove this system is STLC with the following theorem: 
Theorem 3 The system Msb is small-time locally con- 
trollable at XR ifthe contmIlubility Lie algebra generated 
iterated Lie brackets of fp and f, spans the state space. 

Proof : Refer ChowtS] 
Corollary 3 The system Msb is STLC 
Proof : The brackets [fp], [f,], [fp,f,l aJid [fp, [fp,f,ll 
span the 4-dimensional state space for all xp f 0. 

F: Discussion 

We have proved that we can follow any task freedom 
path and satisfy the constraints. To show STLC, we 
have had to use higher order brackets of fp and f,. An 
application of these brackets will cause control switchings 
and .the resulting motion will not be smooth. Hence we 
must choose our control policy in such a way that we 
minimize the use of the brackets. We will describe one 
such policy in 55. Another point of concern is that since 
S is unrestricted, we can move forwards and backwards 
along our path. We will prove in 55 that any arbitrary path 
can be completed in a finite amount of time. 

V. CONTROL OF THE Mobipulator 

Here we will propose control policies ui and 0, for the 
Mohipulator. We will show that control switchings can be 
restricted to a finite number of switching points. 

A. Control policy 
Recall that the control vector field g (Eqn. 9) allows 

the motion of the robot forwards and backwards relative to 
the paper. This is shown as the line LL' in Fig.4. We can 
use ui to servo to any point on this line. LL' intersects the 
constraint boundaries at L,,, where the robot is farthest 
from paper, and L,;, where the robot is closest to the 
paper. Our policy servos the robot to the midpoint Lmid. 
This maximizes the minimum distance between the wheels 
and the edges of the paper and is a safe policy that is less 
severe to motion errors. 

Y 

Fig. 4 

CONTROL POLICY FOR a 

For p, we use the simple policy of p = 1 as long as 
H is satisfied. The next suh-section describes the policies 
chosen when H is violated. 
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B. Swirching points 

Note that with 0 = 1 we are deliberately allowing the 
paper to drift. We do this to avoid motions that require 
control switchings until imperative. N is violated when 
L,i, i L,,, and no further motion is possible along the 
control g. This occurs either when a manipulating wheel 
and a locomoting wheel touch edges of the paper (Q and 
R in Fig.5) or when a manipulating wheel touches a comer 
of the paper ( P  in Fig.5). We term these points switching 
points as they mandate a switch in the control policy. 

C. Control policy ai switching points 
At switching points, we move the paper backwards 

along the path for a small time interval 6t by setting 
0 = -1. Choice of a depends on whether we want net 
motion forwards or hackwards. To escape from P, we 
need to move along xR,  while to escape from Q, we need 
to move along -YR. Consider P. The motion of the robot 
along xR is given by : 

Switching point6 

F(l) and g(1) are the first row of F and g respectively. 
For small 6t ,  we can approximate F(l)xb and g(1) as 

constants k p  and k,  respectively. At switching points we 
first set /3 = -1 and a to al. After 6t,  we set B = 1 and 
a to az. The net motion along x~ is given by the sum : 

6 2 ~  z X ~ 6 t  = k F f l 6 t  + k&t (16) 
6 2 ~ 1  - k p 6 t + k 9 a i 6 t  
6 ~ ~ 2  z k F b t i  k,a& 

~ X R I  + 6 ~ ~ 2 2  z= k,(ai +ai)& (17) 

By servoing to L,,,, we can obtain the largest positive 
a and get the largest motion along XR. Conversely, by 
servoing to L,,,, we can obtain the largest negative a 
and get the largest motion along -211. Note that the net 
motion obtained is immaterial of the motion of the paper 
as k p  is cancelled during motion. 

We continue the motions until the wheel is sufficiently 
clear of the constraining edge or vertex (defined by a 
threshold ?U shown in Fig.5). Since each of the above- 
mentioned motions produces the same net motion along 
the desired direction, w will be attained in finite time. 

VI. IMPLEMENTATION 

The Mobipulator system has a camera that tracks 
colored fiducials marked on the robot and the paper, and 
provides pose information at 10 Hz. Our test path is a 
hexagon whose width is 8 times the width of the robot. 
The paper is rotated by 60" about its center at each vertex. 
Note that, with the chosen path and the starting pose of 
the robot, no switching points are encountered. We will 
describe the effect of switching points separately. 

' Confiaurations aner motion 

Fiz. 5 
SWITCHIN0 POINTS 

A. Open loop execution 

We have written a simulator that inputs a user-specified 
path, executes our control policies and outputs wheel 
angular velocities. We fed the output to the robot. The 
intended path (the solid hexagon in Fig.6(b)) and two runs 
of the open-loop execution are shown. The path has large 
enor because slip between the robot and the paper causes 
a loss of dual-differental drive. The error builds up as there 
is no feedback. The maximum error between the start and 
the goal was 16cm. and the angular error was 27O. The 
robot took about 3 minutes to complete the path. 

B. Error correction 

Since the task system MG is holonomic, errors in the 
motion of the paper can be corrected by proportional 
control. We used the pose information from the camera 
to servo the paper to its intended path. At every cam- 
era update, we computed the paper velocity required to 
servo to the path. This velocity was fed to the simulator 
which provided the necessary wheel angular velocities. 
We applied these velocities until the camera updated the 
pose again. Fig.6(c) shows four runs of the robot. The 
maximum deviation from the path was 4.6cm. and the 
maximum angular error was 4'. The time to completion 
was comparable to the open-loop implementation. 

C. Switching points 

We ran separate trials to test the accuracy of motion at 
switching points. We ran 15 tests open-loop for the robot 
in switching point R. None of the tests were successful. 
This was because this motion required the wheels to be 
placed vey close to the edge of the paper. The accumilated 
slip caused a loss of dual-differential drive mode and the 
motion failed. When implemented with visual-servoing, 
10 out of 15 tests were successful. However, the robot 
required 18 repetitions of the motion described in 55.3 
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Figure 6 Implementation of the control policy to move the paper in a hexagon whos width is 8 times the width of the robot. The 
paper is rotated by 60’ at each vertex. (a) shows the motion of the robot during one such rotation of the paper. (b) shows the paper 
pose for open-loop execution. (c) shows the paper pose when the control policy is run with visual feedback. 

which took about 1 minute to complete. The resulting error 
in the location of the paper was 1.4cm. 

VII. DISCUSSION 
Our method decomposes the system state into task 

freedoms and shape freedoms and analyzes each subsys- 
tem separately. By doing so, we reduce a nonholonomic 
control problem to two subproblems - one of following a 
holonomic path in task space and another of controlling 
the nonholonomic shape freedoms to satisfy constraints. 
We thus isolate the nonholonomy to a smaller set of 
state variables. By designing a suitable control policy in 
shape space we can also ensure that the task space path 
is followed smoothly with reduced control switchings. 
Furthermore, since the task system is holonomic, error 
correction is easy. 

The method outlined in 54 can be applied to any 
nonbolonomic system. The key lies in the fact that the 
matrix B is full rank. Given a nonholonomic system 
that looks l i e  M ,  we can perform row operations on 
the A and generate a full rank B. The corresponding 
state variables can be treated as the task freedoms and 
the remaining state variables can be treated as the shape 
freedoms. We can then apply the same theorems outlined 
in 54 to prove STLC and generate control laws. 

VIII. FUTURE WORK 

We will work on policies and paths that minimize 
control switchings. Currently, we use the safe policy of 
using U to servo to Lmid. One can imagine a mixed policy 
that servoes the robot to L,,, when the robot is close to 
a comer to increase the clearance between the robot and 
the paper. It is unclear as to whether there exists a single 
optimal policy for all possible paths. Another interesting 
problem arises when the controller has the freedom to 
choose the path - given a fixed policy, what is the path 
that minimizes the number of switching points. 
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