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Abstract— This paper addresses the planning and control
of dynamic contact manipulation. In an earlier paper [13],
we derived a constraint on the robot joint accelerations that
needed to be satisfied to obtain a desired contact mode and
a desired dynamic motion of the object. We proposed a
technique for trajectory planning which involved planning
a path in the system configuration space followed by time-
scaling the path to satisfy dynamic constraints. This paper
tackles a problem where only a small set of paths can be time-
scaled to satisfy the constraints. We note that the dynamic
constraints depend only on a subspace of the system state
space. Projecting the dynamics and the constraints onto the
subspace allows us to compute an analytical solution for
the trajectory generation problem. We generate controllable
simulations by allowing the user to control the system in the
space orthogonal to the projection. We also demonstrate the
construction of feedback controllers using dynamic program-
ming.

I. INTRODUCTION

Manipulation is the art of moving things. At the core

of the manipulation problem, an object needs to be moved

from a start to a desired goal by a robot that manipulates the

object. As the system evolves, contacts occur both between

the object and the robot, and between the object and the

environment. Contacts are important because they act as the

coupling between the various subsystems — they transmit

forces and impose motion constraints on the object and the

robot. For example, when a waiter manipulates a glass on

a tray, he exerts a force on the glass through the tray. He

also imposes a motion constraint that prevents the glass

from sliding, tipping or losing contact.

A solution to the manipulation problem is a set of

controls that can be applied by the robot on the object

that will cause the desired motion of the object and satisfy

the desired motion constraints.

By dynamic manipulation we mean “acting on the object

during its dynamic phase”. There are many reasons for

using dynamics in manipulation. We refer the reader to

[13] for a detailed list. The motivating reason in this paper

is that there is no quasi-static solution for the problem

described.

The problem we will be focusing on in this paper is

shown in Fig.1(i). A block rests on a flat palm. The goal is

to make the block stand up. If we denote the angle made

by the block with the palm by θ, the goal is to manipulate
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the block from θ = 0 to θ = π
2 . The palm cannot rotate.

We control the horizontal and vertical acceleration of the

palm (q̈1,q̈2). Furthermore, we need to maintain a rolling

contact between the block and the palm. As per the laws of

Coulomb friction this means that the contact friction force

f must lie within the friction cone at the contact F . As

a practical consideration, we also bound the magnitude of

the horizontal and vertical acceleration of the palm.

This problem, henceforth identified as the tipping prob-

lem, was first proposed by Erdmann[7]. There is a so-

lution to the problem in Erdmann’s paper, but one that

was derived by hand-tuning the controller and the system

parameters. One of our goals in this paper is to automate

the trajectory planning. Furthermore, we would also like to

answer questions like:

What is the set of all feasible palm motions that

move the block from θ = 0 to θ = π
2 in, say, 2.5

seconds, and have the exact same angular motion

θ(t) of the block?

The answer to the question is illustrated in Fig.1(iii).

The problem solved in this paper is also closely related

to the work of Lynch and Mason [10]. Using a robot arm

with a single revolute degree of freedom, they demonstrated

dynamic tasks such as snatching, rolling, throwing and

catching an object.

In [13], we derived a constraint on the feasible joint

accelerations for a given system state, a desired motion

of the object and a desired set of contact conditions. A

feasible trajectory is one that satisfies the joint acceleration

constraint at every point. In [13], to obtain a feasible

trajectory, we decoupled the problem into a path planning

problem in the system configuration space followed by a

time-scaling of the candidate path to satisfy the acceleration

constraints. Note that a path has no notion of time. When

we time-scale, we are in effect coming up with a time

parametrization of the candidate path; we are deciding how

fast or slow we wish to travel along the path. We deem

a time-scaling successful if it is possible to find a time

parametrization of the path that does not violate the accel-

eration constraints. Decoupling reduces the dimensionality

of the problem from 2nq to (nq + 2), where nq is the

dimension of the configuration space.

There is a drawback to the decoupling approach. It is

possible that only a small subset of all feasible paths in

the system configuration space can be successfully time-

scaled. Applying the decoupling technique then amounts
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Fig. 1. (i) : The tipping problem — a block rests on a flat palm. The goal is to tip the block i.e. go from θ = 0 to θ = π
2

while maintaining rolling

contact, (ii) : projecting the dynamics and the constraints onto the space of task freedoms, (iii) : a sampling of the set of all feasible palm motions that

move the block from θ = 0 to θ = π
2

in 2.5 seconds and have the exact same angular motion θ(t) of the block

to repeatedly trying candidate paths until one that could

be successfully time-scaled is found. Searching for a small

sliver in an infinite dimensional function space of config-

uration space paths can be very hard.

We propose a new technique for solving the trajectory

generation problem. We first derive the contact acceleration

constraint for the tipping problem using a result from

[13]. We identify the subset of the state variables that the

constraint depends on. We call these state variables the

task freedoms of the system. For the block tipping, the task

freedom is the rotation of the block relative to the palm, the

angle θ. We then project the dynamics and the constraints

onto the space of task freedoms. For the block tipping,

the state space comprises of the configuration of the block

and its velocity, a 6 dimensional space. We project the

dynamics and the constraints onto the 2 dimensional space

of (θ, θ̇), as shown in Fig.1(ii). We plan a feasible trajectory

in the lower dimensional task freedom space and control the

nullspace of the projection to control the reminder of the

state variables. A feasible trajectory for the block tipping

is shown in Fig.1(ii). The trajectory takes the block from

θ = 0 to θ = π
2 in 2.5 seconds while maintaining a rolling

contact between the block and the palm. By varying the

control in the nullspace, we are able to produce various

palm motions that do not affect the task freedom trajectory.

The family of trajectories generated is shown in Fig.1(iii).

We are also interested in developing feedback controllers

for dynamic contact manipulation. For a given cost func-

tion, a feedback controller outputs the optimal control that

needs to be applied at each system state which will result in

a trajectory that minimizes the cost function. In this paper,

we develop a feedback controller for the task freedoms

using backward dynamic programming. We discuss the

implementation of the controller in §V.

The rest of the paper is arranged as follows. In §II, we

introduce the terminology used in the rest of the paper and

give a clear definition of the problem we are interested

in solving. §III describes relevant background work on

manipulation and dynamic programming. §IV describes

the solution of the planning problem. §V describes the

feedback controller. In §VI, we discuss our contributions

and describe future work.

II. PROBLEM STATEMENT

We describe the configuration of the block by its pose

qo = (x, y, θ)T and the configuration of the robot by its

joint variables qr = (q1, q2)T . We denote the configuration

of the system by q = (qo, qr)T .

A rolling contact constrains the relative velocity between

the object and the palm at the contact point:

G(qo)Tq̇o = J(qr)q̇r (1)

where G(qo) ∈ R
3×2 is the grasp map which relates

contact forces to wrenches on the object and J(qr) ∈ R
2×2

is the Jacobian of the robot.

Coulomb friction imposes a constraint on the contact

force f :

f ∈ F(µ) (2)

where F(µ) is a convex cone and µ is the coefficient

of friction between the palm and the object, a material

property.

The motion of the object is governed by its dynamics:

Mq̈o = Gf + no (3)

where M is the inertia matrix of the object and no is the

wrench on the object due to gravity.

The manipulation problem can be stated as:

Given a start qs and a goal qg configuration

for the system, find the robot joint acceleration



q̈r(t) that will move the system from the start

to the goal without violating the contact velocity

constraint (Eqn.1) or the contact force constraint

(Eqn.2).

An industrial robot typically accepts desired joint torque

as an input. The mapping from robot joint acceleration to

joint torque involves the dynamics of the robot and is a

well studied problem [6].

III. BACKGROUND WORK

Early work on dynamic manipulation focused on dex-

terous manipulation where a robot hand manipulated an

object with multiple frictional fingers. In Cole et al. [4],

[5], some fingers were designated to slide on the object’s

surface while others were designated to roll. The authors

provided a control law that achieved simultaneous tracking

of a pre-planned object trajectory together with the desired

motion at the fingertips using the location of the contacts

and the relative velocity at the contacts as feedback.

Brook et al. [3] studied the manipulation of objects in

equilibrium grasps. They showed that most equilibrium

grasps were locally controllable, and stabilizable under

suitable feedback control. They showed that manipulation

from one equilibrium grasp to another was possible if there

was a continuity of equilibrium grasps between them.

Trinkle and Hunter [14] provided a framework for ma-

nipulation planning. They defined a contact formation (CF)

as a qualitative description of a grasp based on contacts

between the vertices, edges and surfaces of the robot and

the object. To plan a motion, they constructed CF-trees with

the start and goal CFs as the parent nodes, the child nodes

being the CFs the parents could transition to, and the arcs

being controls that caused the transitions. A plan existed if

the the start and goal CF-trees had a common node.

Erdmann [7] explored the nonprehensile manipulation of

planar convex objects using two flat palms. He restricted

the actions that could be performed by the palms to four

primitives which caused the object to tilt, rotate, slide, or

be released. Based on a static analysis, he decomposed the

configuration space of the object into regions of invariant

dynamics, and searched for plans in this simplified space.

Sarkar et al. [11] studied the control of a robot in

a cooperative manipulation task ordered to compliantly

follow the motion of an object. They designed a nonlinear

feedback controller that maintained rolling contact.

Yashima, Shiina and Yamaguchi [15] studied the dy-

namic manipulation of an object by a hand where the

contacts underwent both rolling and sliding. They used

a rapidly exploring random tree (RRT) to search for a

feasible path for the object.

The optimal control problem deals with the generation of

trajectories and controls for a system that minimize a given

cost function. The work of Bellman [1] pioneered the use of

dynamic programming to solve optimal control problems.

Bellman proposed a numerical technique for finding the

optimal cost from any point in a state space to a goal.

The gradient of the optimal cost function can be used

to generate the corresponding optimal feedback controller.

One drawback of dynamic programming is that the running

time grows exponentially with the number of dimensions.

Lavalle and Konkimalla [8] proposed several techniques for

improving the speed of dynamic programming.

IV. PLANNING
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Fig. 2. Constraints in contact acceleration space: the dark polygon

denotes the set of feasible contact accelerations. The friction cone F
is mapped to the acceleration cone A.

In this section, we map the constraints given by Eqn.1

and Eqn.2 to a common space and describe an analytical

solution to our problem.

A. The contact acceleration constraint

In [13], we derived a constraint that the robot joint

acceleration has to satisfy in order to obtain both a desired

motion of the object and a desired contact condition. We

state the theorem in the following paragraph and refer the

reader to [13] for a detailed proof.

Theorem 1. For a given configuration q = [qo, qr]T and

velocity q̇ = [q̇o, q̇r]T , the allowable joint acceleration of

the robot q̈r that satisfies both the velocity and the force

constraint is constrained to lie within the cone:

Jq̈r + V(q̇o, q̇r,no) ∈ A (4)

V(q̇o, q̇r,no) = J̇q̇r − ĠTq̇o − GTM−1no

and

A = GTM−1G(F)

is the contact acceleration cone.

The theorem gives us a series of mappings that can

be used to combine the contact force constraint and the

contact velocity constraint in a common space. The contact

friction cone F is mapped to a contact acceleration cone A
and the contact velocity constraint is mapped to a contact

acceleration constraint.

When we apply Thm.1 to the tipping problem, we

obtain the following constraints on the allowable joint

acceleration:(
q̈1

q̈2

)
− d

(
cos(θ + β)
sin(θ + β)

)
θ̇2 +

(
0
g

)
∈ A(θ) (5)



where β = arctan(w/l), w and l are the width and length

of the block respectively, d is the distance from the center

of mass of the block to the contact and g is the acceleration

due to gravity.

Note that Eqn.5 only depends on θ and θ̇, and not on

(x, y) or (ẋ, ẏ). This suggests that, for the purpose of

satisfying the contact velocity and contact force constraints,

it is sufficient to analyze the evolution of the dynamics in

the (θ, θ̇) subspace. We denote this subspace as the space

of task freedoms.

For the tipping problem, the following map takes us

from the space of contact forces to the space of contact

accelerations: (
ax

ay

)
= (GTM−1G)f (6)

where (ax, ay)T is the contact acceleration.

For a given state of the system, an illustration of Eqn.5

in the contact acceleration space is shown in Fig.2. The

rays with solid arrows represent the friction cone at the

contact and the rays with outlined arrows represent the

acceleration cone at the contact. The bounds that we have

imposed on the joint accelerations of the robot appear

as a rectangle in the contact acceleration space. Feasible

contact accelerations lie in the intersection of the contact

acceleration cone and the joint acceleration limits.

It can be shown that:

N (G) = {0} =⇒ N (GTM−1G) = {0} (7)

This means that in the absence of internal forces the map

from contact forces to contact accelerations is invertible.

This makes intuitive sense since an internal force is a

contact force that produces no contact acceleration and by

definition lies in the nullspace of the map from contact

forces to contact accelerations. If no internal forces exist,

the map has no nullspace and is invertible.

We invert the map to obtain:

f = (GTM−1G)−1

(
ax

ay

)
(8)

We can write the dynamics of the block as:

q̈o = M−1(Gfc + no) (9)

We can combine Eqn.8 and Eqn.9 as:

q̈o = A

(
ax

ay

)
+ b (10)

Hence the evolution of the system is given by Eqn.10

subject to the constraint given by Eqn.5.

B. Projection onto the space of task freedoms

In this subsection we will project the contact acceleration

constraint onto the space of task freedoms. The projection

is illustrated in Fig.3. As mentioned in the previous sub-

section, the dark polygon in Fig.3 corresponds to set the

feasible contact accelerations. Each point in this set can be

mapped to a feasible θ̈ using Eqn.10. In Fig.3, this mapping

is illustrated by a projection onto the unit vector aθ. Limits

max

min
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F

User controlled freedom

Task freedom
aθ

aθ

Fig. 3. Projecting the contact acceleration constraint onto and orthogonal

to the space of task freedoms

on the feasible θ̈ can be easily computed by projecting the

vertices of the feasible polygon onto aθ, as shown in the

figure.

To obtain aθ, we rewrite Eqn.10 as:⎛
⎝ẍ

ÿ

θ̈

⎞
⎠ =

[
Axy

Aθ

] (
ax

ay

)
+

[
bxy

bθ

]
(11)

We then perform a transformation of the input by rotating

it along and orthogonal to aθ:(
ax

ay

)
= aθα + a⊥

θ β (12)

We compute the orthogonal unit vectors aθ and a⊥
θ using

the additional relation Aθa
⊥
θ = 0.

We can now decouple the evolution of the task freedoms

and the rest of the state variables as:

θ̈ = Aθa
T
θ α + bθ (13)(

ẍ
ÿ

)
= A1α + A2β + bxy (14)

We compute limits on α by projecting the vertices of

the feasible polygon onto aθ. We use the limits on α to

compute limits on θ̈ using Eqn.13.

We now focus our attention on the evolution of the

task freedoms given by Eqn.13. Limits on θ̈ constrain

the tangent space of the task freedom (θ, θ̇), as shown in

Fig.1(ii). At every point of a feasible trajectory in the task

freedom space, the tangent must lie within the cone of

allowable tangents at that point.

There is substantial literature on computing analytical

solutions for trajectory generation in 2 dimensions [2],

[12]. We choose a simple technique for finding feasible

trajectories. We pick a feasible vector field and follow it

from the start (here, θ = 0). We pick another feasible vector

field and back project it from the goal (here, θ = π
2 ). At

the point where the two trajectories intersect, we switch

vector fields.

Once a feasible trajectory is computed, we can compute

the control α(t) that is required to move the system along

that trajectory. We can then use the computed α(t) in

Eqn.14 and vary β(t) to move the palm wherever we



wished. Note that varying β(t) does not affect the motion

of the task freedoms in Eqn.13 because β(t) lies in an

orthogonal space to the task freedoms, by construction (as

shown in Eqn.12).

A few of the trajectories generated by varying the β(t)
are shown in Fig.1(iii). Following any of these trajectories

gives us the same rotational motion of the block. Further-

more, we can also transition from one trajectory to another

without changing the motion of the block.

The decomposition provides us a controllable simulation.

For example, in the tipping problem, if a user were handed

two joysticks, one for each degree of freedom of the palm

and told to tip the block, he would invariably fail — the

block would very easily slide, or lose contact with the

palm. Instead, we can give the user control of β(t) with

the assurance that any value of β(t) will satisfy the contact

constraints. We have solved the hard problem (tipping the

block) and given the control of the freedoms of secondary

importance (the motion of the palm) to the user.

C. Sliding
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Fig. 4. A trajectory that involves both sliding and rolling at the contact.

The block slides in the sliding region and reverts back to rolling out of

the region.

Until now we have looked at plans that only involve

rolling at the contact between the block and the palm. For

the tipping problem, it is relatively easy to incorporate the

sliding of the palm as well. This is predominantly because

the contact between the block and the palm is of Type A

(a contact between a vertex of the block and a side of the

palm [9]). As a result, the moment applied by any contact

force on the block by the palm remains the same regardless

of the position of the block relative to the palm. This is

illustrated in Fig.5. Hence sliding the palm relative to the

block does not affect the motion of the task freedoms.

An instance of a plan involving sliding and rolling

is shown in Fig.4. The dotted line denotes the extremal

θ
f

τ

θ
f

τ

Start

Goal

Fig. 5. An illustration of a Type A contact and a palm motion that results

in both sliding (shown by the dark palms) and rolling at the contact

trajectory — one where sliding of the palm must occur.

The extremal is computed by following the limits of the

allowable tangents at each point of of the state space.

The solid line denotes a trajectory where both rolling

and sliding occur. When the solid line coincides with the

extremal, we are allowed to slide the palm relative to the

block (the allowable region is colored in the plot). However

we need to ensure that by the time the trajectory reaches

the end of the allowable region, the sliding must cease

— the relative velocity of the palm with respect to the

block must be brought to zero. At the end of the allowable

region, the solid line leaves the extremal and rolling contact

is initiated. The block then maintains rolling contact until

it reaches the goal.

The motion of the palm for the trajectory given in Fig.4

is shown in Fig.5. The times where the palm is dark

denote sliding. For this problem, we used a simple constant

acceleration followed by a constant deceleration for the

motion of the palm relative to the block during the sliding

phase.

V. FEEDBACK CONTROL

A feedback controller provides the optimal control to

be applied at any state of the system that will result in a

trajectory that minimizes a given cost function. We used

backward dynamic programming to construct a feedback

controller for the block tipping problem. The cost function

we optimized was time-optimality, i.e. the feedback con-

troller gave us paths that took the least amount of time to

get to the goal.



The numerical technique we used is described in [1].

We discretize the (θ, θ̇) space with a uniform grid and

discretize the controls, as shown in Fig.6. The output of

the dynamic program is an optimal cost function that gives

the optimal cost (here, minimum time) to get from any

point in the state space to the goal. The optimal control is

one that moves the trajectory in a direction that is closest

to the gradient of the optimal cost function. The level sets

of the optimal cost function and a time-optimal trajectory

from θ = 0 to θ = π
2 are shown in Fig.7.

Fig. 6. Discretization for dynamic programming: the circles denote the

discrete states. At each discrete state there are 10 discrete feasible controls.

The curves denote the orbits of each control for the given time-step. The

goal region is denoted by the dark rectangle.
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Fig. 7. Feedback control: isocontours of the time-optimal cost-to-go
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VI. CONCLUSIONS

In this paper, we have demonstrated a new technique

for solving the trajectory generation problem for dynamic

contact manipulation. We have shown how the projected

dynamics can be used to generate controllable simulations

— where the user can control a set of the freedoms of

the system without violating the dynamic constraints. We

have also presented the construction of feedback controllers

for manipulation systems using dynamic programming. In

the future, we will work on exploring the reachability

and controllability of manipulation systems. We are also

working on an implementation of the block tipping problem

using an Adept 550 industrial arm.
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