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Abstract— The ability to reference objects in the environment
is a key communication skill that robots need for complex, task-
oriented human-robot collaborations. In this paper we explore
the use of projections, which are a powerful communication
channel for robot-to-human information transfer as they allow
for situated, instantaneous, and parallelized visual referencing.
We focus on the question of what makes a good projection for
referencing a target object. To that end, we mathematically
formulate legibility of projections intended to reference an
object, and propose alternative arrow-object match functions
for optimally computing the placement of an arrow to indicate a
target object in a cluttered scene. We implement our approach
on a PR2 robot with a head-mounted projector. Through an
online (48 participants) and an in-person (12 participants) user
study we validate the effectiveness of our approach, identify the
types of scenes where projections may fail, and characterize the
differences between alternative match functions.

I. INTRODUCTION

Robots are entering new environments that require con-
stant communication with human collaborators about task-
relevant information. In particular, many joint human-robot
tasks require the robot to reference an object in the environ-
ment to provide information about it or instruct the human
to perform an action with it. Much previous work on robotic
spatial referencing focuses on speech, gaze, gestures, and
secondary displays. However, these methods have limitations
with precision and speed. Verbal descriptions take time to
utter, can have ambiguity inherent to natural language, and
might sound unnatural. Gesturing and gazing also take time
and can have high ambiguity depending on the robot’s em-
bodiment. Visualizations on a screen can accurately indicate
an object but are not situated in the task context and require
a mental mapping.

Projections resolve most of these limitations. Compared to
other communication channels, projections can make faster,
parallelized, more precise, and more intuitive references. Pro-
jectors are small and power-efficient enough to be mounted
on robots as portable displays.

While previous work demonstrates the potential benefits
of projections (Sec. II), the question of what constitutes
a good projection for human-robot communication remains
open. Our work aims to tackle this question, starting with
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Fig. 1: We propose a mathematical framework to select
where a robot should project an arrow on a cluttered tabletop
to reference a target object during human-robot collaboration.

communication of object references. In this paper we ex-
plore how a robot should project an indicator to single
out a target object on a cluttered tabletop environment. We
introduce a mathematical model for legible placement of
projected object references for tabletop objects. We focus
on the use of arrows to reference objects and propose an
arrow model that estimates the probability that a projected
reference indicates an object given its configuration relative
to the object. We use this framework to optimally select
indicators for a target object in synthetic and real world
scenes. Our model accounts for occlusions to produce a
visible placement of a projection that clearly references an
object. We evaluate our model’s performance in two user
studies: an online study with 2D synthetic scenes and an
in-person study with the PR2 robot referencing objects on a
table top. Our studies demonstrate that our method can select
effective arrows in most scenarios. We also characterize the
differences between alternative arrow-object match functions
used in our optimization.

II. RELATED WORK

Projections in robotics. Projections have been used pre-
viously for human-robot communication. Andersen et al.
present a system for tracking objects, such as a car door being
assembled or a box on a table, in human-robot collaboration
tasks and projecting task-related information directly onto
the object and on the workspace [1]. In their user study the
robot projects a destination area for where an object needs to
be moved by the person, arrows that indicate how an object
should be rotated, and iconic symbols such as a warning sign
or a checkmark that indicate task status. In Chadalavada et
al. a mobile robot projects its planned path onto the floor
[2]. In Nguyen et al. the human partner uses a laser pointer
to project a dot of light on an object for the robot to retrieve



[3]. In Lazewatsky et al., a robot projects a cursor where
the robot thinks the human is facing [4]. While these works
explore different ways of using projections, we focus on
object referencing and ways to optimize references.
Spatial referencing. Beyond projections, many researchers
in the HRI community have studied spatial referencing of
objects or people by the robot using speech [5], [6], pointing
[7], [8], [9], and gaze [10]. Roy et al. developed an algorithm
to detect and resolve spatial ambiguities with speech [11].
Admoni et al. and Stiefelhagen et al. combine speech, gaze,
and pointing to disambiguate object references [12], [13].
Legibility. Dragan et al. characterize predictability and leg-
ibility in the context of a robot reaching for an object. A
predictable motion is the lowest cost motion to reach the
goal, but may be ambiguous to an observer. A legible motion
reaches the goal less efficiently while using more energy to
broadcast the reacher’s intent to an observer [14]. Holladay
et al. study the tradeoff between clarity and efficiency when
a robot makes pointing gestures [7]. Our work applies this
notion of legibility to projection-based communication.

III. REFERENCING OBJECTS WITH PROJECTIONS

Human-robot collaboration on joint tasks can involve com-
munication of many types of information in both directions.
Our work focuses on the communication of a single target
object by the robot to the human. For example, consider a
social robot on a kitchen counter that guides its user through
a recipe. At every step of the recipe, the robot needs to
instruct the user to add a particular ingredient or use a
particular tool that might be on the user’s workspace. The
robot could use projections to unambiguously indicate these
items to the user. As another example, consider a robot co-
worker in a factory setting collaborating with a human to
transfer objects from the workspace to a package. The robot
could indicate which object it is going to pick up next as a
way to increase the human’s awareness of what the robot is
doing and improve the fluency of the collaboration.

There are several ways to use projections for indicating
objects, such as directly projecting onto the object, encircling
the object with the projection, or placing an indicator near
the object. We focus on the latter option due to its greater
generalizability to objects of various shapes, sizes, and
colors. We also choose arrows specifically to take advantage
of their directionality. The key question we tackle in this
paper is how to chose an arrow to indicate a particular object
in a given scene.

A. Choosing Legible Arrows

To formalize the object referencing task, let O be the set of
all candidate objects that reside on surface R, with ‖O‖ = n.
Let o∗ ∈ O be the target object and OD = O − o∗ be the
set of distractor objects. We define an arrow α as a tuple
(x, y, θ), with (x, y) ∈ R2 and θ ∈ [0, 2π].

In referencing a target object with a projected arrow, the
robot’s goal is to choose values of α that maximize the
probability that the target object is being referenced. We
write this optimization problem as choosing an arrow that

maximizes the probability that the target object is being
indicated given the arrow.

α∗ = argmax
α

P (o∗|α) (1)

According to the Bayes rule we can rewrite the term being
maximized as

P (α|o∗)P (o∗)
P (α)

=
P (α|o∗)P (o∗)∑

oi∈O
P (α|oi)P (oi)

We assume that all objects have equal priors, P (o∗) =
P (oi) =

1
n . Hence, our ability to compute Eqn. 1 depends on

estimating the probability of an arrow given a target object.
To that end, we define a probability distribution over arrows
as P (α|o) ∝ e−d(α,o) where the function d is a distance
function defined between an arrow (x, y, θ) and an object.
As a result we can rewrite Eqn. 1 as

α∗ = argmax
α

e−d(α,o
∗)∑

oi∈O
e−d(α,oi)

(2)

Matching our intuition of what a legible arrow should do,
this computation will maximize the match between the arrow
and the target object, while minimizing the match to the
distractors.

B. Modeling the Background

Assume there is only one object in the scene. The term
being maximized in Eqn. 2 then becomes a constant (i.e., 1),
independent of the arrow. In other words, if there is only one
object, any arrow is considered to be pointing at it. In reality,
it is counterintuitive for an arrow pointing in the opposite
direction of an object to be considered as pointing at it. To
capture this intuition in our model, we assume a background
object o0 ∈ O that is always present. In the simplest case we
can assume a background which has a constant probability
of being pointed at independent of the arrow configuration,
i.e., P (α|o0) = p0. As a result, the denominator of Eqn. 2
will always have a constant term and the maximization will
force the arrow to point towards the object, even when there
is only one object.

C. Modeling Arrow-Object Distance

Next we need to define d(α, oi) in Eqn. 2 to capture
the space of arrow-object relationships, i.e., how well the
arrow indicates the object. This distance should be low if
the arrow is highly indicative of the object and it should be
high otherwise. In the following we identify four intuitive
arrow-object distance functions, based on different object
representations. The first function is focused on the relative
direction of the arrow while the other three are focused on
the relative location of the arrow. Ultimately a combination
of these functions will enable fully specifying an optimal
arrow placement (Sec. III-C.5).



1) Relative angle: Intuitively an arrow is likely to be
perceived as pointing at an object if its direction intersects
with the object. The match between an arrow and an object
should be higher if the arrow is pointing towards the center of
the object (as compared to its edges). To formulate a simple
arrow-object distance function that captures this intuition,
assume that the object oi is represented as a point (xi, yi) on
surface R. Then, let our first arrow-object distance function
be defined as:

d1(α, oi) =

∥∥∥∥arctan(x− xiy − yi
)− θ

∥∥∥∥
This function measures the angle between the arrow di-

rection and the direction of a vector that connects the tip of
the arrow to the location of the object.

2) Proximity: We also expect the match between an arrow
and an object to be higher when the two are close to one
another. To capture this intuition we consider the following
distance function that measures the Euclidean distance be-
tween the arrow and the object:

d2(α, oi) =
√

(x− xi)2 + (y − yi)2

3) Edge proximity: The two distance functions above do
not depend on the shape or size of the object, whereas in
practice those might impact the quality of match between
an arrow and object. For example, consider a long and slim
rectangle—an arrow that is pointing to it near its short edge
might not be considered much worse than one that is pointing
at its long edge, since the arrow is close to the edge of
object, even though it might be far from its center hence
worse according to d2. To capture this difference we define
an alternative distance function which is the shortest distance
from the arrow tip to the edge of an object. Although this
distance can be computed analytically if the object geometry
is known, in the general case we assume the object oi
contains a set of points Oi on the projectable region R and
define the function as follows:

d3(α, oi) = min
xij ,yij∈Oi

√
(x− xij)2 + (y − yij)2

4) Object span: An arrow that is at a particular proximity
to the center or closest edge of an object might still differ in
how well it indicates the object depending on the size of the
object. The larger the object, the more “buffer” it will have
around the pointed direction to prevent misinterpretation
of the arrow. We capture this insight with the following
distance function that measures the span of the object from
the perspective of the arrow:

d4(α, oi) =

∥∥∥∥ max
xij ,yij∈Oi

arctan(
x− xij
y − yij

)

− min
xij ,yij∈Oi

arctan(
x− xij
y − yij

)

∥∥∥∥−1
This function jointly captures the proximity of the arrow to

the object and the size of the object. Given a fixed arrow, the
object-arrow match increases with closer and larger objects.

5) Combining distance functions: Although some other
distance functions are possible, the set above captures several
key intuitions about measuring the match between an arrow
and an object. Relative angle (d1) will find an arrow that
points as much as possible towards the target object and
away from the distractors. In the absence of distractors, this
function will only influence the orientation (θ) of the arrow;
however, when distractors are present, different positions
(x, y) of the arrow will result in different relative angles for
each object. Hence, this function alone can be used for fully
specifying an arrow (x, y, θ). In contrast, d2, d3, and d4 will
only influence the position of the arrow; hence, they need to
be combined with d1 to also specify orientation. Therefore
we define the following functions: dA = d1; dB = d1 + d2;
dC = d1 + d3; and dD = d1 + d4.

6) Ray-based distance approximation: We propose an ad-
ditional way of jointly optimizing the orientation and position
of the arrow based on the legible pointing method proposed
by Holladay et al. [7]. This involves integrating the deviation
from the arrow orientation over the span of the object. Like
Holladay et al. we use a numerical approximation of this
integration. We consider a finite set of rays from -90o to 90o

around the arrow, where 0o corresponds to the direction of
the arrow. Each ray has a weight wβ that reflects how far the
ray deviates from the arrow. We use wβ(βi, α) = e−(θ−βi)

2

where βi is in the range [−π2 ,
π
2 ]. Then we define the distance

function dE as follows:

dE(α, oi) =
∑

βj∈[−π2 ,
π
2 ]

wβ(βi, α)I(βi, α, oi)

The indicator function I(βi, α, oi) is 1 if the ray in the
direction θ−βj intersects with the object oi and 0 otherwise.
Just like the object span distance function (d4) proposed
earlier this will favor arrow positions closer to the target
to have more rays intersect with the object; however, it will
also push the arrow to point towards the target object to
maximize the summed weight.

D. Computing Optimally Legible Arrows

The optimization problem at hand is to search for arrow
parameters α maximizing the conditional probability stated
in Eqn. 2 with different combinations of distance functions.
Given the complexity of some of our cost functions, com-
puting an analytical gradient is not an option. Further, in
real world projections, we need to take into account certain
constraints related to projectability and visibility. To address
these challenges we use the constrained optimization by
linear approximation (COBYLA) algorithm [15] which is a
gradient-free optimization method. In this paper we used the
COBYLA implementation available in the NLopt package
[16]. Because this approach is susceptible to starting configu-
rations, we randomly sample multiple starting configurations
to get a robust result.

1) Optimization Constraints: The optimization is con-
strained to place arrows within the projectable and visible
space on a projection plane. The space of possible projections
is bounded by the range of the projector and its pose relative



to the projection plane. It is further narrowed with the space
covered by objects, fall under the object’s shadow from the
perspective of the projector, or behind the object therefore
not visible to the human (Fig. 1). To avoid cutting off parts
of the arrow due to sensor noise, a certain buffer around
these regions should also not be used for projections. In the
optimization process, we avoid placing arrows in the these
regions by associating a high cost with them.

In this work, we assume that the human is located on
the opposite side of the projection plane from the robot and
compute the constraints based on a fixed human viewpoint.
While visibility of the arrow from the user’s perspective is
a hard constraint that needs to be satisfied, we think that
arrows closer to the user might be preferable over further
ones for providing higher visibility, since the size of the
arrow is kept constant in this work. Hence we also consider
adding the following term to the optimization function, where
(xh, yh) is the position of the human in the projection plane
and wh is a constant for balancing the effect of this additional
constraint.

whe
−
√

(x−xh)2+(y−yh)2 (3)

The impact of this term was evaluated in lab studies with
users across the table from the robot.

E. Robot System Implementation

We implemented our system on a PR2 robot.
1) Perception: We used the PR2’s head-mounted Kinect

device for scene perception. PCL and OpenCV were used
for table-top segmentation [17], [18], which provided surface
coordinates while segmenting objects on the surface. Based
on the known coordinates and parameters of the projector as
well as the assumed pose and visual field of the user, this
map was pruned to only include projectable space that was
un-occluded from the user’s point of view.

2) Projection: We mounted a 500-lumen portable pro-
jector on the robot’s pan-tilt head. The projector produces
no light for pure black image pixels, enabling us to project
selectively. The projector was calibrated to project onto the
table-top of the in-person evaluation discussed in Sec. IV-
C. Our projection system receives the positions of detected
scene objects, the map of projectable, un-occluded regions,
and a target object. The optimization described in Sec. III-C
fits an image of an arrow’s position and orientation, relative
to the target object given the constraints of the map. The
arrow was rendered by superimposing a small image of a
standard arrow at the correct pose on a black image on
the surface plane. Finally, we homographically transform the
arrow image from the table plane to the projector plane to
obtain the image that the projector should display so that the
arrow appears flat on the table.

IV. EVALUATION OF LEGIBLE PROJECTIONS

The legibility of arrows produced with our approach needs
to be evaluated empirically from the users’ perspective, since
there is no ground truth arrow placement. In the following
we first present outcomes of our approach in example scenes

dA dB dC dD dE
Scene1 Scene2

Scene3 Scene4

Fig. 2: Arrows chosen with the five different object-arrow
distance functions (dA: angle only, dB : angle+proximity to
object center, dC : angle+edge proximity, dD: angle+object
span, dE : weighted ray overlap) in four example scenes
where the orange object is the target.

to qualitatively assess the behavior of the different distance
functions proposed in Sec. III-C. We then present two user
studies that validate our approach and further characterize
the differences between alternative ways of selecting arrows
within our framework.

A. Analysis of Arrow-Object Distance Functions

We first tried to characterize how different distance func-
tions defined in Sec. III-C behave in synthetically generated
scenes. We systematically varied the number of objects in
the scene, the size and shape of the objects, the relative
placements of the objects, and the size of the no-projection
buffer around objects. Fig. 2 presents the outcome of our
optimization with the five distance functions in four example
test scenes. Scene1 demonstrates how dA differs from others
in that it only forces the arrow to point towards the object
and does not move it closer to the object in the absence of
distractors. In Scene2 we isolate the effect of the distractor.
The dA function now finds an arrow pose that is pointing at
the target while pointing as much away from the distractor
as possible. The other functions trade off pointing away from
the distractor with being far away from the distractor. Scene3
in comparison to Scene2 demonstrates how dD and dE are
impacted by the size of the distractor object, pointing further
away from the distractor. Scene4 demonstrates the interaction
between multiple distractors.

All scenes shown in Fig. 2 allow each of the distance
functions to unambiguously indicate the correct target object.
It is clear that an object can be unambiguously indicated
by any arrow pointing towards the target, such that the
ray from the arrow will first intersect with the target, if
there is sufficient space around it to fit the arrow. In these
situations we expect the difference between the alternative
distance functions to be only subjective. In more complex
scenarios with clutter and unprojectable regions around the
target object, the alternative functions can have more or
less ambiguity resulting in errors and delays in inferring the
reference, as we will see in Sec. IV-B.



dA dC dD dE

Scene1 Scene2

Scene3 Scene4

Scene5 Scene6

Fig. 3: Test scenes from the online evaluation. The target in
each prompt was one of the two orange objects. Participants
saw all objects as black and the arrow as red in all prompts.

B. Online Evaluation

We performed an online user study to validate our arrow
placement model on 2D scenes and compared alternative
distance functions. We tested first on 2D scenes to verify our
model on simple cases, those without the nuanced perspec-
tive transformations that arise with angled 3D viewpoints. A
2D scene could also be thought of as a representation of a 3D
tabletop scene from a top-down orthographic view, with the
2D image representing the table surface and shapes within
the image as objects on top.

1) Study design and procedure: Our study involved two
parts. The first included a series of object identification tasks
in which the participant was presented with a scenario: a 2D
scene composed of shapes and an arrow precomputed with
our method using one of the distance functions proposed
in Sec. III-C. To keep the number of compared alternatives
manageable we removed dB as it resulted in the same
(or equivalent) arrows in the absence of irregularly shaped
objects. For each prompt, the objects in the scene were
presented first and the arrow was presented after a 5-second
countdown. Participants were told to click on the object they
thought the arrow was pointing at as soon as the arrow
appeared. After selection, the next prompt started.

We created one practice scene and four test scenes (Fig. 3).
The target object for each scene was one out of two targets
that were equivalent due to the symmetry of the scene. This
was done to prevent participants from using memory from
previous prompts to guess the target. We conducted a within-
participants study, where all participants saw all prompts
corresponding to combinations of four distance functions
in four scenes. Participants first had two practice rounds
in the practice scene, and then saw the 16 prompts in
counterbalanced order (using latin-squares).

The second part of the study sought to capture the
subjective comparison of the different distance functions.
Participants were shown the same scenes from the first part,
but with the target object identified and all arrows rendered in
different colors on the same image. Participants were asked
to rate how well each arrow indicated the target object on a
5-point Likert scale.

Fig. 4: Correctness of the participants’ inferred target for
arrows produced by four arrow-object distance functions
across the four test scenes.

2) Measurements: For the object identification task, we
measured the correctness of the participants’ guess for the
target object of the displayed arrow. We also measured the
participants’ response time. We expect that a hesitation in
the response, indicated by longer response times, captures
situations where the indication was not as clear, even if
the participant eventually selected the correct answer. In
the comparison task, we measured participants’ subjective
assessment of how well an arrow (corresponding to a certain
distance function) indicated the revealed target object with a
5-point Likert scale. Since our study is an open exploration of
alternative arrow-object distance functions we do not make
predictive hypotheses about this dependent variable.

3) Findings: Our study was completed by 48 participants
over Amazon Mechanical Turk. Fig. 4 shows the percentage
of participants that correctly chose the target object based
on the arrow indicator, for different scenes and distance
functions. We observe that the accuracy is not 100% for
all scenes and functions as we expected. Both the distance
function and the scene impacted accuracy. An accuracy of
0% corresponded to cases where the arrow intersected with
another object before the target object. This points to a
limitation of the explored distance functions in penalizing
pointing to other objects. Despite the clear ambiguities, a
portion of the participants correctly identified the target
with arrows produced by some functions. dC was the only
function that had non-zero accuracy in all four scenes and
was at par with other functions in each scene. In an ANOVA
test with distance functions and scenes as two separate
factors, we found that the correctness of dC was significantly
higher than dA and dD (p<0.001) as well as dE (p<0.01).

Participants took anywhere from 0.2 to 6.6 seconds to
respond to prompts; however, there were no significant
differences across the different distance functions. Similarly,
there were no statistically significant differences between the
distance functions in terms of participants’ ratings of the
arrows. The ratings had large variance across participants
and the average ratings were around 3 on the 5-point scale
for all prompts.

C. In-person Evaluation

Next, we performed an in-person study to validate our
approach for 3D scenes.

1) Study design: We took the most robust distance func-
tion dC from the online evaluation and compared it with
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Fig. 5: Example prompts generated with dC and dC+H in
three different test scenes from the lab study.

a modified version dC+H that accounts for user viewpoint.
This was accomplished by including the optimization term
given in Eqn. 3, which pushes the arrow on the surface closer
to where the user is located. The impact of the additional
term can be seen in two sample scenes shown in Fig. 5.

Users stood in front of a tabletop scene, facing the PR2
robot across the table. Objects on the table were labeled with
single letters (A, B, C, D, et cetera). There were three scenes
with varying degrees of clutter and multiple prompts in each
scene. Tasks were grouped by scene. For each prompt in the
object identification task, participants waited for the robot to
project an arrow, and spoke the label of the target object
as soon as the arrow appeared. The experimenter gave a
verbal cue before each prompt. Users practiced the task with
one example prompt. Two dummy prompts were randomly
inserted between test prompts to reduce the likelihood that
users could anticipate the next prompt. The order of scenes
and prompts were counterbalanced.

Each object identification task was followed by the sub-
jective comparison task for the same scene. We asked users
to compare two arrows for the same target generated using
the different distance functions. Users were told the intended
target and the experimenter switched between the two arrows
so participants could see both. We asked them to verbally
select one, both, or neither arrow as their preferred indicator
and to explain their selection.

2) Measurements: For the object identification task, we
measured correctness and duration from the time of the
arrow’s appearance to the start of the participant’s verbal
answer (i.e., response time). For the subjective comparison
task, we noted the participant’s selection and transcribed
the explanation. A single experimenter used ELAN [19] to
annotate the recorded videos.

3) Findings: Our study was completed by 12 participants
(6 female) aged 20-31 recruited from the local and university
community. Fig. 6 shows the average correctness of partic-
ipants’ guess of the target object for the two distance func-
tions for the three scenes. The original dC function resulted
in 83.3% overall accuracy, while the additional optimization
term that accounted for user’s position dC+H resulted in
75.0%. However as the figure shows, this difference was
mainly due to Scene 3 where there was extra clutter. The
dC function resulted in better or equivalent accuracy in all
scenes, which shows that projecting into visible space is

Fig. 6: Correctness of the participants’ inferred target for
arrows produced by dC and dC+H across three test scenes
averaged across participants and prompts in the lab study.

Fig. 7: Participant preferences in comparison tests across
three scenes in the lab study.

sufficient and further moving the arrow towards the user is
not helpful but can instead reduce accuracy. Scene 2 had the
lowest accuracy due to two prompts that involved targets that
had to be referenced from behind distractor objects, which
were also problematic in the online study.

The two functions did not result in any difference in
reaction time. Fig. 7 shows the participants preferences
in the comparison prompts. In Scene 1 and 3 we see a
clear preference shifted towards dC . In Scene 2 participants
liked both or neither of the prompts most of the time, but
preferred dC+H over dC in some cases. Responses were
mostly consistent across participants and varied more across
individual prompts in a given scene. Nevertheless, our in-
person study demonstrates that our system can autonomously
choose arrow placements to correctly indicate a target object
in most scenarios.

V. CONCLUSIONS

We present a framework for optimally choosing arrow
placements for object referencing in projection-based situ-
ated human-robot communication. This framework allows
for alternative arrow-object distance functions resulting in
different behaviors. It generalizes to different scenes and
captures a number of constraints that are relevant for making
projections work on a real robot in a 3D cluttered scene with
occlusions. Our evaluations demonstrate the effectiveness of
the approach while pointing out limitations of the chosen
distance functions in certain scenarios. We observed that
some distance functions were more robust across challenging
scenes, but did not result in faster response time or were not
particularly preferred by participants.
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