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Abstract:
Offline reinforcement learning (ORL) holds great promise for robot learning due
to its ability to learn from arbitrary pre-generated experience. However, current
ORL benchmarks are almost entirely in simulation and utilize contrived datasets
like replay buffers of online RL agents or sub-optimal trajectories, and thus hold
limited relevance for real-world robotics. In this work (Real-ORL), we posit that
data collected from safe operations of closely related tasks are more practical data
sources for real-world robot learning. Under these settings, we perform an exten-
sive (6500+ trajectories collected over 800+ robot hours and 270+ human labor
hour) empirical study evaluating generalization and transfer capabilities of repre-
sentative ORL methods on four real-world tabletop manipulation tasks. Our study
finds that ORL and imitation learning prefer different action spaces, and that ORL
algorithms can generalize from leveraging offline heterogeneous data sources and
outperform imitation learning. We release our dataset and implementations at
URL: https://sites.google.com/view/real-orl

1 Introduction
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Figure 1: Realistic data sources for offline RL algorithms in real world tasks.

Despite rapid advances, the applicability of Deep Reinforcement Learning (DRL) algorithms [1,
2, 3, 4, 5, 6, 7, 8] to real-world robotics tasks is limited due to sample inefficiency and safety
considerations. The emerging field of offline reinforcement learning (ORL) [9, 10] has the
potential to overcome these challenges, by learning only from logged or pre-generated offline
datasets, thereby circumventing safety and exploration challenges. This makes ORL well suited
for applications with large datasets (e.g. recommendation systems) or those where online inter-
actions are scarce and expensive (e.g. robotics). However, comprehensive benchmarking and
empirical evaluation of ORL algorithms is significantly lagging behind the burst of algorithmic
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Figure 2: Canonical tasks for tabletop manipulation.

progress [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Widely used ORL benchmarks [22, 23] are
entirely in simulation and use contrived data collection protocols that do not capture fundamental
considerations of physical robots. In this work (Real-ORL), we aim to bridge this gap by outlining
practical offline dataset collection protocols that are representative of real-world robot settings. Our
work also performs a comprehensive empirical study spanning 6500+ trajectories collected over
800+ robot hours and 270+ human labor hour, to benchmark and analyze three representative
ORL algorithms thoroughly. We will release all the datasets, code, and hardware hooks from this
paper.

In principle, ORL can consume and train policies from arbitrary datasets. This has prompted the
development of simulated ORL benchmarks [22, 23, 24] that utilize data sources like expert policies
trained with online RL, exploratory policies, or even replay buffers of online RL agents. However,
simulated dataset may fail to capture the challenges in real world: hardware noises coupled with
varying reset conditions lead to covariate shift and violate the i.i.d. assumption about state distri-
butions between train and test time. Further, such datasets are not feasible on physical robots and
defeat the core motivation of ORL in robotics – to avoid the use of online RL due to poor sample
efficiency and safety! Recent works [24, 25] suggest that dataset composition and distribution dra-
matically affect the relative performance of algorithms. In this backdrop, we consider the pertinent
question:

What is a practical instantiation of the ORL setting for physical robots, and can existing ORL algo-
rithms learn successful policies in such a setting?

In this work, we envision practical scenarios to apply ORL for real-world robotics. Towards this
end, our first insight is that real-world offline datasets are likely to come from well-behaved policies
that abide by safety and monetary constraints, in sharp contrast to simulator data collected from
exploratory or partially trained policies, as used in simulated benchmarks [22, 23, 24]. Such trajec-
tories can be collected by user demonstrations or through hand-scripted policies that are partially
successful but safe. It is more realistic to collect large volumes of data for real robots using multiple
successful policies designed under expert supervision for specific tasks than using policies that are
unsuccessful or without safety guarantees. Secondly, the goal of any learning (including ORL) is
broad generalization and transfer. It is therefore critical to study whether a learning algorithm can
leverage task-agnostic datasets, or datasets intended for a source task, to make progress on a new
target task. In this work, we collect offline datasets consistent with these principles and evaluate
representative ORL algorithms on a set of canonical table-top tasks as illustrated in Figure 2.

Evaluation studies on physical robots are sparse in the field due to time and resource constraints,
but they are vital to furturing our understanding. Our real robot results corroborate and validate
intuitions from simulated benchmarks [26] but also enable novel discoveries. We find that (1) even
for scenarios with sufficiently high-quality data, some ORL algorithms could outperform behavior
cloning (BC) [27] on specific tasks, (2) for scenarios that require generalization or transfer to new
tasks with low data support, ORL agents generally outperform BC. (3) in cases with overlapping
data support, ORL algorithms can leverage additional heterogeneous task-agnostic data to improve
their own performance, and in some cases even surpass the best in-domain agent.

Our empirical evaluation is unique as it focuses on ORL algorithms ability to leverage more realistic,
multi-task data sources, spans over several tasks that are algorithm-agnostic, trains various ORL al-
gorithms on the same settings and evaluates them directly in the real world. In summary, we believe
Real-ORL establishes the effectiveness of offline RL algorithms in leveraging out of domain high-
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quality heterogeneous data for generalization and transfer in robot-learning, which is representative
of real world applications.

2 Preliminaries and Related Work

Offline RL. We consider the ORL framework, which models the environment as a Markov De-
cision Process (MDP): M = hS,A,R, T, ⇢0, Hi where S ✓ Rn is the state space, A ✓ Rm is the
action space, R : S ⇥ A ! R is the reward function, T : S ⇥ A ⇥ S ! R+ is the (stochastic)
transition dynamics, ⇢0 : S ! R+ is the initial state distribution, and H is the maximum trajectory
horizon. In the ORL setting, we assume access to the reward function R and a pre-generated dataset
of the form: D = {⌧1, ⌧2, . . . ⌧N}, where each ⌧i = (s0, a0, s1, a1, . . . sH) is a trajectory collected
using a behavioral policy or a mix of policies ⇡b : S ⇥A ! R+.

The goal in ORL is to use the offline dataset D to learn a near-optimal policy,

⇡
⇤ := argmax

⇡
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In the general case, the optimal policy ⇡
⇤ may not be learnable using D due to a lack of sufficient

exploration in the dataset. In this case, we would seek the best policy learnable from the dataset, or,
at the very least, a policy that improves upon behavioral policy.

Offline RL Algorithms. Recent years have seen tremendous interests in offline RL and the de-
velopment of new ORL algorithms. Most of these algorithms incorporate some form of regular-
ization or conservatism. This can take many forms, such as regularized policy gradients or actor
critic algorithms [14, 15, 19, 28, 29, 30], approximate dynamic programming [11, 13, 17, 18], and
model-based RL [12, 31, 32, 33]. We select a representative ORL algorithms from each category:
AWAC [19], IQL [18] and MOREL [12]. In this work, we do not propose new algorithms for offline
RL; rather we study a spectrum of representative ORL algorithms and evaluate their assumptions
and effectiveness on a physical robot under realistic usage scenarios.

Offline RL Benchmarks and Evaluation. In conjunction with algorithmic advances, offline RL
benchmarks have also been proposed. However, they are predominantly captured with simula-
tion [22, 23, 34] using datasets with idealistic coverage, i.i.d. samples, and synchronous execu-
tion. Most of these assumptions are invalid in real world which is stochastic and has operational
delays. Prior works investigating offline RL for these settings on physical robots are limited. For
instance, Kostrikov et al. [18] did not provide real robot evaluation for IQL, which we conduct in
this work; Chebotar et al. [35], Kalashnikov et al. [36] evaluate performance on a specialized Arm-
Farm; Rafailov et al. [37] evaluate on a single drawer closing task; Singh et al. [17], Kumar et al.
[38] evaluate only one algorithm (COG, CQL, respectively). Mandlekar et al. [39] evaluate BCQ
and CQL alongside BC on three real robotics tasks, but their evaluations consider only in-domain
setting: that the agents were trained only on the specific task data, without giving them access to
a pre-generated, offline dataset. Thus, it is unclear whether insights from simulated benchmarks or
limited hardware evaluation can generalize broadly. Our work aims to bridge this gap by empirically
studying representative offline RL algorithms on a suite of real-world robot learning tasks with an
emphasize on transfer learning and out-domain generalization. See Section 3 for detailed discussion.

Imitation Learning (IL). IL [40] is an alternate approach to training control policies for robotics.
Unlike RL, which learns policies by optimizing rewards (or costs), IL (and inverse RL [41, 42,
43]) learns by mimicking expert demonstrations and typically requires no reward function. IL has
been studied in both the offline setting [44, 45], where the agent learns from a fixed set of expert
demonstrations, and the online setting [46, 47], where the agent can perform additional environment
interactions. A combination of RL and IL has also been explored in prior work [48, 49]. Our
offline dataset consists of trajectories from a heuristic hand-scripted policy collected under expert
supervision, which represents a dataset of reasonably high quality. As a result, we consider offline
IL and, behavior cloning in particular, as a baseline algorithm in our empirical evaluation.
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3 Experiment Scope and Setup

To investigate the effectiveness of ORL algorithms on real-world robot learning tasks, we adhere
to a few guiding principles: (1) we make design choices representing the wider community to the
extent possible, (2) we strive to be fair to all baselines by providing them their best chance and work
in consultation with their authors; and (3) we prioritize reproducibility and data sharing. We will
open-source our data, camera images along with our training and evaluation codebase.

Hardware Setup. Hardware plays a seminal role in robotic capability. For reproducibility and
extensibility, we selected a hardware platform that is well-established, non-custom, and commonly
used in the field. After an exhaustive literature survey [50, 51, 52, 53, 54, 55], we converged on a
table-top manipulation setup, shown in Figure 3. It consists of a table-mounted Franka panda arm
that uses a RobotiQ parallel gripper as its end effector, which is accompanied by two Intel 435 RGBD
cameras. Our robot has 8 DOF, uses factory-supplied default controller gains, accepts position
commands at 15 Hz, and runs a low-level joint position controller at 1000 Hz. To perceive the object
to interact with, we exact the position of the AprilTags attached to the object from RGB images. Our
robot states consist of joint positions, joint velocities, and positions of the object to interact with (if
applicable). Our policies compute actions (desired joint pose) using robot proprioception, tracked
object locations, and desired goal location.

Figure 3: Our setup consists of a commonly
used Franka arm, a RobotiQ parallel gripper,
and two Intel Realsense 435 cameras.

Canonical Tasks We consider four classic manip-
ulation tasks common in literature: reach, slide,
lift, and pick-n-place (PnP) (see Figure 2).
reach requires the robot to move from a randomly
sampled configuration in the workspace to another
configuration. The other three tasks involve a heavy
glass lid with a handle, which is initialized randomly
on the table. slide requires the robot to hold and
move the lid along the table to a specified goal lo-
cation. lift requires the robot to grasp and lift the
lid 10 cm off the table. PnP requires the robot to
grasp, lift, move and place the lid at a designated
goal position i.e. the chopping board. The four tasks
constitute a representative range of common table-
top manipulation challenges: reach focuses on free
movements while the other three tasks involve intermittent interaction dynamics between the ta-
ble, lid, and the parallel grippers. We model each canonical task as a MDP with an unique reward
function. Details on our tasks are in Appendix. 8.1.

Data Collection. We use a hand-designed, scripted policy developed under expert supervision to
collect (dominantly) successful trajectories for all our canonical tasks. To highlight ORL algorithms
ability to overcome suboptimal dataset, previous works [22, 34, 39] have crippled expert policies
with noise, use half-trained RL policies or collect human demonstrations with varying qualities to
highlight the performance gain over compromised datasets. We posit that such data sources are not
representative of robotics domains, where noisy or random behaviors are unsafe and detrimental to
hardware’s stability. Instead of infusing noise or failure data points to serve as negative examples, we
believe that mixing data collected from various tasks offers a more realistic setting in which to apply
ORL on real robots for three reasons: (1) collecting such “random/roaming/explorative” data on
a real robot autonomously would require comprehensive safety constraints, expert supervision and
oversight, (2) engaging experts to record such random data in large quantities makes less sense than
utilizing them to collecting meaningful trajectories on a real task, and (3) designing task-specific
strategies and stress testing ORL’s ability against such a strong dataset is more viable than using a
compromised dataset. In Real-ORL, we collected offline dataset using heuristic strategies designed
with reasonable efforts and, to avoid biases favoring task/algorithm, froze the dataset ahead of time.

To create scripted policies for all tasks, we first decompose each task into simpler stages marked
by end-effector sub-goals. We leverage Mujoco’s IK solver to map these sub-goals into joint space.
The scripted policy takes tiny steps toward sub-goals until some task-specific criterias are met. Our
heuristic policies didn’t reach the theoretical maximum possible scores due to controller noises
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and tracking noises (Table. 1). However, they complete the task at a high success rate and have
comparable performance to human demonstration.

Dataset. Our Real-ORL dataset consists of around 3000 trajectories and the characteristics of
our dataset is shown in Table. 1. Our offline dataset is represented as a series of transition tuples
{(s, a, s0)task}. States consist of joint positions, joint velocities, and positions of the object to
interact with (if applicable). Actions contain target joint positions. To perceive the object to interact
with, we obtain the position of tracked AprilTags attached to the object from the RGB images of the
two cameras. More details are available in Appendix 8.2.

Task # Traj # Samples Avg Score Max Score Human Score Theoretical Best Score

reach 1000 99752 0.960 0.99 0.963 1
slide 731 244422 0.819 0.93 0.834 1
lift 609 178515 0.948 1 1 1
PnP 616 327478 0.875 1.09 0.924 1.15

Table 1: Characteristics of collected data. # Traj denotes the total number of trajectories, # Samples
denotes the total number of state-action-reward pairs. Each trajectory’s score is the maximum reward
in the trajectory. Avg Score shows the average scores per trajectories, Max Score shows the maximum
reward achieved by trajectories in our dataset, Human Score shows the max reward achieved by a
human teleoperator and Theoretical Best Score denotes the theoretical maximum possible reward
determined by our reward function.

4 Experiment Design

Our Real-ORL experiments aim to answer the following questions. (1) Are ORL algorithms sen-
sitive to, or show a preference for, any specific state and action space parameterization? (2) How
do they perform against the standard methods for in-domain tasks? (3) How do common methods
perform in out-of-domain tasks requiring (a) generalization, and (b) re-targeting? To ensure fair
evaluation, we now outline our choice of candidate algorithms and performance metrics.

Algorithms For all evaluations, we compare four algorithms: Behavior Cloning (BC) [27],
Model-based Offline REinforcement Learning (MOREL) [12], Advantage-Weighted Actor Critic
(AWAC) [19] and Implicit Q-Learning (IQL) [18]. BC is a model-free IL algorithm that remains
a strong baseline for real robot experiments due to its simplicity and practicality. AWAC and
IQL both train an off-policy value function and then derive a policy to maximize the expected
reward. AWAC uses KL divergence minimization to constrain the resulting policy to be close to the
given policy distribution. In contrast, IQL leverages expectile regression to avoid querying the value
function for any out-of-distribution query. MOREL is distinct since it is a model-based approach:
it recovers a dynamics model from offline data that allows it directly apply policy gradient RL algo-
rithms. We use implementations of BC and MOREL from the MOREL author implementation. For
the later, we add a weighted behavior cloning loss to its policy training step to serve as a regularizer,
inspired by [30]. We use AWAC and IQL implemented in the open sourced d3rlpy library [56].

Training. Since neural network agents are empirically sensitive to parameters and seeds, we (1)
used the same fixed random seed (123) for all our experiments with additional seed sweeping to
strengthen the reproducibility of our results and (2) conducted equal amount of efforts for hyperpa-
rameter tuning efforts for all algorithms. Unlike traditional supervised learning, we cannot simply
select the agents with the best validation loss for tuning the hyperparameters, because we cannot
know the performance of an agent unless testing it on a real robot [39]. We thus keep our tuning
simple and fair: starting with the default parameters and training 5 agents in 3 rounds, trying to make
the agent converge. We observe that certain agents cannot converge after exhausting the allocated
trials and report these results with a (*) marker, signaling the challenge in tuning parameters for such
algorithms. More details are available in Appendix. 8.4.

Evaluation. Real robot evaluations can have high variance due to reset conditions and hardware
noise. For each agent, we collect 12 trajectories and report their mean and standard deviation of
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scores. To confirm the reproducibility of our results and robustness to seed sweeping, for agents
that contributed to our conclusions (usually the best and the second-best agents) we report perfor-
mance swept over three consecutive random seeds (122, 124 in addition to the fixed seed of 123)
in Appendix 8.6. To verify the statistical significance of our results when comparing performance
between agents, we report the p-value of paired difference tests in Appendix 8.7.

A. In-domain Ablations. We note the distinction between “in-domain” training and “out-domain”
training, where the former leverages only data that were collected for the test task and the later allow
incorporating heterogeneous data from different tasks. We first train all agents using in-domain data
(i.e., we train a slide agent by feeding only slide data) to test ORL algorithms’ sensitivity to
varying data representation and inspect: (1) whether it is worth including velocity information in
the state space (Vel versus NoVel); for simulator experiments, it is almost always a gain to include
velocity, but velocity sensors on real robots are notoriously noisy; (2) whether to use the policy
output joint position (Abs) vs the change in joint position (Delta) as action. Most BC literature
uses the former, whereas RL prefers the latter. 2 We use the outcome of the ablations and the best-
performing setting for each algorithm to study generalization and transfer in the following three
scenarios:

B. Generalization: Lacking data support. The data collection may not cover the task space
uniformly. For example, imagine that a robot trained to wipe clean a table but now cleans a bigger
table. Empirically, a policy trained with behavior cloning would have trouble predicting actions for
states when there is less data support. Can ORL algorithms, by learning a value function or model,
generalize to a task space that lacks data support? To this end, we create a new dataset from our
slide task by dividing the task space to three regions: left, center, right. We remove any trajectory
where the object was initially placed in the center region from the collected dataset. We train all
agents and gather evaluation trajectories asking them to slide an object initially placed in the left,
center and right regions.

C. Generalization: Re-targeting data for dynamic tasks. For the slide task, our collected
demonstration has static goal positions. We test agents trained using such static data in a dynamic
setting by updating the goal at a fixed frequency, and asking the agents to grasp and slide the lid
following some predetermined curves. We collected the ideal trajectories via human demonstra-
tion. This task can be viewed as a simplified version of daily tasks, including drawing, wiping,
and cleaning, which require possibly repeated actions and a much longer horizon than usual IL and
ORL tasks. We select a variety of trajectories: circle, square, and the numbers 3, 5, 6, 8, which have
different combinations of smooth curves and corners.

D. Transfer: Reusing data from different tasks. We investigate whether we can reuse heter-
genuous data collected from previous tasks to train a policy for a new task. For example, would
combining data from two canonical tasks (e.g., slide+lift) helps the agent perform better on ei-
ther of these tasks? When aggregating data collected for multiple tasks, ORL algorithms can use the
reward function for the test task to relabel the offline dataset. Evaluating ORL algorithms on such
out-domain, transfer-learning settings is practical and relevant: instead of collecting random explo-
rative data which demands careful setup of safety constraints on a real robot, we want to leverage
offline datasets collected from different tasks to improve ORL performance. We train our algorithm
with different combinations of canonical task demonstrations (“train-data”) and evaluate each agent
on each individual task.

5 Results and Discussion

5.1 In-domain Tasks

Which agent performs best for in-domain tasks? Table 2 summarizes all agents’ performance
for in-domain tasks. The bottom row of the table plots the average reward across all four tasks for
each agent. Interestingly, two of the ORL agents, IQL and AWAC, achieved higher scores than

2Additionally, to verify that our dataset has reasonable optimality sufficient for training BC, we train
BC separately with Top-K% of the trajectories to exclude the relatively “worse” trajectories. The results showns
in Appendix. 8.5 verifies that BC has the best performance using the full dataset we collect.
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Task Agent Representations
AbsNoVel AbsVel DeltaNoVel DeltaVel

Reach
BC 0.863 ± 0.069 0.768 ± 0.118 0.912 ± 0.026 0.924 ± 0.048
Morel 0.795 ± 0.086 0.584 ± 0.105 0.86 ± 0.069 0.917 ± 0.036
AWAC 0.770 ± 0.105 0.713 ± 0.158 0.916 ± 0.030 0.925 ± 0.047
IQL 0.843 ± 0.148 0.872 ± 0.104 0.904 ± 0.032 0.894 ± 0.066

Slide
BC 0.623 ± 0.172 0.681 ± 0.147 0.548 ± 0.200 0.551 ± 0.101
Morel 0.356 ± 0.189 0.117 ± 0.235 0.532 ± 0.147 0.629 ± 0.160
AWAC 0.548 ± 0.171 * 0.591 ± 0.146 * 0.569 ± 0.138 0.732 ± 0.113
IQL 0.627 ± 0.144 0.589 ± 0.166 0.712 ± 0.137 0.767 ± 0.065

Lift
BC 0.759 ± 0.179 0.823 ± 0.177 0.721 ± 0.225 0.613 ± 0.142
Morel 0.460 ± 0.189 0.149 ± 0.092 0.678 ± 0.186 0.652 ± 0.160
AWAC 0.518 ± 0.083 * <0 * 0.863 ± 0.149 * 0.821 ± 0.121
IQL 0.682 ± 0.163 <0 0.841 ± 0.144 0.880 ± 0.149

PnP
BC 0.632 ± 0.123 0.818 ± 0.185 0.564 ± 0.045 0.678 ± 0.195
Morel <0 <0 0.750 ± 0.197 0.748 ± 0.220
AWAC 0.451 ± 0.159 * <0 0.626 ± 0.234 * 0.735 ± 0.175 *
IQL 0.469 ± 0.142 <0 0.548 ± 0.160 0.601 ± 0.228

Table 2: Performance of all algorithms on varying representations. Each agent for each task is
trained and evaluated on four settings: to include velocity in state or not (Vel versus NoVel); to use
absolute or delta action space (Abs versus Delta). For each task, the best BC agent and the best
ORL agent are highlighted and bolded. Agents that could not converge during training time are
marked with (*). Some agents triggered violent crashes at test time and we report such performance
as <0. Underline scores are swept over 3 seeds.

BC trained on 2 out of 4 tasks. After verifying statistical significance, we confirm that even with
abundant, in-domain demonstrations, IQL outperformed BC on two tasks. For the other tasks: on
the simplest task reach, the best version of all agents reached comparable performance. On the
hardest task PnP, BC outperformed the best ORL agents. We thus recommend considering both
BC and IQL as baseline for imitation learning.

Sensitivity to representation Empirically, BC demonstrated robustness to different state and ac-
tion spaces, whereas ORL agents had high-variance. In 3 of 4 tasks considered, BCperformed the
best when using absolution joint position as the action space and including velocity in the state space
(AbsVel). On all tasks, ORL agents performed better using delta action space (Delta) rather than
joint position. Intuitively, using the delta action space would be equivalent to restricting the policy
to move in a unit ball centered around the current state. Such constraints could benefit RL policies
which need exploration and sampling in action space more than it helped BC, which simply learns
the mapping from states to actions. We also observed that our best agents all included velocity in
their state space, despite that velocities on real robot fluctuate with hardware noise.

5.2 Generalization and Transfer

Generalization to regions that lack data support. Table 3 trains agent using a carved-out dataset
and compares the agents’ performance on regions with more data support versus the region with less
data support ( Center ). We also train all agents using the full dataset (without carved-out) and
evaluate them on the Center region. We discovered that: (1) on the region with abundant support
(Left and Right), BC/IQL performed better than AWAC/MOREL , aligning with our previous
observation that BC/IQL performed better on in-domain tasks, (2) on regions that have less data
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Start Position BC MOREL AWAC IQL
Left 0.790 ± 0.056 0.571 ± 0.062 0.704 ± 0.119 0.704 ± 0.066
Right 0.774 ± 0.015 0.799 ± 0.033 0.707 ± 0.136 0.808 ± 0.015
Center 0.764 ± 0.013 0.793 ± 0.015 0.830 ± 0.026 0.811 ± 0.007

Center, trained with full data 0.791 ± 0.018 0.776 ± 0.022 0.813 ± 0.021 0.811 ± 0.050

Table 3: Training agents using a carved-out dataset to see how they perform when generalizing to
a task region that lacks data support (the Center region, highlighted in Gray). For comparison, we
also train all agents using full dataset and evaluate them on the Center region.

Ideal Traj

BC

MOREL

AWAC

IQL

Table 4: Trajectory tracking. Green: the ideal demo trajectories, followed by each agent’s tracking
trajectories.

support, AWAC and MOREL could match BC’s performance despite their initial disadvantage; and
(3) ORL agents trained with carved-out dataset and evaluated on carved-out region performed no
worse than them trained with full dataset, in contrast to BC agent, which performed significantly
worse after carving-out.

Generalization to dynamic tasks. Table 4 lists the ideal curves and the curves traced by each
model. Each dot represents the location of the lid at a time step. BC had the worst performance
among all models since it failed to complete tracing of the circle, square, and number 8 which
requires a larger range of motion, and the BC agent seemed to get stuck during execution. Mean-
while, ORL methods largely succeeded tracing the entire curve following the time-varying goals,
demonstrating stronger generalizing ability for this dynamic task.

Transfer learning by leveraging heterogeneous dataset Table 5 evaluates the performance of
ORL algorithms when trained with different combinations of datasets from multiple tasks. The last
column plots the average reward across all three tasks for each dataset combination. We observe
that:

1. The performance changes to ORL agents after leveraging offline data from different tasks can
vary, due to the characteristics of the algorithm, the nature of the task, design of the reward function
and the data distribution.
2. We observed all ORL agents could improve their own performance using some task/data combi-
nations. Noticeably, MOREL achieved higher or comparable performance on all tasks after lever-
aging more offline data. For instance, its performance on the lift task progressively improved
(0.606 ! 0.726 ! 0.896) with the inclusion of data from slide and PnP tasks. Intuitively,
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Agent Train Data Test Task
slide lift PnP

BC

in-domain 0.681 ± 0.147 0.823 ± 0.177 0.818 ± 0.185
slide 0.681 ± 0.147 0.582 ± 0.058 0.612 ± 0.083
slide+lift 0.595 ± 0.127 0.580 ± 0.053 0.605 ± 0.120
slide+lift+PnP 0.610 ± 0.137 0.609 ± 0.079 0.640 ± 0.144

MOREL

in-domain 0.629 ± 0.160 0.678 ± 0.186 0.750 ± 0.197
slide 0.629 ± 0.160 0.606 ± 0.063 0.744 ± 0.174
slide+lift 0.616 ± 0.146 0.726 ± 0.184 0.636 ± 0.173
slide+lift+PnP 0.715 ± 0.134 0.896 ± 0.133 0.753 ± 0.181

AWAC

in-domain 0.732 ± 0.113 0.863 ± 0.149 * 0.735 ± 0.175 *
slide 0.732 ± 0.113 0.638 ± 0.055 0.770 ± 0.111*
slide+lift 0.734 ± 0.110 * 0.899 ± 0.149 0.813 ± 0.121
slide+lift+PnP 0.644 ± 0.144 * 0.728 ± 0.200 * 0.758 ± 0.188 *

IQL

in-domain 0.767 ± 0.065 0.880 ± 0.149 0.601 ± 0.228
slide 0.767 ± 0.065 0.258 ± 0.033 0.810 ± 0.107
slide+lift 0.704 ± 0.141 0.863 ± 0.166 0.842 ± 0.114
slide+lift+PnP 0.643 ± 0.143 0.684 ± 0.158 0.833 ± 0.183

Table 5: Performance of agents trained with different combinations of offline data. The best in-
domain agent, transfer learning agents that improves over their in-domain counterparts are colored.
The best agent for each task is bold. Agents that could not converge during training time are
marked with (*). Some agents triggered violent crashes at test time and we report such performance
as <0. Underline scores are swept over 3 seeds.

MOREL’s dynamic model training process could benefit from any realistic data, regardless of
whether the data was in-domain or out-of-domain.
3. Certain task-agnostic data could provide overlapping data support and enable effective trans-
fer learning, allowing some ORL agents to surpass imitation learning and even the best in-domain
agents. On slide and lift, all ORL algorithms managed to surpass BC. On PnP, AWAC achieved
comparable performance as BC but with a slightly higher mean using a combo of slide and
lift data. With our extensive ablations, we observe that the final best agent for each task is ei-
ther an ORL algorithm or a tie between ORL and BC.
4. ORL algorithms are not guaranteed to increase performance by including more data. The
performance changes of ORL are likely to vary by agents, the task and dataset distribution.
For instance, both AWAC and IQL agents have not gained performance on lift when using
slide+lift+PnP than using only slide+lift data (0.899 ! 0.728, 0.863 ! 0.684). Sur-
prisingly, training IQL for PnP using slide or slide+lift data yielded even better results than
using PnP data (0.84 > 0.6). Qualitatively we observe that IQL agents trained with slide data
were better at grasping the object than the ones trained with PnP data, completing this first part of
the task (grasp) with more success while claiming distance-to-goal reward bonus.

Random Seed Sweeping To further demonstrate the reproducibility of our results, we conducted
random seed sweeping for our best and (optionally) the second-best agents over 3 consecutive ran-
dom seeds (122, 124 in addition to the original fixed seed 123) and reported their scores using an
underline and in Appendix. 8.6. These additional 360 trajectories showed that the seed2seed vari-
ation for our experiments is low, providing statistical significance to our observations: comparing
with scores computed from a single-seed, ⇠60% of newly trained agents change score by less than
1%, ⇠90% of agents change by less than 2%, and the maximum change was 6% from one agent
(whose score change does not affect the conclusion drawn).

Comparison to previous works. Some of our in-domain conclusions are aligned with [40, 39]:
that behavior cloning demonstrates strong robustness to varying representations and tasks, serving
as a competitive baseline in all four tasks tested. Even when BC is not the best, it has reasonable
performance that is no worse than 85% of the best in-domain agents. Our findings also provide
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empirical verification to one of [34]’s observations: that ORL could outperform BC for tasks where
the initial state distributions change during deployment, a common condition for real robotic task,
or when the environment has a few “critical” states, as seen in our manipulation tasks.

In contrast to previous works, however, we highlight that (1) IQL can be a competitive baseline for
settings that were traditionally favoring behavior cloning, as it turns out to be the best in-domain
agent on 2 out of 4 tasks we tested, despite the lack of real robotic evaluation for IQL [18], (2)
our extensive ablations on out-domain transfer learning are unique and allow us to verify several
ORL algorithms’ capability in generalizing to task region with less data-support (Table. 3) and
to dynamic tasks (Figure. 4), (3) we observe that leveraging heterogeneous data has enabled all
ORL algorithms to improve their own performance on at least one of the tasks, allowing some to
even surpass the best in-domain agents, which suggest that ORL can be an interesting paradigm for
real-world robotic learning.

6 Conclusion

In Real-ORL, we conducted an empirical study of representative ORL algorithms on real-world
robotic learning tasks. The study encompassed three representative ORL algorithms (along with
behavior cloning), four table-top manipulation tasks with a Franka-Panda robot arm, 3000+ train
trajectories, 3500+ evaluation trajectories, and 270+ human labor hours. Through our extensive
ablation studies, we find that (1) even for in-domain tasks with abundant amount of high-quality
data, IQL can be a competitive baseline against the best behavior cloning policy, (2) for out-domain
tasks, ORL algorithms were able to generalize to task regions with low data-support and to dy-
namic tasks, (3) the performance changes of ORL after leveraging heterogeneous data are likely to
vary by agents, the design of the task, and the characteristics of the data, (4) certain heterogeneous
task-agnostic data could provide overlapping data support and enable transfer learning, allowing
ORL agents to improve their own performance and, in some cases, even surpass the best in-domain
agents. Overall, (5) the best agent for each task is either an ORL algorithm or a tie between ORL and
BC. Our rigorous evaluations indicate that even in out-of-domain multi-task data regime, (more re-
alistic in real world setting) offline RL is an effective paradigm to leverage out of domain data.

7 Limitations

Our evaluation primarily focused on three representative ORL algorithms which have shown strong
performance in simulated benchmarks. However, ORL is a rapidly evolving research field, with
many different classes of algorithms [57, 14, 30]. Therefore, expanding the scope of tasks, eval-
uation, and algorithms would offer interesting and valuable future work. Moreover, all ORL al-
gorithms have several hyperparameters that influence their learning. We followed instructions and
conventional wisdom in the community to tune parameters, but acknowledge that our experiments
do not preclude the possibility that one could obtain better performing agents using a different set of
parameters and seeds. Hyperparameter and model selection for offline RL is an emerging research
sub-field [38] and progress here would also help advance the applicability of ORL to robot learning.
We hope this study and our open-source codebase will facilitate this undertaking.
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8 Appendix

8.1 Canonical Task Setup

We considered four canonical tasks: reach, slide, lift and PnP. To apply ORL, each task can be
formulated as an MDP. The state contains the joint position of the robot, the gripper open position
(R ⇠ [0, 0.08]), (optionally) the velocity of the joints, (optionally) the tracked tag position and a
goal position. To facilitate RL training, we came up with a continuous reward function for each task
r : state ! R, as shown in Table 6, considering the position of the gripper x, the position of tracked
AprilTag t (if exists), the position of goal g, the Euclidean distance function dis between two 3D
coordinates, a convenient function height to denote the height of a given coordinates. While the
reward for reach and slide are naturally smaller than 1, we explicitly cap the maximum reward
for lift to be 1 since we don’t encourage agents to lift up the lid arbitrarily high. We don’t cap
the PnP reward since we encourage the PnP policy to be distinguished from the slide policy with a
height bonus height(t).

We used heuristic policies to collect the demonstration data, as described in Sec. 3. Our policies
have a reasonable success rate accomplishing the task but is not designed to be optimal in solving
the MDP. To evaluate and compare between agents, we instead report the maximum reward over the
trajectory as a proxy of the task completion ("score"). We report our heuristic policies’ accumulated
reward average over trajectories and the score.

Task r(s)
P

r(s) Score

Reach 1� dis(g � x) 173 0.99
Slide 1� (2 ⇤ dis(g � t) + dis(t� x)) 223 0.93
Lift min(1, 0.57� dis(t� x) + height(t)) 167 1
Pick-n-place 1� (dis(g � t) + 2 ⇤ dis(t� x)) ⇤ 0.9 + height(t) 281 1.09

Table 6: Characteristics of task and collected data.

8.2 Dataset

We also attach our collected data’s score distribution on each task to demonstrate our dataset’s
overall quality. From Figure 4, we can see that the score distribution for each task skew heavily
to the left, which means that most trajectories in our dataset are near-optimal and are suitable for
imitation learning. In Appendix. 8.5 we further verify this.

(a) Reaching (b) Sliding (c) Lifting (d) Pick-n-place

Figure 4: Score distribution for each task of our dataset.

8.3 Open Source Code and Dataset

We open source our code and publish the dataset at our website.

8.4 Training Details

Our code base was built upon the author’s implementation of MOREL [12] and the D3RLPY [56]
library. We used the same fixed random seed for all our experiments (123), unless otherwise spec-
ified. For hyperparameter tuning, we always started training using the default hyperparameters. If
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the training loss reported by the agent did not converge, we adjusted the learning rate and retrain, up
to 5 agents, till we find a model that converge or have been trained for 5, 000, 000 steps using batch
size 2048. For model whose training loss exploded (e.g., AWAC), we choose an checkpoint from
earlier of the training when the loss were relatively stable for 100, 000 steps (frequently, this was an
agent that finished about half a million to a million training steps). Surprisingly, when evaluated on
real robot, models that reported convergence did not necessarily perform better than model that did
not converge.

Practicality of Training and Tuning BC was the cheapest to train (⇠ 3min) and easiest to con-
verge (no additional tuning required). MOREL was the second shortest to train (⇠ 4 hours); most
MOREL agents were able to converge, judged by the reward of trajectories generated by the learned
dynamics model. AWAC agents took longer to train (⇠ 12 hours) and had the most trouble converg-
ing (8 of the 16 agents in the ablation table could not converge in allocated trials). IQL agents took
the longest to train (10 ⇠ 24 hours) but had more success converging. Though loss convergence
during training or a good reward estimated by the learned dynamics model or learned value function
cannot indicate the agent’s true performance, it is helpful for selecting an agent to test. Since some
AWAC agents had trouble converging, we selected an earlier checkpoint before loss explosion and
documented their performance, which, surprisingly, yielded higher reward than some agents that
reported convergence. We leave it to future work to investigate this phenomenon.

8.5 Training Behavior Cloning with Top-K% Trajectories

To ensure that our dataset contains high quality trajectories that is sufficient to train behavior cloning,
we launched new experiments training behavior cloning using only the Top-k % of the best trajec-
tories. In Figure. 4, we plot the distribution of performance of our data for each task. For reach,
slide, lift, 90% of trajectories complete the task with good scores (> 0.75). For PnP (our most
difficult task), 50% of our collected trajectories completed the task (scores > 0.8).

Thus we train BC for reach, slide, lift on Top-90% of data and train BC for PnP on Top-
50%,70%,90% of data and observe that, BC in our experiments benefit from using the full dataset.

Task Top-k% #Trajs Threshold for Demo Score Original Score
(BC with full data)

reach 90 900 0.909 0.899 ± 0.037 0.924 ± 0.048
slide 90 657 0.774 0.659 ± 0.152 0.681 ± 0.147
lift 90 554 0.787 0.784 ± 0.157 0.823 ± 0.177

PnP 50 304 0.935 0.723 ± 0.217 0.818 ± 0.185
70 426 0.792 0.789 ± 0.290 0.818 ± 0.185
90 548 0.656 0.789 ± 0.204 0.818 ± 0.185

8.6 Sweeping of Random Seeds

We evaluated an addition of 28 agents for 340 trajectories for a total of 70 hours including training
and testing to inspect how the scores for critical agents (i.e., the best agents for a category) would
vary by random seeds. We now have 3 seeds for each of the following agents:

1. The Best Agents for each task in Table 2

2. The Second Best Agents for each task in Table 2

3. ORL agents with out-domain datasets in in Table 5

The original agents are trained with seed 123, we trained the additional agents with seed 122 and
seed 124. Each seed is evaluated on 12 trajectories. The results are listed and we observe that ⇠60%
of newly trained agents change score by less than 1%, ⇠90% of agents change by less than 2%, and
the maximum change was 6% from one agent (whose score change does not affect our conclusion).
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Best Agents Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 2 (original seed) 3 seeds
AWAC,
DeltaVel,reach 0.920 ± 0.031 0.919 ± 0.066 0.935 ± 0.032 0.925 ± 0.047 0.01 (1.07%)
IQL,
DeltaVel, slide 0.781 ± 0.038 0.763 ± 0.044 0.757 ± 0.095 0.767 ± 0.065 -0.01 (-1.32%)
IQL,
DeltaVel, lift 0.877 ± 0.166 0.878 ± 0.158 0.884 ± 0.120 0.880 ± 0.149 0.004 (0.45%)
BC,
AbsVel, PnP 0.819 ± 0.199 0.800 ± 0.195 0.836 ± 0.157 0.818 ± 0.185 0.018 (2.15%)

Second Best Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 2 (original seed) 3 seeds
MOREL,
DeltaVel, reach 0.919 ± 0.034 0.908 ± 0.042 0.925 ± 0.028 0.917 ± 0.036 0.008 (0.86%)
BC,
DeltaVel, reach 0.921 ± 0.051 0.917 ± 0.055 0.934 ± 0.032 0.924 ± 0.048 0.01 (1.07%)
BC,
AbsVel, slide 0.699 ± 0.125 0.698 ± 0.120 0.645 ± 0.18 0.681 ± 0.147 -0.036 (-5.58%)
MOREL,
DeltaVel, slide 0.655 ± 0.157 0.602 ± 0.180 0.629 ± 0.136 0.629 ± 0.160 0 (0%)
AWAC,
DeltaVel,slide 0.757 ± 0.068 0.703 ± 0.108 0.739 ± 0.144 0.732 ± 0.113 0.007 (0.95%)
BC,
AbsVel, lift 0.821 ± 0.192 0.832 ± 0.177 0.818 ± 0.161 0.823 ± 0.177 -0.005 (0.61%)

8.7 Statistical Significance of Conclusions

In this section we report the statistical significance of the conclusions we drew from our empirical
study. To evaluate every trained agent for every task, we collected at least 12 trajectories and cal-
culated their scores. For best agents or agents used in comparison, we trained them with additional
seed to collect a total of 36 trajectories.

We note that the distribution of scores is unknown. We cannot exclude the possibility of the distri-
bution being skewed, as the agent could perform better in a certain task region because of the nature
of the task. Therefore, we conducted the Wilcoxon signed T-test for paired samples to calculate the
p-value.

With p < 0.1, we reject the null hypothesis that the two models’ have identical scores. Tasks and
application-domains determine the confidence level requirements for any application. This often
requires domain knowledge and might not transfer between different applications even for the same
task. For openness and interpretability, we clearly outline our statistical tests and list our p-values,
leaving it up to the readers to justify their statistical significance required for their applications. We
found that:

1. On in-domain tasks, we observe that: On the simplest task reach, all agents achieved
comparable performance (p > 0.1). On slide, IQL outperformed BC (0.77 > 0.68, p =
0.001). On lift, IQL outperformed BC (0.88 > 0.82, p = 0.041). On PnP, BC outper-
formed the best ORL agent (p = 0.016).

2. Testing agent’s ability to generalize to task space lacking data support, we verify that
MOREL and AWAC achieved comparable or better performance than BC for regions lack-
ing data support (MOREL: 0.79 ⇠ 0.76, p = 0.50, AWAC: 0.83 > 0.76, p = 0.006, p =
0.25), despite that these ORL agents were having poorer performance on regions that have
more data support (0.67 < 0.78, p = 0.062).

3. In terms of leveraging multi-task data, MOREL has clearly benefited from inclusion of
more data. On slide, the model achieved significantly higher performance when using
combined data from three tasks (0.63 ⇠ 0.72, p = 0.027). On lift, the model achieved

17



ORL Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 5 (original seed) 3 seeds
AWAC on PnP
w/ slide+lift (diverged) 0.811 ± 0.103 0.815 ± 0.134 0.813 ± 0.121 0.002 (0.25%)
AWAC on PnP
w/ slide+lift+pnp 0.759 ± 0.180 0.773 ± 0.204 0.742 ± 0.175 0.758 ± 0.188 -0.016 (-2.16%)
IQL on PnP
w/ slide+lift 0.838 ± 0.103 0.847 ± 0.117 0.843 ± 0.120 0.842 ± 0.114 0.001 (0.12%)
IQL on PnP
w/ slide+lift+pnp 0.842 ± 0.170 0.826 ± 0.211 0.829 ± 0.163 0.833 ± 0.183 -0.004 (-0.48%)
MOREL on lift
w/ slide+lift+pnp 0.879 ± 0.124 0.904 ± 0.119 0.906 ± 0.151 0.896 ± 0.133 -0.01 (-1.1%)

significantly higher performance when using combined data from three tasks (0.68 !
0.90, p = 0.003). For AWAC, it gained performance on lift(0.86 ! 0.90, p = 0.059).
IQL had most success for PnP task after leveraging slide+lift data (p = 0.001).
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