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Abstract An important requirement for a robot to operate reliably in the real world is
a robust motion planning module. Due to limited on-board sensing and computation,
state of the art motion planning systems do not have consistent performance across
all situations a robot encounters. We are interested in planning algorithms that adapt
during a planning cycle by actively inferring the structure of the valid configuration
space, and focusing on potentially good solutions.
Consider the problem of evaluating edges on a graph to discover a good path. Edges
are not alike in value - some are important, others are informative. Important edges
have a lot of good paths flowing through them. Informative edges, on being evaluated,
affect the likelihood of other neighboring edges being valid. Evaluating edges is
expensive, both for robots with complex geometries like robot arms, and for robots
with limited onboard computation like UAVs. Until now, we have addressed this
challenge via laziness, deferring edge evaluation until absolutely necessary, with the
hope that edges turn out to be valid. Our key insight is that we can do more than
passive laziness - we can actively probe for information. We draw a novel connection
between motion planning and Bayesian active learning. By leveraging existing active
learning algorithms, we derive efficient edge evaluation policies which we apply on a
spectrum of real world problems. We discuss insights from these preliminary results
and potential research questions whose study may prove fruitful for both disciplines.

1 Introduction

Motion planning, the task of computing collision-free motions for a robotic system
from a start to a goal configuration, has a rich and varied history [17]. Up until
now, the bulk of the prominent research has focused on the development of tractable
planning algorithms with provable worst-case performance guarantees such as com-
putational complexity [3], probabilistic completeness [18] or asymptotic optimality
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Figure 7: Visualization of the first of three articulated motion planning problems in which the HERB robot must move its right
arm from the start configuration (pictured) to any of seven grasp configurations for a mug. Shown is the progression of the
Alternate selector on one of the randomly generated roadmaps; approximately 2% of the 7D roadmap is shown in gray by
projecting onto the space of end-effector positions.

This form is derived from simplifying the induced geomet-
ric series; note that if exp(�wab)  Zba, the value Z 0

xy is
infinite. One can also derive the inverse: given values Z 0,
calculate the values Z if an edge were removed.

This incremental formulation of (7) allows for the corre-
sponding score p(e) for edges to be updated efficiently dur-
ing each iteration of LazySP as the wlazy value for edges
chosen for evaluation are updated. In fact, if the values Z
are stored in a square matrix, the update for all pairs after an
edge weight change consists of a single vector outer product.

5 Experiments
We compared the seven edge selectors on three classes of
shortest path problems. The average number of edges evalu-
ated by each, as well as timing results from our implementa-
tions, are shown in Figure 8. In each case, the estimate was
chosen so that west  w, so that all runs produced optimal
paths. The experimental results serve primarily to illustrate
that the A* and LWA* algorithms (i.e. Expand and Forward)
are not optimally edge-efficient, but they also expose dif-
ferences in behavior and prompt future research directions.
All experiments were conducted using an open-source im-
plementation.1 Motion planning results were implemented
using OMPL (Şucan, Moll, and Kavraki 2012).

Random partially-connected graphs. We tested on a set
of 1000 randomly-generated undirected graphs with |V | =
100, with each pair of vertices sharing an edge with prob-
ability 0.05. Edges have an independent 0.5 probability of
having infinite weight, else the weight is uniformly dis-
tributed on [1, 2]; the estimated weight was unity for all
edges. For the WeightSamp selector, we drew 1000 w sam-
ples at each iteration from the above edge weight distribu-
tion. For the Partition selector, we used � = 2.

Roadmap graphs on the unit square. We considered
roadmap graphs formed via the first 100 points of the (2, 3)-
Halton sequence on the unit square with a connection radius
of 0.15, with 30 pairs of start and goal vertices chosen ran-
domly. The edge weight function was derived from 30 sam-
pled obstacle fields consisting of 10 randomly placed axis-

1https://github.com/personalrobotics/lemur

aligned boxes with dimensions uniform on [0.1, 0.3], with
each edge having infinite weight on collision, and weight
equal to its Euclidean length otherwise. One of the resulting
900 example problems is shown in Figure 2. For the Weight-
Samp selector, we drew 1000 w samples with a naı̈ve edge
weight distribution with each having an independent 0.1 col-
lision probability. For the Partition selector, we used � = 21.

Roadmap graphs for robot arm motion planning. We
considered roadmap graphs in the configuration space corre-
sponding to the 7-DOF right arm of the HERB home robot
(Srinivasa et al. 2012) across three motion planning prob-
lems inspired by a table clearing scenario (see Figure 7). The
problems consisted of first moving from the robot’s home
configuration to one of 7 feasible grasp configurations for
a mug (pictured), second transferring the mug to one of 72
feasible configurations with the mug above the blue bin, and
third returning to the home configuration. Each problem was
solved independently. This common scenario spans various
numbers of starts/goals and allows a comparison w.r.t. diffi-
culty at different problem stages as discussed later.

For each problem, 50 random graphs were constructed by
applying a random offset to the 7D Halton sequence with
N = 1000, with additional vertices for each problem start
and goal configuration. We used an edge connection radius
of 3 radians, resulting |E| ranging from 23404 to 28109.
Each edge took infinite weight on collision, and weight
equal to its Euclidean length otherwise. For the WeightSamp
selector, we drew 1000 w samples with a naı̈ve edge weight
distribution in which each edge had an independent 0.1 prob-
ability of collision. For the Partition selector, we used � = 3.

6 Discussion
The first observation that is evident from the experimen-
tal results is that lazy evaluation – whether using Forward
(LWA*) or one of the other selectors – grossly outperforms
Expand (A*). The relative penalty that Expand incurs by
evaluating all edges from each expanded vertex is a func-
tion of the graph’s branching factor.

Since the Forward and Reverse selectors are simply mir-
rors of each other, they exhibit similar performance averaged
across the PartConn and UnitSquare problem classes, which
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Fig. 1 Real world planning problems where edges are correlated. In such cases, a white-box
adaptive planner can infer the structure of the world from outcomes of edge evaluations. (a)
Presence of a table in robotic arm planning correlates neighbouring edges (courtesy Dellin [9]). (b)
Presence of wires and guide-towers in helicopter planning correlates corresponding edges.

[16]. In contrast, analysis of the expected performance of these algorithms on the real
world planning problems a robot encounters has received considerably less attention,
primarily due to the lack of standardized datasets or robotic platforms. However,
recent advances in affordable sensors and actuators have enabled mass deployment
of robots that navigate, interact and collect real data. This motivates us to examine
new algorithmic questions such as: “How can we design planning algorithms that,
subject to on-board computation constraints, maximize their expected performance
on the actual distribution of problems that a robot encounters?”

We formalize the problem as follows - given a probability distribution over worlds,
we want to optimize expected planning effort of finding a good solution. The main
planning effort is in collision checking as it requires expensive geometric intersection
computations [1, 20, 20, 10, 9]. Moreover, the uncertainty over worlds induces a
complex uncertainty over the validity of edges. To solve such problems, we advocated
in [24] for an adaptive motion planning system that learns which potential solutions
to evaluate using features extracted from the world. However, a significant drawback
is that feature extraction requires extensively probing the environment before any
planning can commence. Moreover, the planners are treated as a “black box” wherein
no degree of intervention during the planning cycle is allowed. This motivates us to
examine the “white box” paradigm where a planner adapts during planning. Often a
large degree of inference can be made about the world in the intermediate stages of
search as shown in Fig. 1. Based on this information, the planning algorithm itself
can choose to adapt its search strategy and make the most out of its planning effort.

While the white box paradigm encompasses a large class of problems, in this paper
we focus on one such subclass - adaptive edge evaluation during search on explicit
graphs. Consider a graph whose vertices represent robot configurations and edges
represent potentially valid movements between these configurations. In order to
minimize edge evaluation effort, prior information about the validity of edges can be
leveraged [6, 2]. This is illustrated in Fig. 2 where a robot navigates in a world with
a narrow gap in one of two places. If an edge on gap 1 is blocked, the planner infers
that gap 2 is free. In other words, the posterior distribution over worlds collapses
on a set of worlds, all of which admit a particular path to be feasible. The planner
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Fig. 2 Collision checking informative edges can lead to reduced search effort. (a) A prior distribu-
tion over worlds shows a narrow gap in one of two places. Hence the collision checker checks the
most informative edge and finds it to be in collision. (b) The posterior collapses on one path being
free (but many possible worlds). The algorithm proceeds to check these edges for collision.

proceeds to check only that path, leaving all other edges untouched. We wish to
compute such a policy that judiciously chooses edges to evaluate by reasoning about
likely worlds in which the robot operates.

Our key insight is that this problem is equivalent to the Bayesian active learning
problem of decision region determination (DRD) [15, 4] - given a set of tests (edges),
hypotheses (worlds), and regions (potential paths), the objective is to select a se-
quence of tests that drive uncertainty into a single decision region. Drawing this
analogy enables us to leverage existing methods in Bayesian active learning [12] for
robot motion planning. Note that the DRD problem has one key distinction from
the general active learning problem - the uncertainty only needs to be driven down
enough to ascertain if a path is free, and it is not necessary to identify the underlying
world [8]. This makes it very applicable for motion planning where we only need
to know enough about the world to compute a path. Solving the DRD problem in
general is NP-hard [15]. Fortunately, Chen et al.[4] provide a method to solve this
problem by maximizing an objective function that satisfies adaptive submodular-
ity [11] - a natural diminishing returns property that endows greedy policies with
near-optimality guarantees. We are able to directly adopt this algorithm to compute a
policy that would select which edges to evaluate for our problem.

We are excited to make this connection between two disparate disciplines. We have
made some preliminary inroads and demonstrated great empirical results compared
to several state of the art baseline algorithms in real world settings [5]. Interestingly,
we found that this connection leads to new subproblems that necessitate attention
from the active learning community. One such problem, as discussed in Section 3, is
the DRD problem when test outcomes are independent Bernoulli random variables.
We show that under such a setting the computational complexity for edge evaluation
is reduced from exponential in number of edges to linear while still retaining near-
optimality guarantees. We describe other such problem variants, insights and potential
future research directions in detail in Section 4.
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2 Problem Formulation

We now describe the adaptive edge evaluation, drawing the equivalence with the
DRD problem along the way. Let G = (V,E) be an explicit graph that consists of a
set of vertices V and edges E. Given a pair of start and goal vertices, (vs,vg) ∈V , a
search algorithm computes a path ξ ⊆ E - a connected sequence of valid edges.

We have a set of worlds H = {h1, . . . ,hn}, each of which are analogous to a “hypoth-
esis”. We have a prior distribution P(h) on this set. A “test” is performed by querying
an edge e ∈ E for evaluation which returns a binary outcome x ∈ {0,1} denoting
if an edge is valid or not. Thus each world h ∈ H can be considered a function
h : E→{0,1} mapping edges to corresponding outcomes. We address applications
where edge evaluation is expensive, i.e., the computational cost c(e) of computing
h(e) is significantly higher than regular search operations.

We make a second simplification to the problem - from that of search to that of
identification. Instead of searching G online for a path, we frame the problem as
identifying a valid path from a library of ‘good’ candidate paths Ξ = (ξ1,ξ2, . . . ,ξm).
Each path can be thought of as carving out a “decision region” over the space of
worlds. By abuse of notation, we write ξ ⊆ H to denote that each path corresponds
to a set of worlds for which it would be feasible.

If a set of edge evaluations S ⊆ E are performed, let the observed outcome vector
be denoted by xS. Let the version space H(xS) be the set of worlds consistent with
observation vector xS, i.e. H(xS) = {h ∈ H | ∀e ∈ S,h(e) = xS(h)}.
We define a policy π as a mapping from observation vector xS to edges. A policy
terminates when it shows that at least one path is valid, or all paths are invalid. Let
h be the underlying world on which it is evaluated. Denote the observation vector
of a policy π as xS (π,h). The expected cost of a policy π is c(π) = Eh [c(xS (π,h)]
where c(xS) is the cost of all edge evaluations e ∈ S. The objective is to compute a
policy π∗ with minimum cost that ensures at least one path is valid, i.e.

π
∗ ∈ argmin

π

c(π) s.t ∀h,∃ξd : P(ξd | xS (π,h)) = 1 (1)

3 Approach

We adopt the framework of Decision Region Edge Cutting (DIRECT) [4] which we
describe briefly in our context. DIRECT creates a graph where nodes are hypotheses
(worlds) and edges are between hypotheses belonging to different regions. Performing
a test ‘cuts’ edges if any one of the hypotheses is inconsistent with the test outcome.
Once all the edges are cut, the uncertainty collapses into atleast one of the regions. A
key difficulty arises from the fact that regions overlap. DIRECT solves this problem
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by defining a set of subproblems containing disjoint regions with the caveat that
solving any one subproblem suffices, and combining subproblems with a Noisy-OR
operator. Interstingly, DIRECT can directly solve our edge evaluation problem!

A concern is that DIRECT requires |H| computation per sub-problem, which can
be O

(
2E

)
. We circumvent this problem by computing a decision tree offline using

DIRECT which has a runtime of O (1). The nodes of the tree encode which edge to
evaluate. The tree branches on the outcome of the evaluation. The tree terminates
on a leaf node when the uncertainty has been pushed onto one region. The tree also
terminates if there are no consistent worlds in its database that matches the outcome
vector.

Hence, if the world at test time is not in the training data, it may lead to a situation
where the offline decision tree terminates without finding a solution. We need a
policy to execute online under such situations. However, we would still like the
policy to be informed by some prior. Since assuming independent edges is a common
simplification [17, 19, 6, 2, 9], we assume edges are independent Bernoulli random
variables. This leads to a new active learning problem definition. While naively ap-
plying DIRECT requires O

(
2E

)
per iteration, we present a more efficient Bernoulli

Subregion Edge Cutting (BISECT) algorithm [5], which computes each subproblem
in O (E) time.

4 Discussion and Future Directions

We empirically evaluated BISECT on a spectrum of synthetic and real world planning
problems [5]. These results demonstrate the efficacy of leveraging prior data to
significantly reduce collision checking effort. Interestingly, they raise a lot of research
questions which we discuss below.
Q 1. We need to relax assumptions in the framework in (2) - the prior is specified
only via a finite database of worlds and selection is limited to a fixed library of paths.
(a) Can we better model how collision information propagates through the graph?
(b) Can we circumvent explicitly computing a candidate set of paths?
(a) Specifying the prior as a finite database of worlds is memory inefficient and
can lead to overfitting. A better way is to build and update belief distributions over
configuration space using techniques such as KDE [6], mixture of Gaussians [14],
RKHS [23] or even customized models [22]. The efficacy of these models depends
on how accurately they can represent the world, how efficiently they can be updated
and how efficiently they can be projected on the graph. The active learning not only
needs to reason about the current belief of the world, but belief posteriors conditioned
on possible outcomes of edge evaluation.
(b) Explicitly reasoning about a set of paths is expensive as the size of the set can be
exponential in the number of edges in the graph. An alternate method is to directly
reason about a distribution over all possible paths between two vertices implicitly,
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however, this can be intractable. Tractable approximations to such functions have
been explored in the context of edge selection [9]. Adopting such techniques in the
active learning setting would be interesting to pursue.
Q 2. The active learning algorithms we use are restrictive and expensive.
(a) Are there alternatives to solving DRD that are less restrictive?
(b) Are there more efficient approaches that do not require enumerating worlds?
(a) The restriction in DIRECT arises from the need to show adaptive submodularity
for the surrogate objective. This is difficult to show in general as it depends not
only on the objective but also on the set of possible realizations and the probability
distribution over these realizations. In contrast, interactive submodularity [13], which
only requires the objective be submodular for a fixed hypothesis, is easier to show
and can lead to simpler surrogate functions.
(b) While DIRECT solves the exploration-exploitation problem in a principled
fashion, it requires enumerating all plausible worlds and reasoning about them jointly.
An alternative approach to efficient exploration-exploitation is via posterior sampling
for reinforcement learning (PSRL) [21]. PSRL samples a single world from the
posterior at the start of the episode, solves for an optimal policy and executes it.
Hence PSRL efficiently exploits while exploration is automatically obtained by the
variance of sampled worlds. Such policies also enjoy Bayesian regret bounds.
Q 3. We have so far been concerned with finding a feasible path
(a) Can we extend our framework to the optimal path identification problem?
(b) Furthermore, can we achieve asymptotic optimality via incremental densification?
(a) Introducing an additional criteria of minimizing path cost creates a tension be-
tween producing high quality paths and expending more evaluation effort. A desirable
behaviour is to have an anytime algorithm that traverses the Pareto-frontier [6]. We
can tweak our algorithm to display such behavior - we first solve the feasible path
identification problem, prune all costlier paths (including this) from the library, prune
worlds which belonged only to those paths, and then solve the feasible path problem
again. However, while this will eventually converge to the optimal path, we can not
necessarily control the speed of convergence.
(b) A naive approach to achieve asymptotic optimality is to add a batch of edges
(densify) to the current graph, find the optimal path and repeat [7]. An key question
is - where should we add samples? We would like to use the current belief about the
world to actively add edges in promising areas that lead to discovery of better paths
with little evaluation effort. Additionally, we would also like to interleave planning
and densification such that the output of one constantly informs the other.
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