
Bayesian Active Edge Evaluation on Expensive Graphs

Sanjiban Choudhury1, Siddhartha Srinivasa1, Sebastian Scherer2
1 School of Computer Science and Engineering, University of Washington, USA

2 The Robotics Institute, Carnegie Mellon University, USA
sanjibac@cs.uw.edu, siddh@cs.uw.edu, basti@cs.cmu.edu

Abstract

We consider the problem of real-time motion plan-
ning that requires evaluating a minimal number
of edges on a graph to quickly discover collision-
free paths. Evaluating edges is expensive, both for
robots with complex geometries like robot arms,
and for robots sensing the world online like UAVs.
Until now, this challenge has been addressed via
laziness i.e. deferring edge evaluation until abso-
lutely necessary, with the hope that edges turn out
to be valid. However, all edges are not alike in
value - some have a lot of potentially good paths
flowing through them, and some others encode the
likelihood of neighbouring edges being valid. This
leads to our key insight - instead of passive laziness,
we can actively choose edges that reduce the uncer-
tainty about the validity of paths. We show that
this is equivalent to the Bayesian active learning
paradigm of decision region determination (DRD).
However, the DRD problem is not only combina-
torially hard, but also requires explicit enumeration
of all possible worlds. We propose a novel frame-
work that combines two DRD algorithms, DIRECT
and BISECT, to overcome both issues. We show
that our approach outperforms several state-of-the-
art algorithms on a spectrum of planning problems
for mobile robots, manipulators and autonomous
helicopters.

1 Introduction
A widely-used approach for solving robot motion-planning
problems is the construction of graphs, where vertices rep-
resent robot configurations and edges represent potentially
valid movements of the robot between these configurations.
We assume the following setting where we have an explicit
graph (also called a roadmap [Kavraki et al., 1996]) that is
fixed across planning cycles, but the underlying validity of
each edge depends on the configuration of obstacles. Con-
sider the robot arm planning scenario in Fig. 1(a) where the
roadmap remains the same, but the location of objects and the
table may vary. Also consider receding horizon planning for
a helicopter on a state lattice as shown in Fig. 1(b) where the

Figure 7: Visualization of the first of three articulated motion planning problems in which the HERB robot must move its right
arm from the start configuration (pictured) to any of seven grasp configurations for a mug. Shown is the progression of the
Alternate selector on one of the randomly generated roadmaps; approximately 2% of the 7D roadmap is shown in gray by
projecting onto the space of end-effector positions.

This form is derived from simplifying the induced geomet-
ric series; note that if exp(�wab) Zba, the value Z 0

xy is
infinite. One can also derive the inverse: given values Z 0,
calculate the values Z if an edge were removed.

This incremental formulation of (7) allows for the corre-
sponding score p(e) for edges to be updated efficiently dur-
ing each iteration of LazySP as the wlazy value for edges
chosen for evaluation are updated. In fact, if the values Z
are stored in a square matrix, the update for all pairs after an
edge weight change consists of a single vector outer product.

5 Experiments
We compared the seven edge selectors on three classes of
shortest path problems. The average number of edges evalu-
ated by each, as well as timing results from our implementa-
tions, are shown in Figure 8. In each case, the estimate was
chosen so that west w, so that all runs produced optimal
paths. The experimental results serve primarily to illustrate
that the A* and LWA* algorithms (i.e. Expand and Forward)
are not optimally edge-efficient, but they also expose dif-
ferences in behavior and prompt future research directions.
All experiments were conducted using an open-source im-
plementation.1 Motion planning results were implemented
using OMPL (Şucan, Moll, and Kavraki 2012).

Random partially-connected graphs. We tested on a set
of 1000 randomly-generated undirected graphs with |V | =
100, with each pair of vertices sharing an edge with prob-
ability 0.05. Edges have an independent 0.5 probability of
having infinite weight, else the weight is uniformly dis-
tributed on [1, 2]; the estimated weight was unity for all
edges. For the WeightSamp selector, we drew 1000 w sam-
ples at each iteration from the above edge weight distribu-
tion. For the Partition selector, we used � = 2.

Roadmap graphs on the unit square. We considered
roadmap graphs formed via the first 100 points of the (2, 3)-
Halton sequence on the unit square with a connection radius
of 0.15, with 30 pairs of start and goal vertices chosen ran-
domly. The edge weight function was derived from 30 sam-
pled obstacle fields consisting of 10 randomly placed axis-

1https://github.com/personalrobotics/lemur

aligned boxes with dimensions uniform on [0.1, 0.3], with
each edge having infinite weight on collision, and weight
equal to its Euclidean length otherwise. One of the resulting
900 example problems is shown in Figure 2. For the Weight-
Samp selector, we drew 1000 w samples with a naı̈ve edge
weight distribution with each having an independent 0.1 col-
lision probability. For the Partition selector, we used � = 21.

Roadmap graphs for robot arm motion planning. We
considered roadmap graphs in the configuration space corre-
sponding to the 7-DOF right arm of the HERB home robot
(Srinivasa et al. 2012) across three motion planning prob-
lems inspired by a table clearing scenario (see Figure 7). The
problems consisted of first moving from the robot’s home
configuration to one of 7 feasible grasp configurations for
a mug (pictured), second transferring the mug to one of 72
feasible configurations with the mug above the blue bin, and
third returning to the home configuration. Each problem was
solved independently. This common scenario spans various
numbers of starts/goals and allows a comparison w.r.t. diffi-
culty at different problem stages as discussed later.

For each problem, 50 random graphs were constructed by
applying a random offset to the 7D Halton sequence with
N = 1000, with additional vertices for each problem start
and goal configuration. We used an edge connection radius
of 3 radians, resulting |E| ranging from 23404 to 28109.
Each edge took infinite weight on collision, and weight
equal to its Euclidean length otherwise. For the WeightSamp
selector, we drew 1000 w samples with a naı̈ve edge weight
distribution in which each edge had an independent 0.1 prob-
ability of collision. For the Partition selector, we used � = 3.

6 Discussion
The first observation that is evident from the experimen-
tal results is that lazy evaluation – whether using Forward
(LWA*) or one of the other selectors – grossly outperforms
Expand (A*). The relative penalty that Expand incurs by
evaluating all edges from each expanded vertex is a func-
tion of the graph’s branching factor.

Since the Forward and Reverse selectors are simply mir-
rors of each other, they exhibit similar performance averaged
across the PartConn and UnitSquare problem classes, which

Correlated
edges due
to a table

Correlated
edges due

to wires and
guide towers

(a) (b)

LazySP passively
defers edge check

(590 edges)

DIRECT + BISECT
actively infers edge
validity (20 checks)

(c) (d)

Figure 1: Real world planning problems where edges are corre-
lated such as (a) manipulating objects on a table (courtesy [Dellin
and Srinivasa, 2016]) or (b) helicopter avoiding power-lines. In the
helicopter application, real-time has a budget of 100 ms (based on
speed and sensing range). Each edge requires ≈ 1.45 ms of evalua-
tion time. (c) LazySP [Dellin and Srinivasa, 2016] finds the optimal
path, but requires 590 checks (856ms) (d) Our approach finds a good
enough feasible path in 20 checks (29ms)

lattice defined in the robot frame of refence remains the same,
but obstacle configurations in the world vary.

The main computational bottleneck is the process of edge-
evaluation which serves as the bottleneck to real-time perfor-
mance. For example, in robot arm planning [Dellin et al.,
2016], evaluation requires expensive geometric intersection
computations. In autonomous helicopter planning [Choud-
hury et al., 2014], evaluation requires expensive reachabil-
ity volume verification of the closed loop system. State-of-
the-art planning algorithms [Dellin and Srinivasa, 2016] deal
with expensive evaluation by resorting to laziness - they first
compute a set of unevaluated paths quickly, and then evaluate
them sequentially to find a valid optimal path.

We ask the question - Can we do better than laziness if the
goal is to simply find a feasible path in the set as quickly as
possible? We exploit a fundamental characteristic of the plan-
ning problem - edges in a graph are implicitly correlated as
shown in Fig. 1. Evaluating certain edges provides valuable

G = (V, E)
⇠1

⇠2

⇠3

R1 R2

R3

only ⇠1

feasible

only ⇠2

feasible

only ⇠3

feasible

both ⇠1 and

⇠3 feasible

R1 R2

R3

R1 R2

R3

3 possible paths
Worlds where path 2
is feasible are eliminated

Uncertainty pushed into
atleast path 1 being feasible

Figure 2: Equivalence between the feasible path identification problem and the decision region determination problem. A plausible world is
equivalent to hypothesis (as shown by the blue dots in the lower row). A path ξi is equivalent to a regionRi over valid hypotheses where the
path is feasible. A collision check is equivalent to a test whose outcome is valid (green) or invalid (red). Tests eliminate hypotheses and the
algorithm terminates when uncertainty is pushed into a region (R1) and the corresponding path (ξ1) is determined to be valid.

information about the feasibility likelihood of other edges.
We wish to compute such a policy that judiciously chooses
edges to evaluate by exploiting such correlations.

We show that this problem is equivalent to the Bayesian
active learning problem of decision region determination
(DRD) [Javdani et al., 2014; Chen et al., 2015] - given a set
of tests (edges), hypotheses (worlds), and regions (potential
paths), the objective is to select a sequence of tests that drive
uncertainty into a single decision region. The DRD problem
has one key distinction from the general active learning prob-
lem [Dasgupta, 2004] - we only need to know enough about
the world to ascertain if a path is feasible. To solve the DRD
problem in our context, we need to address two issues:

(a) Enumeration of all possible worlds.

(b) Solving the DRD problem in general is NP-hard [Jav-
dani et al., 2014].

Fortunately, [Chen et al., 2015] provide an algorithm, DI-
RECT, to address (b) by maximizing an objective function
that satisfies adaptive submodularity [Golovin and Krause,
2011] - a natural diminishing returns property that endows
greedy policies with near-optimality guarantees. However,
DIRECT requires (a) to be solved. Explicitly enumerating
all possible worlds is impractical even as an offline operation
- since each world is a configuration of edges, a graph with E
edges can induce O

(
2E
)

possible worlds.
[Choudhury et al., 2017a] addresses (a) by examining the

DRD problem when edges are independent. They propose an
efficient near-optimal algorithm BISECT which reduces the
computation from O

(
2E
)

to O (E). However, this indepen-
dence assumption is too strong for certain environments (such
as those in Fig 1) thus leading to excessive edge evaluations.

Our key idea is to combine the two approaches. We sample
a finite database of worlds and apply DIRECT offline on this
database to compute a decision tree of edges to evaluate. At
test time we execute the tree. When we reach a leaf node,
we have either solved the problem or the world lies outside
of the database. In such cases we execute BISECT, which

implicitly reasons about all possible worlds, and accept the
performance loss due to the independence assumption. By
controlling the bias term in BISECT, we can also choose to
not over-fit to the training database. We make the following
contributions:

1. We show an equivalence between the edge evaluation
problem and the decision region determination problem.

2. We propose a framework to combine two DRD al-
gorithms, DIRECT and BISECT, that near-optimally
solves the decision region problem, overcomes issues
pertaining to finite databases and can be executed effi-
ciently online.

3. We evaluate our approach on a spectrum of planning
problems including a manipulator and a helicopter.

2 Problem Formulation
We now describe the edge evaluation problem, showing the
equivalence to the DRD problem along the way. Let G =
(V,E) be an explicit graph that consists of a set of vertices
V and edges E. Given a pair of start and goal vertices,
(vs, vg) ∈ V , a search algorithm computes a path ξ ⊆ E - a
connected sequence of valid edges. The search is performed
on an underlying world φ which corresponds to a specific va-
lidity status of edges. Our belief about the robot’s environ-
ment defines a distribution P (φ). We address applications
where the cost of evaluating an edge is c(e). We make a sim-
plification to the problem - instead of searching G online for
a path, we frame the problem as identifying a valid path from
a library of ‘good’ candidate paths Ξ = (ξ1, ξ2, . . . , ξm) 1.

Let H = {h1, . . . , hn} be a set of “hypotheses”, each of
which is analogous to a world. Hence, we have a prior dis-
tribution P (h) on this set corresponding to P (φ). A “test”
t ∈ T is performed by querying a corresponding edge e ∈ E
for evaluation, which returns a binary outcome x ∈ {0, 1} de-
noting if an edge is valid or not. Thus each hypothesis can be

1For example a library of k-shortest paths

considered a function, h : T → {0, 1}, mapping tests to cor-
responding outcomes. The cost of performing a test is c(t). A
path ξi ∈ Ξ corresponds to a set of worlds on which that path
is valid. Hence each path ξi ∈ Ξ corresponds to a “decision
region” Ri ⊆ H over the space of hypotheses. Let {Ri}mi=1
be the set of “decision regions” corresponding to Ξ.

For a set of tests A ⊆ T that are performed,
let the observed outcome vector be denoted by xA.
Let the version space H(xA) be the set of hypothe-
ses consistent with outcome vector xA, i.e. H(xA) =
{h ∈ H | ∀t ∈ A, h(t) = xA(t)}.

We define a policy π as a mapping from the current out-
come vector xA to the next test to select. A policy terminates
when at least one region is valid, or all regions are invalid. Let
h be the underlying world on which it is evaluated. Denote
the outcome vector of a policy π as xA (π, h). The expected
cost of a policy π is c(π) = Eh [c(xA (π, h)] where c(xA)
is the cost of all tests t ∈ A. The objective is to compute a
policy π∗ with minimum cost such that at least one region is
valid,
π∗ ∈ arg min

π
c(π) s.t ∀h,∃Rd : P (Rd | H(xA)) = 1

(1)
We summarize the equivalence which is illustrated in

Fig. 2. A world is equivalent to a hypothesis. We do not
know the true hypothesis, but have a belief over them. Evalu-
ating an edge is equivalent to performing a test. Based on the
outcome, we can update this belief. Each path in the library
is equivalent to a region. The set of worlds for which a path
is valid correspond to the set of hypothesis belonging to the
region. The goal is to drive uncertainty to at least one path,
i.e. one region.

3 Related Work
We examine the problem class of expensive edge evalu-
ation in motion planning which has inspired a variety of
‘lazy’ approaches. The LazyPRM algorithm [Bohlin and
Kavraki, 2000] only evaluates edges on the shortest path
while FuzzyPRM [Nielsen and Kavraki, 2000] evaluates
paths that minimize probability of collision. The Lazy
Weighted A* (LWA*) algorithm [Cohen et al., 2015] de-
lays edge evaluation in A* search and is reflected in simi-
lar techniques for randomized search [Gammell et al., 2015;
Choudhury et al., 2016a; Hauser, 2015]. We base our work on
the LazyShortestPath (LazySP) framework [Dellin and Srini-
vasa, 2016] which examines the problem of which edges to
evaluate on the shortest path. The Anytime Edge Evaluation
(AEE*) framework [Narayanan and Likhachev, 2017] also
deals with a similar problem however it makes an indepen-
dent edge assumption.

Efficient collision checking has its own history in the con-
text of motion planning. [Bialkowski et al., 2016] creates a
data-structure to store the distances to obstacles from queries
to speed-up future queries. However, this assumes access to
an interpretable distance value, and benefits are only asymp-
totic in nature. Other approaches model belief over the con-
figuration space to speed-up collision checking [Pan et al.,
2012; Huh and Lee, 2016; Choudhury et al., 2016b], sam-
ple vertices in promising regions [Bialkowski et al., 2013;

…

Training database

DIRECT

Path37
valid

Edge:72

Edge:15
…10

1
Edge:33
1

Path4
valid

0 0

BISECT

(Computes decision
tree offline)

(Online algorithm that
use pre-computed posteriors)

θ1 θ2

Figure 3: The overall approach framework. Offline: DIRECT is
executed on a database to create a decision tree. Online: Tree is
executed until leaf node is reached. If the problem is unsolved, BI-
SECT is invoked with bias term θi

Arslan and Tsiotras, 2015] or grow the search tree to explore
the configuration space [Hsu et al., 1997; Burns and Brock,
2005; Lacevic et al., 2016]. However, these approaches make
geometric assumptions, requires creating a data-structure on-
line which maybe expensive and do not exploit correlations
from prior data. Our approach, in comparison, is completely
general and applicable to any domain.

We draw a novel connection between motion planning
and optimal test selection which has a wide-spread appli-
cation in medical diagnosis [Kononenko, 2001] and exper-
iment design [Chaloner and Verdinelli, 1995]. Optimiz-
ing the ideal metric, decision theoretic value of informa-
tion [Howard, 1966], is known to be NPPP complete [Krause
and Guestrin, 2009]. For hypothesis identification (known as
the Optimal Decision Tree (ODT) problem), Generalized Bi-
nary Search (GBS) [Dasgupta, 2004] provides a near-optimal
policy. For disjoint region identification (known as the Equiv-
alence Class Determination (ECD) problem), EC2 [Golovin
et al., 2010] provides a near-optimal policy. When regions
overlap (known as the Decision Region Determination (DRD)
problem), HEC [Javdani et al., 2014] provides a near-optimal
policy. The DIRECT algorithm [Chen et al., 2015], a com-
putationally more efficient alternative to HEC, forms the ba-
sis of our approach. We also employ the BISECT algo-
rithm [Choudhury et al., 2017a], which solves the DRD prob-
lem under edge independence assumptions.

4 Approach
4.1 Overview
Fig. 3 shows an overview of our approach. We sample a finite
database of worlds to create a training dataset. We employ
a greedy yet near-optimal algorithm DIRECT [Chen et al.,
2015] to solve the DRD problem. DIRECT chooses decisions
to prune inconsistent worlds from the database until it can as-
certain if a path is valid. The decisions of DIRECT can be
compactly stored in the form of a decision tree which is com-
puted offline. At test time, the tree is executed until the leaf
node is reached. At this point, either the problem is solved or
the fraction of consistent worlds drops below a threshold η,
i.e. it is likely that the test world is not in the database. In the
latter case, we invoke another DRD algorithm, BISECT. BI-
SECT implicitly reasons about the exhaustive set of O(2E)
worlds and does this efficiently by assuming edges are inde-

Algorithm 1: DIRECT (Hact,R,X, c)

1 fold = DRD (Hact,R) ; . Compute old fDRD

2 for t ∈ T do
3 ∆(t)← 0;
4 for xt ∈ {0, 1} do
5 Hcond ← {h ∈ Hact | X(h, t) = xt} ; . Prune

6 p← |Hcond|
|Hact| ; . Probability of outcome

7 ∆(t)← ∆(t) + p (DRD(Hcond,R)− fold);

8 ∆(t)← ∆(t)
c(t)

;

9 return arg max
t∈T

∆(t);

Algorithm 2: DRD (H′,R)

1 v ← 1;
2 for i ∈ {1, . . . ,m} do
3 v ← v

(
WeightEC(H′,R,i)
WeightEC(H,R,i)

)
; . Weight of each ECD

4 return 1− v;

pendent. BISECT is invoked with a bias vector of edge like-
lihoods θ which can be chosen to prevent over-fitting to the
training database. The combined behaviour of the framework
is as follows - the tree makes a set of evaluations to quickly
collapse the posterior on to a set of candidate paths, while
BISECT completes the episode being guided by the obtained
posterior. We now describe each component.

4.2 The Decision Region Edge Cutting Algorithm
(DIRECT)

In order to solve the DRD problem in (1), we adopt the frame-
work of Decision Region Edge Cutting (DIRECT) [Chen et
al., 2015]. The intuition behind the method is as follows -
as tests are performed, hypotheses inconsistent with test out-
comes are pruned away. Hence, tests should be incentivized
to push the probability mass over hypotheses into a region as
fast as possible. [Chen et al., 2015] derive a surrogate objec-
tive function that not only provides such an incentive, but also
exhibits the property of adaptive submodularity [Golovin and
Krause, 2011] - greedily maximizing such an objective results
in a near-optimal policy.

DIRECT uses a key result from the EC2 algorithm
[Golovin et al., 2010] which solves the Equivalence Class
Determination (ECD) problem - a special case of the DRD
problem (1) when regions are disjoint. The EC2 algorithm
defines a graph GEC = (VEC, EEC) where the nodes are hy-
potheses and edges are between hypotheses in different deci-
sion regions EEC = ∪i 6=j {{h, h′} | h ∈ Ri, h′ ∈ Rj}. The
weight of an edge is defined as w({h, h′}) = P (h)P (h′).
An edge is said to be ‘cut’ by an observation if ei-
ther hypothesis is inconsistent with the observation. The
aim is to cut all edges, i.e. to drive total weight to 0.
EC2 efficiently computes the total weight wEC({Ri}) =

1
2

(
(
∑
i

P (Ri))2 −∑
i

P (Ri)2

)
. It then defines an objective

function fEC(xA) that measures the ratio of the weight orig-

Algorithm 3: WeightEC (H′,R, i)
1 a←

∑
h∈H′

R(h, i) ; . Number of hyp in region

2 b← |H| − a ; . Remaining hyp

3 return wi
EC = 1

2|H|2
(
(a+ b)2 − a2 − b

)

inally to the weight of pruned regionsRi ∩H(xA), i.e.

fEC(xA) = 1− wEC({Ri} ∩ H(xA))

wEC({Ri})
(2)

EC2 uses the fact that fEC(xA) is adaptive submodular
([Golovin and Krause, 2011]) to define a greedy algorithm.
Let the expected marginal gain of a test be ∆fEC

(t | x) =
Ext

[
fEC(xA∪{t})− fEC(xA) | xA

]
. It greedily selects a

test t∗ ∈ arg max
t

∆fEC
(t | xA)

c(t) .

We now return to the general DRD problem where regions
are not disjoint. DIRECT reduces the DRD problem with
m regions to m instances of the ECD problem. Each ECD
problem is a ‘one region versus all’. ECD problem i is de-
fined over the following disjoint regions: the first region is
Ri and the remaining regions are singletons containing only
one hypothesis h /∈ Ri. The EC2 objective corresponding to
this problem is frEC(xA). The key idea is that solving any
one ECD problem solves the DRD problem. The DIRECT
algorithm then combines them in a Noisy-OR formulation by
defining the following combined objective

fDRD(xA) = 1−
m∏
r=1

(1− frEC(xA)) (3)

DIRECT uses the fact that fDRD(xA) is also adaptive sub-
modular to greedily select a test t∗ ∈ arg max

t

∆fDRD
(t | xA)

c(t) .

For details on the theoretical guarantees and proofs, we refer
the reader to [Chen et al., 2015].

To aid in implementation, we provide a pseudo-code for
DIRECT in Alg. 1, 2 and 3. The pseudo-code is derived
by expanding and simplifying ∆fDRD

(t | xA) which we omit
for brevity. Alg. 1 describes the main subroutine of DIRECT
algorithm that greedily selects a test to execute based on the
current state. Hact is the set of active hypotheses which have
remained consistent so far with test outcomes. R ∈ Rn×m is
a binary membership matrix where R(h, r) = 1 if h ∈ Rr.
X ∈ Rn×|T | is the test outcome matrix where X(h, t) =
h(t). c ∈ R|T |×1 is a vector of test costs. Line 1 computes
the current value of fDRD by invoking the DRD function. Line
2 iterates over each test. Line 4 iterates over the two possible
outcomes. Line 5 computes Hcond, the set of consistent hy-
potheses conditioned on the test outcome. Line 6 computes
the new fDRD value by invoking the DRD function and com-
putes the gain. Line 9 returns the test with the highest gain.

Alg. 2 describes the fDRD computation for H′. Line 2 it-
erates over every region (i.e. every ECD problem) and mul-
tiplies the weight ratio of individual ECD problem. Line 3
returns the value.

Alg. 3 calculates the weight of the ith ECD problem. Line
1 computes the number of hypothesis in the regionRi. Line 2

computes the number of hypothesis outside the region. Line
3 computes wiEC. The computational complexity of Alg. 1 is
O (|T |mn). Speedups can be obtained by lazy gain evalua-
tion and graph coloring to reduce the number of ECD prob-
lems [Chen et al., 2015].

Let’s examine the the situation when all the uncertainty is
pushed into a region Ri, i.e. when the problem is solved.
In Alg. 3, the value of b = 0. Hence the algorithm returns
wiEC = 0. Alg.2 assigns v = 0 as result (irrespective of other
weights) and returns a value of 1. Since 1 is the maximum
value of fDRD, this corresponds to the maximum possible
gain ∆(t) in line 7 of Alg. 1.

4.3 Offline Decision Tree using DIRECT

We presented an algorithm DIRECT for selecting a test in
Alg. 1. One approach is to run this algorithm at test time
to make decisions about which edge to select for evaluation.
However, the algorithm needs access to the entire training
database R and X at runtime. This can be expensive for stor-
age and computational reasons. We need an approach that has
minimal edge selection time.

Algorithm 4: CreateDecisionTree (Γ,Hact,R,X, c)

1 t← DIRECT (Hact,R,X, c) ; . Invoke algorithm
2 Γ.test← t ; . Assign test to tree node
3 H1

act ← {h ∈ Hact | X(h, t) = 0} ; . Prune false hyp
4 CreateDecisionTree

(
Γ.left,H1

act,R,X, c
)
;

5 H2
act ← {h ∈ Hact | X(h, t) = 0} ; . Prune true hyp

6 CreateDecisionTree
(
Γ.right,H2

act,R,X, c
)
;

We circumvent this problem by computing a decision tree
offline using DIRECT. The process is illustrated in Fig. 3.
The nodes of the tree encode which edge to evaluate. The
tree branches represent the outcome of the evaluation. The
tree is created by recursively calling a subroutine described
in Alg. 4. Line 1 invokes DIRECT to get a test. Line 2 stores
this test in the current node of the tree. To evaluate the left
branch, line 3 assumes the test outcome is 0 and prunes in-
consistent hypothesis. Line 4 calls the subroutine with the
left node. The right branch is also similarly evaluated in lines
5 and 6 assuming the test outcome is 1. Note that the number
of nodes of the tree is bounded by |H| which is much smaller
than 2|T |.

4.4 Executing BISECT from the Leaf Node
If we reach the leaf node of the tree and the problem is still
unsolved, we need to execute an online algorithm that can run
to completion by reasoning over the exhaustive set of worlds.
We use the Bernoulli Subregion Edge Cutting (BISECT) al-
gorithm [Choudhury et al., 2017a] as our online algorithm.
BISECT addresses the DRD problem under the assumption
that test outcomes are independent Bernoulli random vari-
ables. It leverages this assumption to reduce computational
complexity from O

(
2E
)

to O (E) and has a closed form ex-
pression which we omit here for brevity.

BISECT needs as input a bias vector which corresponds
to the independent likelihood of an edge being free. Since

DIRECT has made a set of decisions to collapse the poste-
rior, albeit on a finite database, we wish to use this to inform
BISECT. We do this by growing the DIRECT decision tree
only until the version space Hη drops below a fraction η of
consistent worlds, i.e. |Hη| ≤ η |H|. This is then used to
create a bias vector θ with a mixture term to ensure non-zero
support for all plausible worlds. The bias term for a test t is

θ(t) = α
1

|Hη|
∑
h∈Hη

X(h, t) + (1− α) 0.5 (4)

We can control overfitting to training data by tuning α. Using
BISECT with a bias of 0.5 is a principled approach when one
does not have any prior knowledge about the world.

5 Experiments
5.1 Dataset Construction
We evaluated our approach on a collection of datasets from
insightful 2D problems to more realistic high dimension
problems as encountered by a helicopter or a robot arm. The
robot dynamics information is used to create an explicit graph
G = (V,E). A dataset of n worlds is sampled from a de-
signed generative model. Each edge is evaluated on each
world to create a test outcome matrix X ∈ Rn×|T |. A li-
brary of paths is created along with a binary membership
matrix R ∈ Rn×m encoding the validity of a path on a
world. 10% of the data is used for test, remainder for train-
ing. Typical values used are n : 1000, m : 500. Details
about the dataset generation are described in [Choudhury et
al., 2017b]. Open-source code and details can be found here:
https://github.com/sanjibac/matlab learning collision checking

5.2 Baseline Algorithms
Our primary baseline is BISECT [Choudhury et al., 2017a] which
treats each edge as independent Bernoulli random variables. We
additionally use information theoretic baselines from [Choudhury et
al., 2017a] which were competitive with BISECT, i.e the MAXPRO-
BREG version of MAXTALLY, SETCOVER and MVOI.

To compare with a planning baseline, we use the LAZYSP algo-
rithm [Dellin and Srinivasa, 2016] which operates on the original
graph G. LAZYSPSET is provably optimal with respect to edge
evaluations when the planning algorithm is given no prior informa-
tion. We also introduce LAZYSPSET which is restricted to the li-
brary of paths Ξ.

5.3 Summary of Results
Table 1 shows the normalized evaluation cost of an algorithm, i.e

cost(alg)
cost(DIRECT +BISECT) − 1. The two numbers are lower and upper 95%

confidence intervals. The best performance on each dataset is high-
lighted. We present a set of observations to interpret these results.

O 1. DIRECT +BISECT has a consistently competitive perfor-
mance across all datasets.

Table 1 shows on 16 datasets, DIRECT is at par with the best —
on 8 of those it is exclusively the best.
O 2. DIRECT is effective on environments with spatial correlation.

Fig. 4 shows a test point from in the Maze dataset where there
are 5 hallways with one interconnecting passage. DIRECT is able
to locate this passage with a few checks and has better perfor-
mance than BISECT which assumes independence between edges.

https://github.com/sanjibac/matlab_learning_collision_checking

LAZYSP LAZYSPSET MAXTALLY SETCOVER MVOI BISECT DIRECT +
BISECT

2D Geometric Planning: Variation across environments
Forest (10.90, 18.48) (1.84, 3.02) (0.17, 0.40) (0.14, 0.51) (0.30, 0.55) (0.014, 0.20) (0.00, 0.00)
OneWall (7.47, 16.01) (0.30, 0.71) (0.00, 0.30) (0.08, 0.34) (0.09, 0.36) (−0.06, 0.22) (0.00, 0.00)
TwoWall (21.54, 26.68) (0.00, 0.21) (0.20, 0.92) (0.12, 0.58) (0.31, 0.56) (0.00, 0.53) (0.00, 0.00)
MovingWall (1.33, 3.01) (1.00, 1.54) (0.43, 1.17) (0.35, 0.91) (−0.03, 0.57) (0.11, 0.92) (0.00, 0.00)
Baffle (7.86, 11.26) (2.30, 3.83) (0.33, 1.06) (0.36, 0.74) (0.26, 0.89) (0.11, 0.55) (0.00, 0.00)
Maze (14.39, 19.66) (1.16, 1.81) (0.12, 0.34) (0.00, 0.17) (0.41, 0.87) (0.44, 0.76) (0.00, 0.00)
Bugtrap (7.40, 8.57) (2.74, 3.53) (0.51, 0.84) (−0.12, 0.54) (−0.12, 0.53) (0.43, 0.91) (0.00, 0.00)

2D Geometric Planning: Heterogeneous datasets by mixing multiple environments
Mixture (1.82, 2.55) (0.44, 0.95) (0.0, 0.49) (0.04, 0.47) (−0.11, 0.23) (−0.07, 0.24) (0.00, 0.00)

SE(2) Nonholonomic Path Planning: Variation across environments
OneWall (2.22, 4.18) (0.15, 0.57) (0.16, 0.48) (−0.11, 0.07) (0.00, 0.28) (−0.07, 0.12) (0.00, 0.00)
MovingWall (−0.14, 0.23) (−0.14, 0.15) (0.24, 0.49) (0.13, 0.41) (0.00, 0.36) (0.10, 0.54) (0.00, 0.00)
Baffle (7.74, 10.48) (2.88, 4.81) (1.86, 3.21) (1.35, 2.32) (0.70, 1.47) (1.14, 1.70) (0.00, 0.00)
Bugtrap (3.75, 6.51) (2.27, 4.69) (0.22, 0.52) (0.05, 0.43) (0.26, 0.55) (0.12, 0.44) (0.00, 0.00)

Autonomous Helicopter Path Planning: Variation across environments
Wires (17.42, 75.85) (1.15, 3.08) (0.55, 0.96) (0.00, 0.25) (−0.08, 0.08) (0.08, 0.23) (0.00, 0.00)
Canyon (0.73, 1.27) (1.41, 2.00) (0.15, 0.52) (0.07, 0.40) (0.43, 0.72) (0.06, 0.47) (0.00, 0.00)

7D Arm Planning: Variation across environments
Clutter (0.49, 1.08) (0.09, 0.57) (−0.04, 0.05) (0.00, 0.13) (0.10, 0.32) (0.00, 0.10) (0.00, 0.00)
Table+Clutter (0.94, 1.84) (−0.22, 0.17) (0.06, 0.51) (0.05, 0.27) (0.11, 0.46) (0.06, 0.36) (0.00, 0.00)

Table 1: Normalized cost (with respect to our approach) of different algorithms on different datasets (lower and upper bounds of 95% C.I.)

LAZYSPSET suffers as it goes through the shorter paths first. The
myopic heuristic MVOI greedily evaluates the most probable path
which fails for this environment where a large number of paths are
equiprobable.
O 3. DIRECT +BISECT improves in performance with more data.

Fig. 5(a) shows that both mean and variance reduce as the size
of the dataset is increased. This is not only due to DIRECT having
better realizability, but also due to BISECT having a more accurate
bias term.
O 4. BISECT is essential as a post-processing step.

We defined an algorithm, DIRECTONLY that runs DIRECT to
completion and randomly returns a path from the consistent set of
paths, i.e. the a path DIRECT believes should be feasible. Fig. 5(b)
shows the failure rate of DIRECTONLY with training size, i.e. the
returned path being infeasible. The plot shows the failure does not
go to zero. BISECT is essential to reason about the remaining paths
and in which order to check edges to ascertain which path is free.
O 5. Our approach is robust to both heterogeneous datasets as well
as changes in train/test distribution

We applied DIRECT +BISECT on different heterogeneous
datasets by combining Forest, TwoWall and Maze. We see that even
on this dataset, our approach outperforms some of the baselines.
This is due to the fact that DIRECT is still able to disambiguate
between the type of worlds and subsequently exploit correlation.
However, we note that the variance of the results are also higher -
hence we conclude no one method dominates significantly in this
case.

To check the robustness of our approach to changes in the test
dataset, we trained DIRECT +BISECT on the TwoWall distribution
(which is highly structured). We then created a test dataset by blend-
ing in this distribution with an unbiased bernoulli distibution where
every edge can be 0/1 with probability 0.5. The mixing fraction is ρ.
We compare against LAZYSPSET which does not use the prior and
is not affected by this data corruption. When ρ = 0, we see that our
approach not only outperforms LAZYSPSET, the variance is signif-

icantly lower. As ρ increases, our approach becomes comparable to
LAZYSPSET- both having a large variance. Note that LAZYSPSET
does not use any prior knowledge. The fact that our approach is ro-
bust to this change in test environment can be attributed to the ability
of BISECT to reason about all worlds.

We take a closer look at a simple illustrative example from the
Baffle dataset for SE(2) path planning as shown in Fig. 6. The com-
bination of the narrow gap between two walls and the curvature con-
straint of the robot makes this a challenging problem for BISECT.
We see that the prior over edge validity is not informative enough for
BISECT to find the gap. However, as DIRECT proceeds to collision
check edges, it is quickly able to localize the gap between the two
walls. Interestingly, it is relatively uncertain about the actual ver-
tical location of the wall - this is reflective of DIRECT judiciously
reducing uncertainty only enough to make a region valid (i.e to know
if a candidate path would be feasible). The posterior is much more
informative for BISECT which is able to easily find a feasible path.

6 Conclusion
In this paper, we addressed the problem of identification of a feasible
path from a library while minimizing the expected cost of edge eval-
uation given priors on the likelihood of edge validity. We showed
that this problem is equivalent to a DRD problem where the goal
is to select tests (edges) that drive uncertainty into a single deci-
sion region (a valid path). We proposed an approach that combines
two DRD algorithms, DIRECT and BISECT, to efficiently solve
the problem. We validated our approach on a spectrum of problems
against state of the art heuristics and showed that it has a consistent
performance across datasets. These results demonstrate the utility of
prior data to achieve real-time robot planning.

We have only taken a first step towards forming a bridge between
motion planning and active learning. The framework we proposed
naturally leads to a plethora of open questions and research direc-
tions:

1. Generalization to all paths: We deal with a fixed library of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LAZYSPSET MVOI BISECT DIRECT+BISECT (cost: 68)(cost: 91)(cost: 131)(cost: 161)

Figure 4: Comparison of algorithms on the Maze dataset. DIRECT +BISECT exploits the rectilinear structure of the maze.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000
0

20

40

60

80

Ed
ge

 e
va

lu
at

io
n

co
st

[D

IR
EC

T
+

 B
IS

EC
T]

Av
er

ag
e

fa
ilu

re

 [D
iR

EC
to

nl
y]

Ed
ge

 e
va

lu
at

io
n

co
st

Training data (n) Training data (n) Mixing fraction (⇢)Original
dataset

Unbiased
Bernoulli

[DIRECT+BISECT]
[LAZYSPSET]

(a) (c)(b)

Figure 5: (a) Mean and variance of edge evaluation cost of DIRECT +BISECT with increasing training size. (b) The average failure (to
indentify a feasible path) rate when only using DIRECT (without BISECT). (c) Mean and variance of evaluation cost of our approach and
LAZYSPSET when test data is corrupted by mixing it with a unbiased bernoulli distribution.

Figure 6: Illustration of belief propagation when applying DIRECT on a simple example from the baffle dataset(SE(2)). Two walls force
the path to maneuver through the gap. DIRECT is able to collapse the uncertainty enough to locate the gap. BISECT finishes off the problem.

paths. How can we reason about set of all paths without ex-
plicit enumeration?

2. Incorporate solution quality: We only examined finding a fea-
sible path. What is an optimal policy for identifying the short-
est path in a library?

3. Dealing with data starvation: DIRECT does not generalize
well to realizability violations. Can we leverage machine
learning oracles that continuously predict plausible worlds?

Acknowledgements
Sebastian Scherer acknowledges the support of ONR contract
N00014-12-C-0671. The authors thank Shushman Choudhury for
feedback, insightful discussions and the robot arm dataset. They
also thank Shervin Javdani for helpful tips on DIRECT implemen-
tation.

References
[Arslan and Tsiotras, 2015] Oktay Arslan and Panagiotis Tsiotras.

Machine learning guided exploration for sampling-based motion
planning algorithms. In IROS, 2015.

[Bialkowski et al., 2013] Joshua Bialkowski, Michael Otte, and
Emilio Frazzoli. Free-configuration biased sampling for motion
planning. In IROS, 2013.

[Bialkowski et al., 2016] Joshua Bialkowski, Michael Otte, Sertac
Karaman, and Emilio Frazzoli. Efficient collision checking in
sampling-based motion planning via safety certificates. The In-
ternational Journal of Robotics Research, 35(7):767–796, 2016.

[Bohlin and Kavraki, 2000] Robert Bohlin and Lydia E Kavraki.
Path planning using lazy prm. In ICRA, 2000.

[Burns and Brock, 2005] Brendan Burns and Oliver Brock.
Sampling-based motion planning using predictive models. In
ICRA, 2005.

[Chaloner and Verdinelli, 1995] Kathryn Chaloner and Isabella
Verdinelli. Bayesian experimental design: A review. Statistical
Science, pages 273–304, 1995.

[Chen et al., 2015] Yuxin Chen, Shervin Javdani, Amin Karbasi,
Drew Bagnell, Siddhartha Srinivasa, and Andreas Krause. Sub-
modular surrogates for value of information. In AAAI, 2015.

[Choudhury et al., 2014] Sanjiban Choudhury, Sankalp Arora, and
Sebastian Scherer. The planner ensemble and trajectory execu-
tive: A high performance motion planning system with guaran-
teed safety. In AHS 70th Annual Forum, 2014.

[Choudhury et al., 2016a] Sanjiban Choudhury, Jonathan D. Gam-
mell, Timothy D. Barfoot, Siddhartha Srinivasa, and Sebastian
Scherer. Regionally accelerated batch informed trees (rabit*): A
framework to integrate local information into optimal path plan-
ning. In ICRA, 2016.

[Choudhury et al., 2016b] Shushman Choudhury, Christopher M
Dellin, and Siddhartha S Srinivasa. Pareto-optimal search over
configuration space beliefs for anytime motion planning. In
IROS, 2016.

[Choudhury et al., 2017a] Sanjiban Choudhury, Shervin JAvdani,
Siddhartha Srinivasa, and Sebastian Scherer. Near-optimal edge
evaluation in explicit generalized binomial graphs. In NIPS,
2017.

[Choudhury et al., 2017b] Sanjiban Choudhury, Shervin JAvdani,
Siddhartha Srinivasa, and Sebastian Scherer. Near-optimal edge
evaluation in explicit generalized binomial graphs. Arxiv, 2017.

[Cohen et al., 2015] Benjamin Cohen, Mike Phillips, and Maxim
Likhachev. Planning single-arm manipulations with n-arm
robots. In Eigth Annual Symposium on Combinatorial Search,
2015.

[Dasgupta, 2004] Sanjoy Dasgupta. Analysis of a greedy active
learning strategy. In NIPS, 2004.

[Dellin and Srinivasa, 2016] Christopher M Dellin and Sid-
dhartha S Srinivasa. A unifying formalism for shortest path
problems with expensive edge evaluations via lazy best-first
search over paths with edge selectors. In ICAPS, 2016.

[Dellin et al., 2016] Christopher M Dellin, Kyle Strabala, G Clark
Haynes, David Stager, and Siddhartha S Srinivasa. Guided ma-
nipulation planning at the darpa robotics challenge trials. In Ex-
perimental Robotics, 2016.

[Gammell et al., 2015] Jonathan D. Gammell, Siddhartha S. Srini-
vasa, and Timothy D. Barfoot. Batch Informed Trees: Sampling-
based optimal planning via heuristically guided search of random
geometric graphs. In ICRA, 2015.

[Golovin and Krause, 2011] Daniel Golovin and Andreas Krause.
Adaptive submodularity: Theory and applications in active learn-
ing and stochastic optimization. Journal of Artificial Intelligence
Research, 2011.

[Golovin et al., 2010] Daniel Golovin, Andreas Krause, and Deba-
jyoti Ray. Near-optimal bayesian active learning with noisy ob-
servations. In NIPS, 2010.

[Hauser, 2015] Kris Hauser. Lazy collision checking in
asymptotically-optimal motion planning. In ICRA, 2015.

[Howard, 1966] Ronald A Howard. Information value theory. IEEE
Tran. Systems Science Cybernetics, 1966.

[Hsu et al., 1997] David Hsu, J-C Latombe, and Rajeev Motwani.
Path planning in expansive configuration spaces. In ICRA, 1997.

[Huh and Lee, 2016] Jinwook Huh and Daniel D Lee. Learning
high-dimensional mixture models for fast collision detection in
rapidly-exploring random trees. In ICRA, 2016.

[Javdani et al., 2014] Shervin Javdani, Yuxin Chen, Amin Karbasi,
Andreas Krause, Drew Bagnell, and Siddhartha Srinivasa. Near
optimal bayesian active learning for decision making. In AIS-
TATS, 2014.

[Kavraki et al., 1996] L.E. Kavraki, P. Svestka, J.C. Latombe, and
M.H. Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. Robotics and Automa-
tion, IEEE Transactions on, 12(4):566–580, 1996.

[Kononenko, 2001] Igor Kononenko. Machine learning for medi-
cal diagnosis: History, state of the art and perspective. Artificial
Intelligence in Medicine, 2001.

[Krause and Guestrin, 2009] Andreas Krause and Carlos Guestrin.
Optimal value of information in graphical models. Journal of
Artificial Intelligence Research, 35:557–591, 2009.

[Lacevic et al., 2016] Bakir Lacevic, Dinko Osmankovic, and Ad-
nan Ademovic. Burs of free c-space: a novel structure for path
planning. In ICRA. IEEE, 2016.

[Narayanan and Likhachev, 2017] Venkatraman Narayanan and
Maxim Likhachev. Heuristic search on graphs with existence
priors for expensive-to-evaluate edges. In ICAPS, 2017.

[Nielsen and Kavraki, 2000] Christian L Nielsen and Lydia E
Kavraki. A 2 level fuzzy prm for manipulation planning. In
IROS, 2000.

[Pan et al., 2012] Jia Pan, Sachin Chitta, and Dinesh Manocha.
Faster sample-based motion planning using instance-based learn-
ing. In WAFR. Springer Verlag, 2012.

	Introduction
	Problem Formulation
	Related Work
	Approach
	Overview
	The Decision Region Edge Cutting Algorithm (DiRECt)
	Offline Decision Tree using DiRECt
	Executing BiSECt from the Leaf Node

	Experiments
	Dataset Construction
	Baseline Algorithms
	Summary of Results

	Conclusion

