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Abstract—The ability of a perception system to discern what is
important in a scene and what is not is an invaluable asset, with
multiple applications in object recognition, people detection and
SLAM, among others. In this paper, we aim to analyze all sensory
data available to separate a scene into a few physically meaningful
parts, which we term structure, while discarding background
clutter. In particular, we consider the combination of image and
range data, and base our decision in both appearance and 3D
shape. Our main contribution is the development of a framework
to perform scene segmentation that preserves physical objects
using multi-modal data. We combine image and range data
using a novel mid-level fusion technique based on the concept
of regions that avoids any pixel-level correspondences between
data sources. We associate groups of pixels with 3D points into
multi-modal regions that we term regionlets, and measure the
structure-ness of each regionlet using simple, bottom-up cues
from image and range features. We show that the highest-ranked
regionlets correspond to the most prominent objects in the scene.
We verify the validity of our approach on 105 scenes of household
environments.

I. INTRODUCTION

Recent renewed interest in personal robotics [1]–[3] has
produced key innovations in perception and planning, but has
also revealed the complexity inherent to robots interacting with
human environments. Such environments are dynamic, clut-
tered, and demonstrate an apparent lack of structure compared
to industrial setups. These characteristics force robots to plan
for large amounts of uncertainty, often requiring complete re-
designs of current algorithms [4].

And yet, there is structure in the so-called unstructured en-
vironments, that humans are able to find. Perceptual grouping
plays a powerful role in human visual perception [5]. To our
eyes, homes, offices, parks and streets all show remarkable
amounts of structure, such as walls, objects, trees, or cars.

In this work, our goal is to generate a scene segmentation,
together with a ranking mechanism, such that the highest-
ranking segments correspond to physical entities in the scene.
We call this process structure discovery. We combine range
and image data to compute perceptual cues such as concavities
and discontinuities. These cues are then used to generate scene
segmentations that preserve physical entities.

We believe that perceptual grouping has broad applications
in robotic perception, from object recognition and people
detection, to reliable features for localization and SLAM.

We are motivated by the results of Hoiem et al. [6] on
scene interpretation from a single image. In [6], Hoiem et al.
reason about occlusions as a way to segment a scene while

Fig. 1. Results of our algorithm for structure discovery applied to household
items. (Top-left) Input image (range data is also an input, not shown). (Top-
right) Highest ranked structures according to our algorithm. (Bottom-left)
All structures found by our algorithm. (Bottom-right) 3D point cloud of all
structures found by our algorithm, color-coded from white to red for easier
visibility, being white the best score.There are 4 objects in the scene, 3 of
which are detected as one of the highest ranked structures. The fourth object
is detected correctly as a single entity but not one of the highest ranked due
to being over 50% occluded.

preserving its 3D surfaces. We aim to solve a similar problem,
but using a radically different approach. In single-image scene
interpretation [7], most of the effort is spent in reconstructing
qualitative 3D interpretations of the scene. We claim that, by
adding range data and performing multi-modal sensing, we can
recover more information from more complex scenes, using
much simpler algorithms.

Our main contribution is a structure discovery algorithm
that exploits the availability of multi-modal data. We generate
multiple segmentations [7], [8] of image and range data by
varying the parameters of a standard segmentation algorithm
(in our case, the Felzenszwalb-Huttenlocher graph-based seg-
mentation [9]). While no single segmentation is completely
correct, we hope that some segments in some of the segmen-
tations are correct and contain a whole structured entity. We
define a linkage step to relate segments in an image to the
corresponding range measurements, and vice versa, to create
multi-modal data regions. We term these multi-modal regions
regionlets. We then compute region-wide features for each



regionlet, and aggregate them in a single energy function that
measures the structure of each region. We show how simple
features such as color consistency, continuity, alignment, and
concavity work very well to identify potential structures.

As a key part of our approach, we develop a novel region-
based image and range data fusion based on regionlets. Most
of the literature focuses on low-level fusion with one-to-
one correspondences to merge image and range data, e.g.
[10]–[12]. We claim that by using regionlets instead, we can
supersede low-level sensor fusion with a unified framework for
one-to-one, one-to-many and many-to-many correspondences.
Low-level fusion merges data at either the pixel or at the
3D point level. Pixel level fusion requires computing depth
measurements for every pixel, that is, to generate depth images
[10], [12]. If the range data source is a laser range finder,
these algorithms often require super-resolution techniques [13]
because images usually have higher resolution than their
corresponding point clouds. Fusion at the 3D point level
requires projecting the image out into the 3D point cloud to
obtain colored 3D points, such as in [11]. The advantage of
low-level fusion is that it is then easy to reuse existing image-
based or point cloud-based algorithms to operate in the joint
image-range data.

However, ease of use notwithstanding, individual pixels and
3D points have no meaning in isolation, and their union in
a single colored 3D point does not convey any information
about a scene either. It is when pixels are grouped together (a
minimum of approximately 32 × 32 pixels for human object
recognition [14]) that information can be extracted. We use this
rationale to define regionlets as semantically equivalent regions
in both image and range data. The smallest regionlet possible
is a correspondence between one pixel and one 3D point, thus
being equivalent to low-level sensor fusion and compatible
with the existing literature. By using larger image and range
data regions, we can compute more powerful features for
the different data sources and merge information at a higher
level. An additional advantage is that we can work with the
native resolution of each data source; the data sources may
have different resolutions and even non-linear densities (e.g.
a rotating laser range finder) with no extra overhead. Related
work in the mid-level sensor fusion literature includes feature-
based approaches for a variety of sensors (e.g. [15], [16]) and
region-based approaches for multiple images [17], but to the
best of our knowledge no previous work has been published
in region-based fusion of image and range data.

We apply our Structure Discovery algorithm to discover
objects in indoor environments. The current state of the art
in this area is to use range data, tuned to exploit domain
knowledge of the geometry of the scene [18]. The use of
multiple constraints simplifies the solution, but also limits its
application to finding objects on top of a nearby table. Image-
based object discovery techniques are more focused on larger
objects and natural scenes [19], [20], and are outperformed
by the range-based approach in indoor environments. In the
experiments section, we show that our algorithm performs as
well as the state of the art in finding objects on top of a table,
without any limiting constraints about the scene. Algorithms
optimized for particular scene geometries work poorly when
their assumptions about the scene are violated (e.g. Fig. 1, in

+
+
+

+

+

(a)

STRUCTURE DISCOVERY SCENE SEGMENTATION

IMAGE

(c)

(d)

RANGE

(b)

Fig. 2. Method overview. (a) Input data, image + range data. (b) Initial
segmentations on each data source. Segmentations are projected to second data
source. (c) Regionlets and sub-regionlets are generated from image, range data
segmentations. Structure-ness score is computed from features on regionlets.
(d) Output: structure discovery and scene segmentation.

which the table is not visible enough). The greater generality
of our algorithm is showcased in a second set of experiments,
in which we discover objects in generic indoor scenes that the
current state of the art is unable to process.

II. METHOD OVERVIEW

Given a single image and a single range scan of a scene, our
goal is to automatically discover entities with structure, mainly
in terms of appearance, shape smoothness and continuity. Our
algorithm is summarized in Fig. 2. The result is a scene
segmentation of the different structures that compose a scene,
ranked from most to least structured.

We organize our method in four different steps, which we
describe in detail in the following sections. Fig. 2.(a) shows
an example of the input we receive from our sensors for
a particular scene: an image, and a point cloud or depth
image. Fig. 2.(b) shows example segmentations from each data
source. Each of the segments in each of the segmentations is
considered a hypothesis for a potential structure; our work,



therefore, is to analyze each of the segments and rank them in
terms of their structure-ness, according to the features defined
below.

Once the initial segmentations in each data source are gen-
erated, we need to compute a multi-modal region, a regionlet,
from each segment in each segmentation. Segments from each
data source are associated with data points from the other data
source through a projection scheme. Each resulting regionlet
contains a set of pixels and a set of 3D points, but no individual
pixel to 3D point association is made. In order to rank the
different hypotheses, we develop a hierarchical scheme: each
regionlet is split into sub-regionlets to evaluate both local
(at the sub-regionlet level) and global (at the regionlet level)
consistency, in a multi-resolution grid similar to segmentation
trees [21], [22]. We then calculate each regionlet score by
evaluating image features, range features and mixed features at
each level, and produce a ranking of regionlets based on their
score (Fig. 2.(c)). Finally, we assign each pixel and 3D point
to the highest-ranked regionlet that contains it, thus producing
a segmentation of the scene based on structure-ness, as shown
in Fig. 2.(d). If we wish to retrieve only the most structured
regionlets, we only need to choose the few highest ranked
regionlets.

III. HYPOTHESIS GENERATION

Generating likely hypotheses to evaluate their structure-
ness is a hard problem. Ideally, we would like to try all
possible segmentations from a scene and rank them, keeping
only those with highest score. Unfortunately, such a proce-
dure is infeasible. Following [7], [8], we generate a small
number of segmentations with a well-known segmentation
algorithm [9] as a representative sample of the set of all
possible segmentations. Our assumption is that none of the
segmentations are correct as a whole, but that some segments
in some segmentations will be correct and contain entities with
consistent structure. It is important to note that, since we do not
rely on the full segmentation to be correct, the particular choice
of a segmentation algorithm is not that critical. We choose [9]
because it is fast and produces reasonable results. We perform
this procedure independently for the image and range data.
For the image segmentations, we use the difference between
pixel colors in RGB space as a similarity measure, and
generate multiple segmentations by progressively increasing
the threshold k, typically from k = 50 to k = 500 in
increments of 50. For the range data segmentations, we define
similarity as the Euclidean distance between the eigenvalue-
based features in [23], computed in a neighborhood of up to
20 nearest neighbors. To generate multiple segmentations, we
progressively increase the threshold k from k = 1 to k = 10
in increments of 1.

IV. GENERATING REGIONLETS

One of the main contributions of our work is the mid-level
fusion of image and range data. We use regionlets as our
elementary processing units, which we create from image and
range segments. Each regionlet

Ri = {Ii,pi,Pi,A(Ri)} (1)

is defined by a set of N image pixels Ii and their corre-
sponding pixel positions pi, a set of M 3D points Pi, and a
set of adjacencies A(Ri). Hierarchies of regionlets are denoted
by R(k)

i for regionlet Ri in the k-th level of the hierarchy. In
this case, the adjacencies of a regionlet R(k) can be parents,
neighbors and children of R(k) depending on whether they are
from level k−1, k or k+1 in the hierarchy, respectively. In this
work, we use a two-layer hierarchical scheme. For simplicity,
we refer to the top-level regionlets R(0) as simply regionlets
R, and the bottom-level regionlets R(1) as sub-regionlets r.

A. Associating 3D to image segments
Given an image segmentation, we must compute the 3D

range measurements associated with each segment in the
image. Assuming that camera and 3D sensor are calibrated,
the 3D data are projected into the image and associated with
the image segments into which they are projected.

B. Associating image pixels to 3D segments
To generate a regionlet given 3D segments, we must as-

sociate a set of pixels in the image with each 3D segment.
We compute which image pixels correspond to a range data
segment via Z-buffering [24]. We sort all range measurements
according to their depth with respect to the camera. Starting
with the points that are furthest away, each 3D point Pj paints
a circle of pixels around its image projection p̂j with the
regionlet ID that corresponds to Pj . 3D points closer to the
camera paint over 3D points further away. As a result, we
obtain a set of image pixels associated with a range data
segment. In order to account for differences in range data
density, we adapt the radii of the circles painted according
to the density of each region.

C. Generating sub-regionlets
In order to calculate a score for each regionlet and keep

computations tractable, we separate each top-level regionlet
into sub-regionlets, akin to the use of super-pixels from an
image over-segmentation as elementary units of processing. In
our work, we consider three choices to generate sub-regionlets:
super-pixels (over-segmentation in image space), super-points
(over-segmentation in 3D space), and fixed shape and size
sub-regionlets. One important drawback of both super-pixels
and super-points is that their shapes are often elongated and
contain many twists and turns. This effect often results in very
narrow sub-regionlets, with a width of only a few data points.
Computing any kind of 3D features (e.g. surface normals)
is unreliable in such data, so we choose instead the safer
approach of sub-regionlets of non-overlapping shapes that
maximize the visible surface area, in order to compute both
2D and 3D features reliably. In particular, we use squares of
side 1/12 of the vertical resolution of the image (e.g. 40× 40
pixels in a 640× 480 pixels image).

To generate sub-regionlets rij , we first compute a bounding
box around a given regionlet Ri in the image domain. We
then separate the bounding box in squares and compute the
range measurements associated with them using the method
described in Section IV-B. Sub-regionlets with less than a cer-
tain number of pixels and range measurements are considered
insufficient and discarded.



TABLE I
UNARY AND PAIRWISE TERMS, AND APPLICATION TO REGIONLETS AND

SUB-REGIONLETS.

Unary Pairwise Regionlet Sub-regionlet

Appearance Model X 7 X 7
Shape Model X 7 X 7

Self-Continuity X 7 X X
Contour Compactness X 7 X X

Pair-Continuity 7 X 7 X
Verticality X 7 X X
Concavity 7 X 7 X
Projection 7 X 7 X
Alignment 7 X 7 X

Color histogram 7 X 7 X
Surface compatibility 7 X 7 X

V. STRUCTURE DISCOVERY AS REGIONLET SCORING

Once the multiple segmentations are computed and region-
lets generated, we assume we have populated our hypothesis
space with all potential objects we want to discover. We need
now to score all regionlets in terms of their structure-ness
and rank them from best to worst. In this section, we develop
a framework to evaluate the structure-ness of regionlets, and
define the different features we use in each data modality.

We evaluate regionlets at both the global level, i.e. con-
sidering each region as a whole, and at the local level via
sub-regionlets. Therefore, the energy function we define is
comprised of unary terms at both the local and global level,
and of pairwise terms at the local level.

Each regionlet Ri is composed of sub-regionlets rij . The
set r of all sub-regionlets within a regionlet R is expressed
as the children C of R, i.e., r = C(R). Each sub-regionlet
rij is characterized by a set of RGB values Iij , a set of 3D
points Pij and a set of neighbors N(rij). In particular, each
sub-regionlet rij is 4-connected to the adjacent sub-regionlets.

The final structure-ness score St(·) for regionlet R is

St(R; Θ) = φ(R; Θ)
∏

r∈C(R)

St(r; Θ), (2)

where
St(r; Θ) = φ(r; Θ)

∏
rj∈N(r)

Φ(r, ri; Θ). (3)

The structure of this energy function is similar to a MRF
[25], although for the task of region scoring we do not need
to perform any inference on this function. It is important
to mention that, for stability purposes, the log-linear version
log(St(·)) is preferred over the score St(·).

The features we explain in this section are inspired from
previous work from [6], [23], [26]–[28]. It is important to
mention that, while the features we present work well in
practice, they are just an example for the implementation of
our structure discovery framework. Any other image-based,
3D-based, or mixed feature f to be computed in a group of
data points such that f(Ri) ∈ [0, 1] is a potential feature to
be used in our framework.

A. Unary terms

The unary terms of regionlets φ(R) and sub-regionlets
φ(r) are computed as the interaction between the different

features described in Table I. For a given set of features f and
parameters Θ, the unary term

φ(·; Θ) =
1∑
i wi

∑
fi∈f

wifi(·; Θ), (4)

where the weights wi account for the different importance
of individual features when searching for particular types of
structure. In order to be able to compare the different terms,
we normalize all features (unless otherwise noted) to have a
range [0, 1], where 0 is the worst and 1 the best score a feature
can achieve.

1) Appearance model: An appearance model is used to
search for structure with particular visual properties. The
appearance model App(·) can be any image-based likelihood
function that returns the confidence value in the range [0, 1] of
an image segment given model parameters Θ. For an extensive
discussion and more details on appearance models for color
and grayscale segmentation, see [28]. Examples of useful
appearance models are:
• Single color distribution, to model non-textured, smooth

regions.
• Mixture of gaussians, useful to model textured color

regions.
• Global color or intensity histograms.
2) 3D shape model: A 3D shape model is defined equiva-

lently to the image-based appearance model in Section V-A1.
The shape model Sh(·) specifies which types of structures are
desired. Useful shape priors include:
• Planar shape. A planar approximation P̂ of a set of

3D points P can be easily computed via PCA analysis
or RANSAC. Then Sh(R; Θ) ∈ [0, 1] is a confidence
measure of how planar R is.

• Size. It is not uncommon for structures within the same
scene to have vastly different scales, and we can specify
surface or volume constraints on structures to prioritize
which ones should be preferred.

• Scale. An alternative to a fixed size constraint is to define
a size dependent on distance. This way, we can discover
small structures near the camera, and larger structures
further away from the camera.

3) Self-continuity: The self-continuity feature measures
abrupt changes in depth within a regionlet or sub-regionlet,
which are often representative of discontinuities and bound-
aries between objects. Finding discontinuities in unstructured
point clouds is a hard problem and multiple algorithms have
been developed for this purpose [29]. In our framework, we
simplify this problem by accounting for the implicit ordering
given by the image data. We construct a grid of control points
in the image domain, and these control points are associated
with the 3D points in the regionlet with minimal reprojection
error.

In a sub-regionlet, the control points are equally spaced
to form a grid of 64 control points. In a regionlet Ri, the
control points are the centers of each sub-regionlet rij , and
their connectivity maps that of the sub-regionlets. Once the
Euclidean distances dk between connected 3D control points
have been computed, we define the continuity score Cont(·; Θ)
as



Cont(·; Θ) = exp
(
− 1
w2

cont

1
|P̄ |

max
k

dk

)
, (5)

where |P̄ | is the average distance from regionlet R to
the camera, which is necessary in order to reliably compare
regionlet scores from different depths.

4) Verticality: Structures facing the camera and range sen-
sor, i.e., parallel to the image plane, are more desirable than
structures almost perpendicular to the image plane, as it is
less reliable to estimate shape and appearance parameters on
structures under heavy projective distortion. In addition, it is
more complicated to use discovered structures under heavy
projective distortion in further tasks, such as object modeling
or object recognition. Therefore, we implement verticality as
a feature in our regionlet-scoring framework.

We compute the verticality score as a ratio between the
area projected in the image and the maximum area spanned
by the set of 3D points P of regionlet R. We approximate
the computation of the area of a regionlet by the area of its
bounding box along the directions of maximum variation.

5) Contour compactness: Object boundaries in the real
world are usually smooth and contain few jagged edges.
This fact has been used in the image segmentation and
sensor fusion literature to produce smoother segmentations of
objects (e.g. [26]). We use the same definition as [26] for
a Contour Compactness CC(·) feature to encourage smooth
edges. In particular, we measure the ratio of regionlet area
to perimeter length, both in the image domain, normalized so
that CC(·) ∈ [0, 1].

B. Pairwise terms

Pairwise terms Φ(·, ·) measure the interactions between
neighboring sub-regionlets, in order to compute the likelihood
that two sub-regionlets belong to the same structure.

For a given set of features f and parameters Θ, the pairwise
term

Φ(rj , rk; Θ) =
1∑
i wi

∑
fi∈f

wifi(rj , rk; Θ), (6)

where the weights wi account for the different importance
of individual features when searching for particular types of
structure. As with the Unary terms, we normalize all features
(unless otherwise noted) to Φ(rj , rk; Θ) ∈ [0, 1].

1) Pairwise continuity: The pairwise continuity feature
measures abrupt changes in depth and discontinuities between
two sub-regionlets. We follow a similar approach to Sec-
tion V-A3, and reuse the same set of control points Pc

i ∈ ri
and Pc

j ∈ rj . We compute the pairwise continuity score as the
average between the M minimal distances between Pc

i and
Pc

j , normalized as in Eq. 5.
2) Concavity: Studies in human perception have shown that

concavities are one of the major cues in the human visual
system to segment a scene into parts [30], and have been used
successfully in 3D segmentation and mesh decomposition [27].
In our work, we compute the concavity between two sub-
regionlets as the difference in orientation αij between their
surface normals pointing towards the camera.

TABLE II
OBJECT DISCOVERY AND NUMBER OF OBJECTS PER SCENE.

Single Single, Non-transp. Multiple Total

Structure Discovery 52.7% 76% 61.2% 59.9%
Rusu et al [18] 38.8% 56% 66.8% 62.5%

Given the importance of concavities in 3D segmentation,
we can enforce a strong penalty on concave unions and reward
convex unions by using

Cv(ri, rj) = sinαij . (7)

In this case, Cv(·, ·) ∈ [−1, 1].
3) Projection: The Projection feature captures information

about the smoothness of a surface, by computing the projection
error of a planar approximation of a sub-regionlet onto its
neighbor. This way, surfaces with small variation score high,
since both sub-regionlets have similar global properties, while
different shapes and orientations achieve a low score. Let P̂j

i
be the projection of the 3D points Pi ∈ ri onto rj . The
projection score Proj(·, ·; Θ) is then

Proj(ri, rj ; Θ) = exp

(
− 1
wproj

1
N

N∑
k=1

‖Ek‖2

)
(8)

E = min(Pi − P̂j
i ,Pj − P̂i

j) (9)

4) Alignment: The Alignment feature grades the depth
alignment of parallel surfaces. Despite this fact being partially
captured by the pairwise continuity feature, we enforce the
alignment of surfaces with a more robust feature that operates
on average range measurements from regionlets, and not
individual distances between points. For this task we re-use
the Projection score from Section V-B3, but we measure
the projection error of the vector difference of means, i.e.,
E = µi − µj , where µi, µj are the average of the sets of 3D
points Pi ∈ ri,Pj ∈ rj .

5) Color histogram: This image-only feature captures the
similarity in terms of appearance between sub-regionlets.
Following [6], we compute the distance between the color
histogram (in 8× 8× 8 bins) of each individual sub-regionlet
compared to the histogram union of the two sub-regionlets,
normalized so that ColorHist(ri, rj ; Θ) ∈ [0, 1].

6) Surface compatibility: The surface compatibility feature
is based on the 3D features described in [23] of linear-ness l,
planar-ness p and scatter-ness s, computed from the relative
weights of the eigenvalues of the range data. We hypothesize
that physical objects do not have abrupt changes in their
surface properties. In other words, we assume that two planar
surfaces are more likely to be parts of the same physical entity
than a planar and a spherical surface, or that two curvy surfaces
are more likely to be the same entity than a curvy surface and a
plane. A simple way of encode this information is to compute
the Euclidean distance between the two vectors Vi = [li, pi, si]
and Vj = [lj , pj , sj ] from ri and rj .

VI. EXPERIMENTS

Our goal in the experiments section is to compare our
algorithm to the state of the art in object discovery in indoor
scenes. We want to show that our algorithm performs as



Fig. 3. Examples of our structure discovery algorithm applied to household objects, in the Objects Pan-tilt Database. (Top row) Input images. (Bottom row)
Top 10% ranked regionlets for each scene, color-coded from white to black, being white the highest ranked regionlet.

well as a specialized algorithm carefully optimized for the
particular scene geometry of objects on top of a table. We
also want to show that that our algorithm generalizes better to
generic indoor scenes, because we do not enforce any limiting
constraints on the scene geometry. To that end, the first set of
experiments focuses on the discovery of common household
objects on top of a table, while the second one focuses on
the discovery of larger structures such as people, tables or
walls. Each dataset has been gathered with a different source
of depth information (Projected Textured Stereo [31], and an
RGBD camera) to test the performance of our algorithm with
different data sources.

A. Our implementation

In our implementation of the Structure Discovery algorithm,
we use the following constants:

• Appearance/shape model: we use a simple maximality
prior instead of a full appearance/shape model, in which
we encourage the creation of large regionlets. In partic-
ular, we use App(R; Θ) = log(|I|), where |I| is the total
number of pixels of regionlet R. We use a logarithm to
avoid this feature from overpowering all others.

• Normalization weights: all weights used for normaliza-
tion purposes, i.e. inside the exponentials, are set accord-
ing to the uncertainty/noise characteristics of each sensor.
For the stereo data, these are set so an average error of
1.5 cm at 1 m outputs a feature score of 0.5. The RGBD
camera has an average uncertainty of 3%, so we set the
weights so that an average error of 3% outputs a feature
score of 0.5. This normalization scheme is described in
more detail in [4].

• Feature weights: we do not commit to any feature being
more powerful than others, so all weights are set to 1.

All our parameters are kept constant throughout our exper-
iments to demonstrate the generality of our algorithm in
discovering structure.

B. Baseline algorithm
The baseline algorithm we compare against is the 3D object

segmentation algorithm from Radu Rusu’s Point Cloud Library
[18] (Willow Garage). This algorithm exploits domain knowl-
edge of the geometry of common household environments;
it is specialized in finding objects on planar surfaces, by
first performing a plane-fitting procedure and then clustering
groups of 3D points that lie on top of the plane. It is a simple
method that performs remarkably well as long as the plane-
fitting procedure is able to find valid planes, and it has been
showcased on multiple occasions in most demonstrations of
the PR2 Personal Robot.

C. Results
In this first experiment, we use a subset of 90 scenes

extracted from Willow Garage’s ”Objects Pan-tilt Database”
[32] (some examples shown in Fig. 3). This dataset contains
different sets of household objects attached to a pan-tilt unit
that is moved around, so that multiple views of the objects
are available. Images from this dataset are grayscale, with a
resolution of 640×480 pixels. The depth information is com-
puted using Projected Textured Stereo [31], a technique that
extracts dense depth maps from images through the projection
of a structured texture on the scene. The objects used in our
evaluation have different shapes and appearances, and include
a Gillette Shaving Cream, a Kleenex Cube, Mop’n’Glow floor
cleaner, a soda can and a milk carton, among others. Some
scenes contain multiple objects (up to 5) in different levels of
occlusion and some contain single objects, for a total of 223
object instances in 90 scenes. Some examples of scenes and
our segmentations are shown in Fig. 3.

In our evaluation, we ground truth each scene with a bound-
ing box around each object, and use the PASCAL criteria [33]
bounding box evaluation to identify which objects are correctly
discovered.

Our results are shown in Table II. Both our algorithm
(Structure Discovery, in Table II) and the baseline from Rusu
et al [18] perform similarly well, despite using vastly different
approaches. It is interesting to note that our algorithm tends to



Fig. 4. Examples of our structure discovery algorithm applied to household scenes, in the Household Dataset. (Top row) Input images. (Bottom row) Top
10% ranked regionlets for each scene.

discover objects more reliably in scenes with little clutter. The
explanation for this tendency is that our algorithm is designed
to detect prominent structures in the scene, which is very often
correlated to the size of the structures in the image. In some
of the highly cluttered scenes, the objects seldom span more
than a single sub-regionlet, and contain little 3D information.
Under these circumstances, the algorithm from Rusu et al is
a more convenient choice.

For the single object experiments, we split our results be-
tween “Single” and “Single, non-transparent” because neither
algorithm is able to discover a transparent wine glass in the
dataset, mainly because of a lack of consistent range data in its
surface, as the Projected Texture Stereo algorithm fails to re-
cover stereo data from it. In the single object experiments, our
algorithm outperforms the baseline by 20%. This difference,
however, is a bit misleading, since both algorithms perform
equally well on all objects but one (the Mop’n’Glow bottle). In
a general setting, we believe that these two algorithms perform
very similarly, as long as there is a planar surface for the
baseline algorithm to detect.

The second experiment we conduct is the discovery of larger
entities in indoor environments, such as walls, furniture and
people. In order to do so, we gathered a dataset of 15 indoor
scenes, which we call the Household Dataset. The image/range
sensor is an RGBD camera that outputs 640× 480 resolution
images with associated depth for every pixel. We downsample
the range data to one third of the original resolution to verify
that we do not require a pixel-level fusion of data sources. We
have annotated and produced bounding boxes for four types
of structure: wall, person, furniture, and “other”. The label
“other” is for other prominent objects in the scene, such as a
backpack, a painting, a cardboard box or a suitcase.

For this experiment we are unfortunately unable to provide
any results from the baseline system, as it is optimized for a
much shorter range than these scenes, and does not return any
detections in these scenarios.

Results from this dataset are shown on Table III, and
example scenes and their highest ranked regionlets are shown
in Fig. 4. Analyzing the results, we see that large, simple

TABLE III
STRUCTURE DISCOVERY ON INDOORS SCENES. RESULTS FROM RUSU et

al. SHOW NO DETECTIONS AND ARE OMITTED FROM THE TABLE.

Walls Person Person (torso) Furniture Other

Total Present 12 14 14 11 13
Found (%) 100% 35.7% 78.5% 63.6% 61.5%

structures such as walls are discovered very reliably, while
more complex entities such as people are often missed, in
particular their legs. If we focus on the upper body of a person,
we find a twofold increase in performance, as a person’s upper
body is often larger and has less variability.

VII. DISCUSSION

We have presented and validated an algorithm to perform
structure discovery from multi-modal data using a novel
region-based approach. We have demonstrated that our al-
gorithm is able to discover common household objects with
similar accuracy than specialized 3D object segmentation
algorithms, without the need to rely on any rigid assumptions
about the scene structure, such as the presence of a visible
planar surface in which objects are placed.

Interestingly, the results from both algorithms are almost
complementary in the kind of scenes they perform best. Our
algorithm discovers objects best when the objects’ largest faces
are parallel to the image plane, as the image and range sensors
capture more information about them. On the other hand, [18]
performs best when the table is the most prominent part of the
scene, e.g. seen from a high viewpoint. An interesting follow-
up work to this algorithm would be a higher-level reasoning
about the interpretation of a scene; in the case of an overhead
picture, the detection of a planar surface could lead to a closer
inspection of entities on top of it.

A close analysis on the limitations of our algorithm shows
some important conclusions and areas of improvement. We
have found that a bad performance of our algorithm is often
tied to the bad performance of the initial segmentations. On
multiple occasions where an entity is missed, the reason is
that none of the initial segmentations was able to capture that



entity in its entirety in a single segment. When this happens,
our assumptions do not hold and thus our algorithm cannot
generate the expected results. In addition, while we discover
structures such as walls with high accuracy, our structure
model is sometimes not flexible enough to handle the large
variations of more complex structures such as people or some
furniture, as they are seldom segmented in their entirety. A
possible solution to this issue would be the addition of a third
regionlet layer on top of regionlets and sub-regionlets, and
compute these as a combination of multiple regionlets via e.g.
split and merge techniques [28].

We are confident that the introduction of regionlets as the
minimal processing units is an important step in image-range
data sensor fusion. Regionlets supersede and integrate low- and
mid-level fusion in one framework, extracting the advantages
from both approaches. Regionlets are compatible with existing
algorithms that require one-to-one correspondences, while
adding an extra layer of abstraction that may lead to more
sophisticated perception tasks using mixed image and range
data.

We believe that this structure discovery algorithm opens
many interesting possibilities for future work. A higher level
scene interpretation that reasons about the relationships be-
tween discovered structures could lead to massive improve-
ments in the quality and reliability of the objects we discover,
and enable the unsupervised learning of object models for
object/category recognition. A related and also interesting
direction to follow is the reutilization of our algorithm as a
category recognition algorithm from multi-modal data. The
exploration of different shape and appearance models, coupled
with a per-class feature selection scheme may lead to reliable
category recognition for robotics.
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