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Abstract

Our long-term goal is to develop a general solution to the lifelong robotic object discovery (LROD) problem: to discover

new objects in the environment while the robot operates, for as long as the robot operates. In this paper, we consider the

first step towards LROD: we automatically process the raw data stream of an entire workday of a robotic agent to dis-

cover objects. Our key contribution to achieve this goal is to incorporate domain knowledge (robotic metadata) in the dis-

covery process, in addition to visual data. We propose a general graph-based formulation for LROD in which generic

domain knowledge is encoded as constraints. To make long-term object discovery feasible, we encode into our formula-

tion the natural constraints and non-visual sensory information in service robotics. A key advantage of our generic formu-

lation is that we can add, modify, or remove sources of domain knowledge dynamically, as they become available or as

conditions change. In our experiments, we show that by adding domain knowledge we discover 2.7 3 more objects and

decrease processing time 190 times. With our optimized implementation, HerbDisc, we show for the first time a system

that processes a video stream of 6 h 20 min of continuous exploration in cluttered human environments (and over half a

million images) in 18 min 34 s, to discover 206 new objects with their 3D models.
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1. Introduction

An important goal in the field of service robotics is to

achieve lifelong autonomy, interacting with non-expert

users and operating in regular households. In this scenario,

a robot should learn about the objects in the household to

manipulate them; and learn constantly, as things change

often. Large databases of precomputed objects are useful

for common objects, but discovering new objects in the

environment is critical for true lifelong autonomy in service

robotics. Our long-term goal is to develop a general solu-

tion to the problem of discovering new objects in the envi-

ronment while the robot operates, for as long as the robot

operates. We term this problem as the lifelong robotic

object discovery (LROD) problem. A specialization of the

Unsupervised Object Discovery problem (e.g. Russell

et al., 2006; Kang et al., 2011), LROD focuses on massive

datasets of dynamic human environments gathered by a

robotic agent.

As a first step towards LROD, we automatically process

the raw video stream of an entire workday of a robotic

agent. Considering the autonomy and charging times of

current service robots (e.g. Srinivasa et al., 2010), a robotic

workday amounts to approximately 6–8 hours of raw sen-

sor data (e.g. RGBD video feed) and over half a million

data samples (e.g. RGBD images). We show for the first

time a system that processes, in under 19 minutes, hun-

dreds of thousands of samples and over 6 h of continuous

exploration, to discover hundreds of new objects in clut-

tered human environments.

The goal of unsupervised object discovery is to jointly

segment and learn the appearance of unknown objects in

the environment. Unsupervised object discovery is a very

challenging problem, partially because it is ill-defined:

there is no clear definition of object. Most research in this

area models objects as recurring patterns in the data, thus

attempting to jointly segment and learn the appearance of
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objects by searching for such patterns. Generic techniques

for unsupervised object discovery do not scale well to the

volume and complexity of the LROD input data stream. In

massive datasets of millions of samples, with cluttered

scenes containing many small and similar-looking objects,

recurring visual patterns appear everywhere. In addition,

the computational cost of finding recurring patterns sky-

rockets as the amount of data to process grows.

Consider the example in Figure 1, in which a robotic

agent navigates through an office environment recording an

RGBD video stream (Figure 1(a)). Unsupervised object dis-

covery techniques (e.g. Kang et al., 2011) create a pool of

Fig. 1. Example of object discovery with metadata. (Top) Robotic agent navigates through office environment storing an RGBD

video stream and localization information. (a) Spatial/temporal constraints separate the video stream in subsets red, green and blue. (b)

Images in the sequence are segmented to generate object candidates. (c) Object Discovery with Metadata: the different sequence

subsets are processed independently for efficiency, using robot localization, object size/shape constraints and external knowledge to

find (d) individual object instances. (e) Global object discovery performed on discovered object instances (d) to obtain a single

representation for each object.
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object candidates (e.g. the RGBD regions in Figure 1(b)),

which are represented as nodes in a pairwise graph (Figure

1(c)). The graph edges are computed by comparing the

visual similarity between every pair of object candidates.

Then, clustering techniques are used to group similar object

candidates, i.e. recurring patterns, (Figure 1(d) and (e)).

Building the pairwise graph requires O(n2) similarity com-

parisons; as the length of the video stream grows, this cost

becomes prohibitively expensive. Most of the computation

time is spent comparing candidates with very low likelihood

of being grouped together (e.g. the candidates in the corridor

in Figure 1(b)(left) and the kitchen in Figure 1(b)(right)). If

we analyze the input data stream based on the visual infor-

mation alone, we are forced to evaluate every pair of object

candidates. However, we know intuitively that objects in the

kitchen and objects in the corridor have little in common.

We also know that two data samples acquired in the same

location within a few seconds of each other are more likely

to contain the same objects than data samples acquired in

different years. We can use this external information, this

metadata, to drastically reduce the computation time and

improve the quality of the discovered objects.

Our key insight to making LROD feasible is to incorpo-

rate robotic metadata. The data gathered by a service robot

is not just an unordered collection of anonymous images.

First, range data is also available. In addition, we may also

know where and/or when the images are captured, as well

as their ordering; we may know where interesting objects

usually appear for a particular environment, such as in

tables or cabinets; we may have additional sensing (e.g.

robot localization, odometry) for some or all of the images;

or we may only be interested in objects of certain sizes or

shapes relevant to the robot. In our work, we define robotic

metadata as any source of additional information about the

visual/range data. Our definition of robotic metadata

includes any additional robotic sensing, assumptions, or

prior information about the objects, environment, the

robot’s sensors, or task; in short, any non-visual data that

can provide information about the object candidates.

Consider the example in Figure 1, now using metadata. A

robotic agent navigates through an office environment

recording an RGBD video stream, using the robot’s loca-

tion and data acquisition timestamps to separate the data

stream (the red–blue–green subsets in Figure 1(a)). The

object candidates for each subset (Figure 1(b)) are com-

pared only within the same subset. The pairwise graphs in

Figure 1(c) encode the visual similarity between candi-

dates, as well as other cues such as if candidates overlap in

space, or object priors based on the robot’s grasping cap-

abilities. In the clustering step (Figure 1(d)), we group

object candidates with similar visual information and meta-

data. The metadata-augmented similarity graphs encode

local information to discover individual object instances,

and we may discover multiple instances of the same objects

in different data subsets. We perform a global clustering

step (Figure 1(e)) to join the multiple object instances as

single object models.

The main theoretical contribution of this work is a gen-

eral framework for object discovery that leverages any form

of metadata, and in particular the natural constraints that

arise in service robotics scenarios. Multiple works in the

robotics literature use specific types of metadata (see

Section 3 for references), often by imposing restrictions on

the environment, data acquisition, or agent motion, to

improve performance at the cost of limited applicability

when the assumptions are violated. Specific solutions could

be implemented to use particular sources of metadata, but

the solutions would lack adaptability, degrading with any

environment changes during the lifetime of the robotic

agent. For LROD, we need instead a general architecture to

opportunistically leverage and adapt to the available meta-

data, and incorporate new metadata as it becomes available.

In our formulation, we do not distinguish between visual

similarity and robotic metadata. We encode all similarities

and metadata as an intermediate representation that we term

a constraint. The definition of a constraint is very simple: a

measurable yes/no question about an object candidate or a

relationship between candidates, with some p, a probability

of success, about the answer. For example, an appearance

similarity function s(�,�) is encoded as the constraint ‘‘are

candidates hi and hj similar in appearance?’’. The answer

would be yes/no, with probability p = s(hi,hj). Metadata

can be similarly encoded as constraints, as we describe in

detail in Sections 5 and 7.

With this intermediate representation of constraints, we

can seamlessly combine multiple similarities and other

metadata sources. We define a set of logic operations over

constraints to form complex constraint expressions that

encode all of our knowledge relevant to discover objects.

We formulate the general LROD problem as a distributed

partitioning of graphs built over constraints, which we term

constrained similarity graphs (CSGs). Our distributed graph

partitioning formulation is shown in Figure 1(d) and (e),

and the CSGs are illustrated in Figure 1(c).

These CSGs, when coupled with service robotics con-

straints, are by construction much sparser than regular

visual similarity graphs, and produce many connected com-

ponents. With service robotics constraints, this graph spar-

sity effectively reduces the number of visual similarities to

compute (the most expensive operations) from O(n2) (with

respect to the number of images n) to O(n), as well as

greatly improving the performance of the graph partitioning

algorithm. In addition, our constraints-based formulation is

general, in the sense that it covers both generic unsuper-

vised object discovery algorithms (e.g. Russell et al., 2006;

Kang et al., 2011) and purpose-specific algorithms (e.g.

Morwald et al., 2010).

Our main applied contribution is HerbDisc, an opti-

mized implementation of this framework in the robotic sys-

tem HERB (Srinivasa et al., 2010). Our framework

seamlessly integrates visual and 3D shape similarity with

spatial and temporal constraints, size/shape object priors,

and motion information in a flexible and extensible way.

We drove our service robot to over 200 offices from 4
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floors of a university building, recording 6 h 20 min of

continuous RGBD video of real human environments,

totaling over half a million images. HerbDisc processed

this dataset in 18 min 34 s using a single quad-core

machine and discovered 206 novel objects (44.5% preci-

sion, 28.6% recall), showcasing both the efficiency of this

framework and the robustness of its results.

Preliminary versions of this work have been published at

Collet (2012); Collet et al. (2013).

2. Problem formulation

Consider the example of robotic object discovery shown in

Figure 2. We identify five major components. The World O
represents the underlying physical phenomenon (i.e. the

environment) where we discover objects. A physical agent

A (e.g. a robot) gathers data through observation or inter-

action with the world O. The physical agent uses sensors S
(e.g. a camera) to gather data samples I (e.g. images). A

candidate generator H produces object candidates h from

data samples. Finally, the discoverer D groups recurring

object candidates into objects.

In this paper, we describe a general architecture for an

object discoverer D that uses metadata from the world O,

the physical agent A and the sensors S, alongside visual

information from the object candidates h, to discover

objects robustly and efficiently.

2.1. Inputs and outputs

The visual input to HerbDisc is a set I of N images with

associated range data:

I= fI1, . . . , In, . . . , INg, In = fI rgbn , IPn g ð1Þ

where I rgbn is the set of color RGB values in image n, and

IPn is the set of 3D points available from the viewpoint of

image n.

A candidate generator H generates a set of data frag-

ments h from image and range data in I, which we con-

sider the object candidates. Each object candidate

hi = fhrgb
i , hP

i , hF
i g ð2Þ

is characterized by a set of color pixels h
rgb
i , a set of 3D

points hPi , and a set of metadata attributes hF
i .

The output of this framework is a set of metric 3D mod-

els of objects M. Each object model

Mk = fM rgb
k ,MP

k ,Mh
k g ð3Þ

is characterized by the set of object candidates

Mh
k = fh1, k , . . . , hi, k , . . .g used to create object Mk, and

by the set of colored 3D points M
rgb
k , MP

k that comprise its

3D model.

2.2. Constraints

Constraints encode generic information about an object

candidate hi or a relationship between candidates hi, hj. In

our formulation, we define these constraints as node con-

straints Yn and edge constraints Ye, respectively. We

model each constraint Y as a Bernoulli distribution with

probability of success p (and, conversely, a probability of

failure q = 1 2 p). Node constraints Yn encode informa-

tion about a single object candidate hi,

Fig. 2. Main components in robotic object discovery. (Left) The robot HERB moves through a kitchen searching for novel objects.

(Center) The three physical components of robotics object discovery are: the world O, the robotic agent A, and the sensors S. (Right)

The sensors capture data samples x to be processed by a candidate generator H to produce object candidates. The discoverer D groups

recurring object candidates into objects, using candidate data and metadata sources FO (e.g. assumption ‘‘objects lie on tables’’), FA
(e.g. robot localization data), FS (e.g. image ordering and timestamps).
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Yn : hi 7!f0, 1g ð4Þ

P(Yn(hi)= 1jhi)= p ð5Þ

Analogously, edge constraints Ye encode information about

the relationship between a pair of object candidates hi, hj,

such that

Ye : hi, hj 7!f0, 1g ð6Þ

P(Ye(hi, hj)= 1jhi, hj)= p ð7Þ

We provide a list with all of the constraints used in this

paper in Table 1.

In the interest of brevity, we use the shorthand notation

PYn (h)[ P(Yn(h)= 1jh) and PYe (hi, hj) [P(Ye(hi, hj) ¼
1jhi, hj) in the remainder of this paper.

3. Related work

The aim of unsupervised object discovery (Weber et al.,

2000; Russell et al., 2006) is to jointly segment and learn

the appearance of unknown objects in the environment.

Unsupervised object discovery is very challenging, in part

because the definition of object is subjective, as it depends

on the observer. Furthermore, different works use different

input sources (e.g. unorganized collections of images

(Weber et al., 2000; Kang et al., 2011), image sequences

(Morwald et al., 2010), images with disparity (Somanath

et al., 2009), laser data (Ruhnke et al., 2009)) to produce

different data outputs (e.g. clusters of images (Weber et al.,

2000), clusters of bounding boxes (Lee and Grauman,

2011), clusters of image segments (Russell et al., 2006;

Kang et al., 2011), 3D models (Somanath et al., 2009)),

and using different assumptions (e.g. one object per image

(Weber et al., 2000), only tabletop scenes (Kootstra and

Kragic, 2011), multiple views of the same scene (Herbst

et al., 2011)) depending on the application. Comparing the

performance between methods is very challenging due to

this disparity in inputs, definition of objects, assumptions,

and outputs.

Methods in unsupervised object discovery that assume

an unorganized collection of images as input are very com-

mon in computer vision research (e.g. Weber et al., 2000;

Sivic et al., 2005; Russell et al., 2006; Philbin et al., 2010;

Kang et al., 2011; Lee and Grauman, 2011; Kang et al.,

2012, and the general survey of Tuytelaars et al. (2009)).

Using an unorganized collection of images as input implies,

in terms of Figure 2, that we assume no knowledge about

the world, the physical agent, or the sensing. Some of these

methods, such as Weber et al. (2000); Tuytelaars et al.

(2009), focus only on grouping entire images in categories

(i.e. assuming that each image mostly contains a single,

large object), which is equivalent to not using a candidate

generatorH.

The key difference between unsupervised object discov-

ery and LROD is the amount and variety of information

sources. Most methods in unsupervised object discovery

assume that no information is available about the world O,

the physical agent A, or the sensors S. As datasets grow

larger, visual information becomes less discriminative and

recurring visual patterns appear everywhere. In addition,

algorithms often require pairwise operations over all pairs

of candidates, which makes them computationally expen-

sive. In LROD, metadata (i.e. non-visual information from

O, A, and S) is not only available, but necessary; we need

Table 1. Constraints used in HerbDisc. For each constraint Yi, we provide: the type of information encoded in Yi; whether Yi is

applied on a single object candidate (node) or a relation between a pair of candidates (edge); the information source(s) encoded in Yi;

uses any metadata or not; a short description of the meaning of Yi; and the section in which Yi is described in detail. The possible

sources of information are: FO (metadata about the environment), FA (metadata about the robot), FS (metadata about the sensors), or

V (visual information).

Constraint Type Information Source Description Section

Ymotion Node Relative camera motion FA Acquire data samples only if there is
motion (no repeated frames)

Section 7.2

Yseq Edge ‘‘Data comes in sequences’’ FS Split data stream in short sequences
based on camera motion and maximum
sequence length

Section 7.2

Ysupport Node ‘‘Objects have surfaces of support’’ FO Reject candidates not supported by
horizontal or vertical planes (tables or
walls)

Section 7.1

Ystatic Edge ‘‘Scene is static for a few seconds’’ FO Measure 3D overlap between
candidates

Section 7.3

Ysize Node Object size FO Compare candidate’s size with object
prior

Section 7.4

Yshape Node Object shape FO Compare candidate’s shape with object
prior

Section 7.4

Yapp Edge Visual similarity V Compare visual similarity between
candidates using color histograms

Section 7.5

Y3D Edge Shape similarity V Compare shape similarity between
candidates using FPFH features

Section 7.5

Collet et al. 7



a general architecture to leverage both visual information

and metadata to discover objects and adapt as conditions

change.

Prior work in robotics has widely used metadata to limit

computational costs and improve robustness in perception.

The metadata is mostly incorporated by imposing restric-

tions on the environment, data acquisition, or agent motion,

which often result in single-purpose solutions of limited

applicability. Common assumptions include partial knowl-

edge of the world O, usually about the scene configuration

or the appearance or shape of objects. Marton et al. (2010)

assumes that interesting objects lie on tables to segment

novel objects in 3D point clouds. A horizontal plane detec-

tor is used to pre-segment the scene and enforce the table-

top assumption. This same assumption is shared by other

works in the robotics literature, such as Bjorkman and

Kragic (2010) and Kootstra and Kragic (2011). Mishra and

Aloimonos (2011) use three-frame sequences, motion cues,

and assume that images contain a table with known color

distribution to discover and accurately segment objects in

cluttered scenes. Morwald et al. (2010) assume that rele-

vant objects may be modeled by simple shapes (such as

boxes or cylinders) and that images come in sequences to

perform automated modeling of household objects, enfor-

cing temporal consistency with tracking. Both Mishra and

Aloimonos (2011) and Morwald et al. (2010) assume some

knowledge on constraints about the sensors S (image

ordering and sequencing). Herbst et al. (2011) use datasets

consisting of multiple sequences of images collected in the

same locations, in order to compute per-sequence environ-

ment maps and perform scene differencing to discover

movable objects. The implicit assumptions include the

knowledge of the robot location, recording time, and that

the robotic agent A visits the same locations multiple

times. Rusu et al. (2008) assume strong prior shape and

location knowledge to segment cabinets, drawers and

shelves in kitchen environments, which are in turn used as

cues for the most likely locations of objects. Other works

assume an active robotic agent A that interacts with O, S
and H to modify the environment and improve the object

discovery process; for example, Fitzpatrick (2003) track

movable objects through random interactions with the envi-

ronment. All of these works use metadata and assumptions

to improve performance and efficiency for their particular

setups, at the cost of underperforming (and, often, not

working at all) in alternative types of scenes. Our general

architecture addresses these shortcomings with a common

formulation for metadata, thus allowing us to opportunisti-

cally take advantage of different sources of information as

conditions change.

In our framework, we combine multiple sources of infor-

mation (visual similarity and metadata) in CSGs, and clus-

ter the CSGs to obtain groups of object candidates. In the

clustering literature, this area is known as multi-similarity

(or multi-source) clustering. While multi-similarity cluster-

ing applied to unsupervised object discovery is a novelty of

this work, other fields (e.g. bioinformatics) commonly use

multi-similarity clustering to combine multiple heteroge-

neous data sources. Zeng et al. (2010) combine gene

expression data, text, and clustering constraints induced by

the text data, to identify closely related genes. Zeng et al.

(2010) use a variant of EM in which parameter estimation

and cluster reassignment are performed over a single data

source picked at random at each iteration. Troyanskaya

et al. (2003) introduce a Bayesian framework to cluster

protein–protein interaction patterns based on multiple

sources of protein relations. The Bayesian network com-

bines multiple clusterings (one for each data source) using

human expert knowledge to estimate the prior probabilities

of the interaction patterns.

Other fields such as machine learning and data mining

have also shown interest in multi-similarity clustering.

Bouvrie (2004) considers the problem of multi-similarity

clustering with partially missing data, where not all data

sources are available for all points. Bouvrie (2004) opti-

mizes an information-theoretic objective function over

pairs of co-occurrence matrices, which requires n
2

� �
cluster-

ing steps (for n data sources). Tang et al. (2009) propose

link matrix factorization, in which multiple graphs for dif-

ferent data sources are approximated by a graph-specific

factor and a factor common to all graphs, where the com-

mon factor is the consensus partition. Strehl and Ghosh

(2002) combine multiple clusterings as a combinatorial

optimization problem over the shared mutual information

between clusterings. This method performs clusterings for

individual data sources first, and a clustering over the co-

occurrences of data labels, which the authors term a cluster

ensemble. Hore et al. (2006) modify the cluster ensembles

of Strehl and Ghosh (2002) to use clustering centroids

instead of clustering labels. This change enables the combi-

nation of disjoint datasets into the same cluster ensemble,

with centroids acting as representatives for the data in their

clusters.

All previously mentioned methods for multi-similarity

clustering except Hore et al. (2006) suffer from poor scal-

ability, as they all require computing and storing multiple

clusterings of the full dataset for each individual data

source. In object discovery, some data sources (in particu-

lar, visual similarity) are very expensive to compute; there-

fore, clustering each individual data source can be very

costly. Some cases, such as Tang et al. (2009), also require

multiple full adjacency matrices in memory, which is infea-

sible for large datasets. In our work, we take the route of

Hore et al. (2006) of computing consensus clusters over

disjoint datasets. The key differences between Hore et al.

(2006) and our work arise from our clustering method

being tailored for object discovery. First, we compute dis-

joint subsets of data samples dynamically from metadata,

and not random splits. Second, we use partial 3D object

models as intermediate representations, and not centroids.

The partial 3D models encode more information than cen-

troids or individual candidates hi, so our clustering method

is asymmetric: the similarity functions that create the dis-

joint subsets (visual features and metadata) are different

8 The International Journal of Robotics Research 34(1)



than the similarity functions in the consensus clustering

(more complex visual and 3D features).

4. Framework overview

This section contains a brief summary of the discovery

framework and its components, alongside a description

of how each component is implemented in HerbDisc. In

the following sections, we focus on the novel elements

of this paper: defining constraints (Section 5), generat-

ing CSGs (Section 5.3), and the implementation of

constraints and CSGs in HerbDisc (Section 7). We pro-

vide a list of the constraints implemented in HerbDisc

in Table 1.

1. Candidate generation. We compute object candidates

hi from each data sample In2 I. We use the objectness-

based segmentation algorithm of Collet et al. (2011)

(Section 7.1).

2. CSG generation. We create a graph of relationships

between object candidates using constraints Y. We

define the CSG built by constraint Y as GY = (EY,

VY) (Section 5.3).

If the constraint Y encodes a visual similarity, then

the CSG GY is equivalent to regular pairwise similar-

ity graphs in unsupervised object discovery (e.g.

Kang et al., 2011). Applying the constraints in Table 1

to create GY produces multiple connected components

GY
g .

3. CSG clustering. We compute groups of candidates

for each GY
g 2 GY with the graph partitioning algo-

rithm of Brandes (2001). This algorithm is a greedy

community discovery method based on the between-

ness centrality metric, which is very efficient for

sparse graphs and works well for our problem.

Each cluster Ci contains a set of object candidates

hi, which are registered together and merged to com-

pute partial 3D models mi. The set of all partial mod-

els discovered is denoted as m.

Each object mi = fmrgb
i ,mP

i ,m
h
i g is defined by a

set of 3D points mP
i with associated color m

rgb
i and the

set of object candidates mh
i used to create object mi.

4. Object CSG graph generation. We compute a CSG

graph Gm = (Em, Vm) over partial object models mi 2
m. The number of nodes in this graph is orders of mag-

nitude smaller than GY, so we can afford to compute

more complex constraints if needed. Only a subset of

the constraints from Table 1 are available for partial

object models mi. In particular, we use Ysize, Yshape,

Yapp, and Y3D, as the others require local information

that is not relevant for the partial objects.

5. Object clustering. We compute clusters of partial 3D

models using the graph partitioning algorithm of

Brandes (2001) on the graph Gm, analogously to step 3.

Each cluster Ci contains a set of partial object

models mi.

6. 3D model generation. We generate full object models

Mi from clusters of partial object models Ci. Each clus-

ter of partial object models Ci is globally registered to

produce full 3D models. We use the global alignment

algorithm of Borrmann et al. (2008) for the global reg-

istration of partial 3D models.

5. Information as constraints

In the introduction, we defined a constraint Y as a measur-

able yes/no question about a node or edge, with probability

of success p about the answer. In Section 2, we modeled

each constraint Y as a Bernoulli distribution. In this sec-

tion, we describe how to encode information as constraints;

we define logic operations of constraints that allow us to

create complex constraint expressions; and how to compute

CSGs from constraints.

5.1. Defining constraints

Constraints encode generic information about the world.

Consider the assumptions Yn
planar =

00objects are planar00,
Ye

static =
00scene is static00, and Yn

tables =
00objects lie on

tables00, illustrated in the example scenes in Figure 3. To

encode these assumptions as constraints, we need to express

them as a measurable yes/no question about a node or edge.

For example, Yplanar requires answering the question ‘‘is

candidate hi planar?’’. If we can measure whether an object

is planar or not (e.g. by evaluating the reconstruction error

of a planar approximation of hi’s 3D points), then we can

encode the assumption as a constraint, with the result

shown in Figure 3 (row 2, col 2). Similarly, we must answer

the question ‘‘is candidate hi on a table?’’ to encode Ytables,

for which we need to (1) detect a table, and (2) determine

whether candidate hi is on it. The assumption can be

encoded as a node constraint if we can measure those two

factors, with the result shown in Figure 3 (row 2, column

3). To encode the assumption ‘‘the scene is static’’, we must

answer the question that ‘‘Do candidates hi at time t and hj

at time t + 1 occupy the same location in space?’’. The

constraint Ystatic would be satisfied if we can register the

two scenes and hi and hj occupy the same 3D location, with

p proportional to the overlap between hi and hj. Figure

3(row 1, column 3) shows the result of applying Ystatic to

our example scenes.

Basic constraints, as in the example above, operate over

a node or an edge. However, more complex constraints

may operate over both nodes and edges. To support this

class of constraints, we redefine in our formulation the con-

straint Y as a pair Y [ (Yn, Ye). Constraints that operate

only on nodes or edges are considered to implement a

default operator for nodes (Yn = 1) or edges (Ye = 1)

which satisfies the constraint with p = 1 for any input. An

example of constraint that operates over nodes and edges is

object tracking. Object tracking can be encoded as a union

of an edge constraint Ye = ‘‘are candidates hi at time t and
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hj at time t + 1 the same object?’’, and a node constraint

Yn = ‘‘is candidate hi being tracked?’’.

A key advantage of this formulation is that we can

encode any source of information as a constraint, including

the pairwise similarity functions typical in object discovery

and many other computer vision problems. In particular,

a normalized similarity function s(hi, hj) 2 [0,1] induces

an edge constraint Ye with PYe (hi, hj)= s(hi, hj). In

HerbDisc, we do not distinguish between visual similarity

and other metadata: they are all encoded as constraints Yi.

In the following sections, we see how to combine multiple

constraints (Section 5.2) and build CSGs (Section 5.3),

both of which are only possible thanks to this unification.

5.2. The logic of constraints

A key consequence of our generic constraint formulation is

that we can seamlessly combine multiple sources of meta-

data using logic statements. In order to take full advantage

of Boolean algebra, we define the logic operations of con-

junction ^, disjunction _ and negation : over node and

edge constraints induced by metadata. Let Yn
i , Yn

j be inde-

pendent node constraints induced by metadata, and PY(h)

the probability of candidate h satisfying constraint Yn.

Then, the negation operator :Yn
i is computed as

P:Yn
i
(h)= 1� PYn

i
(h) ð8Þ

which represents the probability of h not satisfying con-

straint Yn. The conjunction operator Yn
i ^Yn

j is then com-

puted as

PYn
i ^Yn

j
(h)=PYn

i
(h)PYn

j
(h) ð9Þ

Finally, the disjunction operator Yn
i _Yn

j is computed as

PYn
i _Yn

j
(h)= 1� P:Yn

i ^:Yn
j
(h) ð10Þ

We analogously define the conjunction ^, disjunction _
and negation : operators for edge constraints, by sub-

stituting PYn ( � ) for PYe ( � , � ) in Equations (8), (9)

and (10).

Logic operations over constraint pairs Y = (Yn, Ye)

operate on Yn and Ye independently, so that

:Yi =(:Yn
i ,:Ye

i ) ð11Þ

Yi _Yj =(Yn
i _Yn

j ,Y
e
i _Ye

j ) ð12Þ

Yi ^Yj =(Yn
i ^Yn

j ,Y
e
i ^Ye

j ) ð13Þ

Any logic operation can be derived from the conjunc-

tion, disjunction and negation operators. A generic con-

straint Y can be composed of multiple constraints Yi using

the logic operators defined above,

Y=Y1 8 Y2 8 . . . 8 Yi 8 . . . ð14Þ

where the composition operator + denotes any logic opera-

tion using Boolean algebra.

We can now define arbitrarily complex constraint

expressions based on logic operations over primitive con-

straints. In Figure 3(row 1, column 4), we illustrate this

behavior with the three hard constraints: Ystatic, Ytables,

Yplanar. To search for objects assuming that ‘‘the scene is

static’’ AND that ‘‘objects that lie on tables’’ OR ‘‘objects

are planar’’, we simply define the constraint

Y=Ystatic ^ (Ytables _Yplanar) ð15Þ

5.3. Constrained similarity graphs

CSGs are undirected graphs which encode information

from constraints into nodes, edges, node weights and

edge weights. Let GY = (EY, VY) be an undirected

pairwise graph. GY is a CSG of constraint Y if and

only if:

Fig. 3. Metadata induces constraints on pairwise similarity graphs. We illustrate this effect on a pair of manually segmented images

for simplicity. The fully unconstrained graph is seldom computed in practice, as techniques such as inverted indexes are used to

preselect potential matches (Philbin et al., 2010). Our formulation generalizes such techniques, constraining a graph based on any

source of metadata (columns 2–3). Most importantly, our formulation facilitates the creation of complex rules from the combination of

multiple sources of metadata (column 4).
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1. every node hi 2 VY satisfies Yn;

2. every edge ei,j 2 EY satisfies Ye; and

3. has node weights w(hi)=PYn (hi), and edge weights

w(hi, hj)=PYe (hi, hj).

We generate the CSG GY for constraint Y following

Algorithm 1. The CSG construction in Algorithm 1 and the

entire framework are independent of the particular choice of

Y. Y can be any arbitrarily complex constraint expression,

ranging from the multiple sources of metadata and visual

similarity we implement in HerbDisc, to the visual similarity-

only that transforms the CSG into a regular pairwise similar-

ity graph. In Algorithm 1, pmin denotes the threshold prob-

ability for nodes and edges (typically, pmin = 0.5).

Building a generic CSG has necessarily a worst-case

complexity of O(n2), where n ¼jhj, since the CSG must

be able to build any graph including pairwise similarity

graphs, or even complete graphs, which are O(n2). In addi-

tion, evaluating a constraint expression for a node or edge

can be expensive, especially if computing complex visual

similarities. In practice, we can use conjunctive constraint

expressions (as in Equation (9)) to simplify the construc-

tion of a CSG, by positioning the most restrictive con-

straints first. Evaluating a conjunctive constraint expression

is much faster than evaluating generic constraint expres-

sions, as we only need to evaluate a constraint in the con-

straint expression if all previous constraints are successful.

Consider a constraint Y0 that generates the CSG

GY0 =(EY0 VY0). We can compute the CSG GY from GY0

using conjunctive constraints as in Algorithm 2.

The advantage of conjunctive constraints is clear: the

complexity of Algorithm 2 for a given Y and GY0 is

O(jEY0 j), where the graph GY0 determines the complexity

of building GY. Therefore, an appropriate choice of Y0 to

build a sparse CSG very quickly can greatly improve the

performance of the overall algorithm. Some of the natural

constraints in service robotics are excellent for this pur-

pose, such as spatiotemporal constraints. In HerbDisc, we

define motion and sequencing constraints Ymotion^Yseq in

Table 1 (see Section 7.2 for details) to split the data stream

into subsets of samples with limited motion and at most m

samples per subset. Using Y0 = Ymotion^Yseq yields a

CSG GY0 with jEY0 j=O(nm)’O(n) edges, considering

that m is fixed and n�m in realistic situations (in the NSH

Dataset, m = 50 and n = 521,234). Under these conditions,

the CSG construction given GY0 has a complexity of O(n)
for the remaining constraints Yk 2 Q. Given that the visual

similarities are the most expensive constraints, it is crucial

to perform this optimization to only compute O(n) similari-

ties. See Table 2 for a quantitative evaluation of the reduced

complexity of this method.

The CSG constructions of Algorithms 1 and 2, as well as

the constraints Y, are designed for both soft constraints (i.e.

Y such that PY 2 [0, 1]) and hard constraints (i.e. Y such

that PY2{0, 1}). In HerbDisc, we use Algorithm 2 with a mix

of soft and hard constraints. The hard constraints are posi-

tioned first in the constraint expression to purposefully split

the CSG into many small connected components as quickly

as possible. We then use soft constraints to better evaluate the

nuances of appearance and shape similarity for those candi-

dates with real potential of being part of the same object.

6. Datasets

We evaluate HerbDisc on two datasets of real human envir-

onments: the Kitchen Dataset and the NSH Dataset (see

Figure 4). We captured both datasets from the sensory data

Algorithm 1 Building a constrained similarity graph.

1: VY = �
2: EY = �
3: for hi in h do xAdd nodes that satisfy Y
4: if PYn (hi) . pmin then

5: VY VYS {hi}

6: w(hi) PYn (hi)
7: for hi in VYdo xAdd edges that satisfy Y
8: for hj in h with j . i do

9: if PYe (hi, hj) . pmin then

10: EY EYS {ei,j}
11: w(ei, j) PYe (hi, hj)

Algorithm 2 Building a CSG with conjunctive constraints.

1: VY =VY0

2: EY =EY0

3: for hi in VY do
4: for Yk in Y do xErase nodes that do not satisfy Yk

5: if PYn
k
(hi) \ pmin then

6: VY VY2 {hi}
7: break
8: else
9: w(hi) w(hi)PYn

k
(hi)

10: for hi in VQ do
11: forYk in Q do xErase edges that do not satisfy Yk

12: for hj in NY
(hi) do

13: if PYe
k
(hi, hj) \ pmin then

14: EY EY2 {ei,j}
15: break
16: else
17: w(ei, j) w(ei, j)PYe

k
(hi, hj)

Table 2. Effect of motion and sequencing in computational

cost, for the NSH Dataset. Number of edges to evaluate if using

(1) the motion and sequencing constraints, (2) only the motion

constraint, and (3) the raw data stream.

Time (min) Ymotion^Yseq Ymotion Raw data

58.0 0.7M 29.1M 2.9B
102.7 1.2M 83.9M 10.4B
186.9 2.5M 263M 30.4B
262.2 3.3M 517M 59.9B
319.9 4.0M 803M 89.2B
380.6 4.9M 1.2B 126.0B
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of our robot, HERB, driving around different working envir-

onments of a university building. The captured data is an

RGBD video stream from a Kinect camera at 640 3 480

resolution. The framerate was set to 30 fps, but due to

throughput limitations the effective framerate is approxi-

mately 22 fps. For the remainder of this paper, we refer to

each pair of color image and depth image as a data sample.

The Kitchen Dataset captures four 3-minute recordings

of HERB in a kitchen environment, with relatively clean

scenarios and 20 ground truth objects that HERB must dis-

cover. We refer to the four individual recordings as

Kitchen-1 to Kitchen-4, and their union (a 12-minute

recording with 14,282 data samples) as the Kitchen

Dataset.

The NSH Dataset is a workday-length recording of

HERB exploring the NSH building of Carnegie Mellon

University, containing 6 h and 20 min of RGBD video and

521,234 data samples. The dataset is divided in four

Fig. 4. The Kitchen Dataset (top row) and the NSH Dataset (bottom three rows). Each row depicts the Kinect 3D point clouds (top) and

their corresponding images with ground truth annotations (bottom) for some of the environments we visited. The Kitchen Dataset captures

a low-clutter environment with 20 objects of interest. The NSH Dataset captures office and lab environments, ranging from moderate to

extreme clutter. Some scenes were so challenging (e.g. row 2, columns 3–5) that the annotators could not separate the objects in the scene.
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fragments lasting between 1 h and 1 h 50 min each, one

per building floor. We refer to the four individual record-

ings as NSH-1 to NSH-4, and the full-length stream as the

NSH Dataset. For this dataset, we visited over 200 real

offices and laboratories to capture the real conditions in

which people work, with scenes ranging from moderate to

extreme clutter. This dataset also captures the wide differ-

ences in lighting conditions in human environments (from

dim light to bright sunlight), which degrade the data acqui-

sition and to which a lifelong agent must be robust. We

labeled a total of 423 unique ground truth objects. We can

analyze the object statistics of this dataset by aggregating

the ground truth objects into common classes. The most

popular object classes are coffee mugs (19 labeled), moni-

tors (17 labeled), keyboards (16 labeled), laptops (13

labeled), and books (12 labeled). Among the object classes

with one labeled instance, we find objects as diverse as a

toy rocket, a pineapple, a bike padlock, a quadrocopter,

and various mechanic tools such as a pair of plyers.

We followed the labeling procedure described below to

manually annotate both datasets and obtain ground truth.

Our goal is to obtain the list of objects that HERB could

potentially grasp. Since it is infeasible to annotate every sin-

gle data sample, we process each data stream with a motion

filter to eliminate redundant samples (the same motion fil-

ter used in HerbDisc, described in Section 7.2). Then, we

select 10 images from each office, lab, kitchen, etc., we vis-

ited, and label all objects with the LabelMe tool (Russell

et al., 2008). As a rough estimate of the objects that HERB

can grasp, we consider valid any object that:

� is at least 10 3 5 cm in its two largest dimensions

(e.g. a smartphone);
� is at most 60 cm long in its longest dimension (e.g. a

monitor);
� appears unoccluded in at least one data sample; and
� is movable, with free space around it to be grasped (e.g.

a stack of books in a bookshelf is not labeled).

Figure 4 shows examples of data samples from the

Kitchen (top row) and NSH Dataset (bottom 3 rows), along-

side the annotated data.

7. Implementation of HerbDisc

In this section, we describe how to formulate similarities,

assumptions, and other metadata from Table 1 as con-

straints, and how each component is integrated into our

optimized implementation, HerbDisc. The advantage of

formulating the different components as constraints is the

adaptability of the system. We can completely control and

modify the behavior of HerbDisc (e.g. to adapt it a particu-

lar task) without modifying a single line of code, as

HerbDisc only depends on the constraint expression Y to

construct the CSGs. For example, we could measure if the

assumptions for specific algorithms hold before using

them, and revert to safer algorithms if they do not, modify-

ing only the constraint expression. By modifying Y when

environmental conditions change, we can adapt and oppor-

tunistically select the best constraints for each task.

We show experimental results on the impact of each

component in the different subsections. See Section 8 for a

description of the baseline and the evaluation procedure.

7.1. Constrained candidate generation

The candidates h produced by a candidate generator H can

be refined with constraints to adapt to the particular algo-

rithm assumptions, either by entirely enabling/disabling a

candidate generator based on metadata, or by rejecting

unnecessary candidates for the particular task. An example

of such a constraint would be the requirement that ‘‘objects

lie on tables’’.

Candidate generators that rely on metadata are common

in the robotics literature. For example, algorithms that track

objects (Morwald et al., 2010), that assume tabletop scenes

(Bjorkman and Kragic, 2010), or that perform scene differ-

encing (Herbst et al., 2011) usually compute better candi-

dates than generic objectness segmentation algorithms.

These ‘‘specialized’’ candidate generators all have one thing

in common: they impose restrictions on the environment to

simplify the task and improve performance, at the cost of

limited applicability in alternative types of scenes. In our

framework, we can include multiple candidate generators

and use them when their assumptions are met, and revert to

more generic candidate generators otherwise.

In HerbDisc, we combine the generic objectness segmen-

tation algorithm of Collet et al. (2011) with the assumption

that objects have surfaces of support in floors, tables, and

walls. The constraint Ysupport = (Yn
support, 1) is defined as

Yn
support(hi)=

1, with p= 1 if supported(hi, Ij)
0, with q= 1 otherwise

�

ð16Þ

where q = 1 2 p is the probability of failure of Yn
support,

the supported(�) function searches for large planes in the

data sample Ij that generated candidate hi, and accepts hi if

it lies within a certain distance above the planes found. In

simple scenes, Ysupport can be used as a standalone candi-

date generator, by clustering the point clouds above the

detected planes into a few connected components. For the

standalone Ysupport, we use the implementation of Rusu

and Cousins (2011).

In Figure 6, we compare the performance of Rusu and

Cousins (2011) and Collet et al. (2011) with Ysupport used

in HerbDisc. We see in Figure 6 that the standalone

Ysupport achieves better precision as it accurately segments

simple scenes better. However, the performance degrades

in complex scenes (see Figure 5 for examples), as the con-

nected components may include large groups of objects.

Combining the generic Objectness segmentation with

Ysupport yields a good tradeoff between generating enough
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candidates for complex scenes, and filtering unlikely candi-

dates for efficiency. In Figure 5, we show the generic

objectness segmentation of Collet et al. (2011), and

compare it with the standalone candidate generator from

Rusu and Cousins (2011) and the combination of (Collet

et al., 2011) and Rusu and Cousins (2011).

7.2. Motion and sequencing

In the general LROD problem, the incoming data stream

should be continuous (the raw RGBD video stream) and

neverending. In particular, we assume that the data stream

is:

1. an ordered sequence of data samples; and

2. recorded at a frame rate high enough so that there is

spatial overlap between data samples.

During the data acquisition, the motion of HERB influ-

ences the amount of spatial overlap between data samples.

In particular, HERB may (a) not be in motion and acquir-

ing repeated data samples, (b) be in motion and fulfilling

assumption 2, or (c) be in motion and violating assumption

2 (i.e. moving too fast). We address these issues with con-

straints Ymotion and Yseq.

In particular, we sample the input data stream at a

dynamic framerate depending on HERB’s motion, and split

Fig. 5. Examples of constrained candidate generation in the NSH-1 dataset. The number of candidates in each data sample is shown

at the top right corner of each image. (Left) RGBD Objectness segmentation algorithm of Collet et al. (2011). (Center) Rejected areas

according to Ysupport are shown in red; the connected components of accepted 3D points are shown in green/yellow/blue. In cluttered

scenes, multiple objects are sometimes grouped together. Scenes with no visible support are rejected (e.g. row 3). (Right) Combining

Collet et al. (2011) and Ysupport limits the number of candidates but does not result in undersegmentation.

Fig. 6. Impact of Ysupport (Rusu and Cousins (2011), Baseline

Segm.) versus HerbDisc’s Objectness + Ysupport in the NSH-1

dataset. Rusu and Cousins (2011) achieves higher precision

(80% precision at 20% recall, compared with 78% precision of

HerbDisc) at the cost of 14% lower maximum recall.
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the subsampled data stream into small subsets that we term

sequences. Using Ymotion and Yseq, we do not process

repeated samples, and we do not consider any edges

between data samples that violate assumption 2. We

enforce a maximum sequence length m to limit the order

jVYseq j of any connected component in the CSG.

Let Tk, k�1 2 R
4 3 4 be the transformation between sam-

ple Ik and the previous sample in the data stream Ik21, and

M : T 7!R the magnitude of the motion T. We model the

motion constraint Ymotion = (Yn
motion, 1) for hi 2 Ik, as

Yn
motion(hi)=

1, with p= 1 if M(Tk, k�1).gmin

0, with q= 1 otherwise

�

ð17Þ

Ymotion only samples the data stream when there is enough

motion gmin between data samples.

The sequencing constraint Yseq = (1,Ye
seq), where

Ye
seq(hi, hj)=

1, with p= 1 if seq(hi)= seq(hj)
0, with q= 1 otherwise

�

ð18Þ

limits the potential edges to candidates hi 2 Ik, hj 2 Il

which belong to the same sequence. We compute seq(�)
during the data acquisition. For data sample Ik, the sequence

identifier

seq(Ik)=
seq(Ik�1)+ 1 if M(Tk, k�1).gmax

seq(Ik�1) otherwise

�
ð19Þ

is incremented if there is too much motion (gmax) between

the current sample Ik and Ik 2 1 (or if we reach the maxi-

mum sequence length m).

Here M(T) = jjTjjF is an estimate of the relative motion

T. We calibrate gmin and gmax so that we capture m data

samples in 20 seconds moving in a straight line at HERB’s

slowest and fastest speed. In practice, sequences are fin-

ished because gmax is exceeded in approximately 73% of

the sequences (often due to sharp turns), and reaching our

limit of m = 50 in 27% of the cases, mainly in long, straight

corridors. HerbDisc is not very sensitive to particular

choices of the maximum sequence length; halving or dou-

bling the maximum sequence length (m = 25 and m = 100,

respectively) yields a decrease of less than 3% in maximum

recall with respect to our default choice of m = 50.

We evaluate the impact of the motion and sequencing

constraints Yseq to computational complexity for the NSH

Dataset in Table 2. We calculate the total number of poten-

tial edges remaining in the CSG, which is a measure of the

computational cost, in the cases of: (1) using Ymotion^Yseq

to generate connected components; (2) only using Ymotion

to downsample the input data stream; and (3) the raw data

stream. Our implementation in HerbDisc, which uses

Ymotion^Yseq as the initial constraint (using Algorithm 2),

yields equivalent computational cost after processing 6 h

20 min as Ymotion after approximately 18 min, or as the

raw data stream after 2 min 24 s. Figure 7 compares the

trend in computational cost with respect to the data stream

length. While using Ymotion is two orders of magnitude

more efficient than the raw data stream, it still yields a

squared cost with respect to the data stream length, com-

pared with the linear cost of Ymotion^Yseq.

For the actual implementation, we considered two alter-

natives: (1) to track the robot motion using the robot’s odo-

metry; or (2) to track the camera motion using real-time

techniques such as Kinect Fusion (Izadi et al., 2011). We

decided to implement the Kinect Fusion approach, because

the odometry does not track the camera tilt and shake while

HERB drives. These artifacts can be pretty significant

depending on the surface (e.g. camera shake on floor tiles,

and tilt on thick carpeting). To implement this motion fil-

ter, we modify the Kinect Fusion six-degree-of-freedom

tracker available in PCL (Rusu and Cousins, 2011). Our

implementation of Ymotion and Yseq in HerbDisc, including

the PCL Kinect Fusion tracking, runs in real time (up to

30 fps) during the data acquisition process to compute the

initial CSG GY0 =GYmotion^Yseq from Algorithm 2.

7.3. Spatial overlap

Many objects in human environments are only moved

occasionally, and remain static across most observations.

The constraint Ystatic encodes our assumption that objects

remain static for at least a few seconds at a time. To encode

this assumption in our framework, we consider the question

‘‘do candidates hi and hj overlap in space within a

sequence?’’. Relationships between candidates that do not

overlap in space should not be considered any further, as

they most likely belong to different objects.

The constraint Ystatic = (1,Ye
static), where

Ye
static(hi, hj)=

1, with p= s
overlap
i, j if s

overlap
i, j .s

overlap
min

0, withq= 1 otherwise

�

ð20Þ

Fig. 7. Comparing the computational cost of HerbDisc when

using Ymotion^Yseq and Ymotion for the NSH Dataset, with

respect to the data stream length. Using Ymotion^Yseq results in

linear cost in the number of samples, compared with the squared

cost of Ymotion.
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is a soft constraint that measures the amount of 3D overlap

s
overlap
i, j = soverlap(hi, hj) between candidates hi, hj, and

returns true with probability s
overlap
i, j if the overlap is above

a threshold s
overlap
min .

This constraint is designed to operate in unison with the

sequencing constraint Yseq. Here Yseq splits the data stream

into small subsets of samples close in time (sequences), and

Ystatic ensures that, within the same sequence, we only eval-

uate groups of candidates in a similar position in space.

To measure the overlap between hypotheses, we use the

incremental registration provided by PCL Kinect Fusion to

register all data samples within a sequence with respect to

some common coordinate frame Ts (the first sample in

that sequence). We transform all object candidates h to the

common coordinate frame, and measure the 3D overlap

s
overlap
i, j between 3D point clouds hP

i , h
P
j by comparing their

voxel grids.

In Figure 8, we compare the impact of using the 3D

overlap constraint Ystatic in HerbDisc. We see that Ystatic is

a crucial metadata constraint in HerbDisc, as disabling Ystatic

yields a maximum recall of 8% at 47% precision in the NSH-

1 dataset, a difference of 27% recall at the same precision

when enabled. Furthermore, disabling the visual similarity

features and using only Ystatic as an edge constraint results in

a drop of only 7% recall and 12% in precision (at maximum

recall). These results reinforce our claim that visual features

alone are not descriptive enough for large-scale datasets, and

that metadata plays a key role in LROD.

7.4. Size/shape priors

Part of the reason why there is no clear definition of object

is because its meaning is subjective: it depends on the

observer. In service robotics, different robots might have

different definitions of objects depending on their capabil-

ities. For HerbDisc, we consider a definition of object

based on the manipulation capabilities of HERB. In partic-

ular, we define a prior based on the sizes and shapes of

known objects that HERB can grasp.

In order to build an object prior for our framework, we

define it as a constraint Yprior = Ysize ^ Yshape composed

of size and shape components. Let Ysize = (Yn
size, 1) be a

constraint on an object candidate’s size, such that

Yn
size(hi)=

1, with p= ssizei if ssizei .ssizemin

0, with q= 1 otherwise

�
ð21Þ

The function ssizei = ssize(hi, hprior) estimates the likelihood

that the longest dimension of hi could be sampled from a

Gaussian distribution centered at the size given by hprior.

Analogously, Yshape = (Yn
shape, 1) is a constraint on the

candidate’s shape, such that

Yn
shape(hi)=

1, with p= s
shape
i if s

shape
i .s

shape
min

0, with q= 1 otherwise

�
ð22Þ

The measure s
shape
i = sshape(hi, hprior) estimates the similar-

ity between hi and hprior according to the PCA-based shape

features of Lalonde et al. (2006) (linearity, planarity, and

scatterness). The effect of this constraint is to essentially

require that object candidates have some volume and are

not purely planes or lines.

In Figure 9, we evaluate the impact of size and shape

priors in HerbDisc for the NSH-1 dataset. The main effect

of Yprior is to limit the amount of candidates to cluster, with

Yprior rejecting 63% of the original pool of candidates. The

increased number of candidates when Yprior is disabled

yields a 301% increase in the number of objects discovered,

most of which are just repetitions due to cluster fragmenta-

tion. The final output without Yprior yields a decrease of

7% recall and 10% in precision (at maximum recall), com-

pared with HerbDisc.

7.5. Visual and 3D shape similarity

We describe and compare candidates with features based

on 3D shape and appearance. Using these features alone to

compute a CSG would result in a pairwise similarity graph

as in Kang et al. (2011). For appearance features, we com-

pute the color histogram of each candidate in LAB color

space, as in Hoiem et al. (2007), and compare a pair of

candidates hi, hj with the x2 distance between normalized

color histograms. For 3D shape, we use the FPFH features

of Rusu et al. (2009), which compute a histogram of the

local geometry around each 3D point. We compare the

FPFH features of a pair of candidates hi, hj by estimating

the average x2 distance among the nearest neighbor 3D

points between hi, hj. Both similarity metrics sapp (�,�) and

s3D (�,�) are normalized so that s(�,�) 2 [0,1].

Fig. 8. Impact of Ystatic in HerbDisc for the NSH-1 dataset. Not

using the 3D overlap similarity of Ystatic yields a 27% drop in

recall compared with HerbDisc. Comparatively, using the 3D

overlap similarity Ystatic alone with no visual features in

HerbDisc only results in a decrease of 7% recall and 12%

precision at maximum recall with respect to HerbDisc.
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In order to use these similarities in our framework, we

reformulate them as constraints Yapp and Y3D. In particular,

we define Yapp = (1,Ye
app) as a soft constraint such that

Ye
app(hi, hj)=

1, with p= s
app
i, j if s

app
i, j .s

app
min

0, with q= 1 otherwise

�
ð23Þ

where s
app
i, j = sapp(hi, hj). Analogously, we define

Y3D = (1,Ye
3D) as a soft constraint such that

Ye
3D(hi, hj)=

1, with p= s3Di, j if s3Di, j .s3Dmin

0, with q= 1 otherwise

�
ð24Þ

where s3Di, j = s3D(hi, hj).

In Figure 10, we compare the impact of Yapp and Y3D

in HerbDisc. Disabling the 3D shape similarity Y3D yields

a decrease of 7% recall and 15% precision at maximum

recall, compared to HerbDisc, as well as a more significant

drop in precision at low recalls (e.g. a 28% decrease in pre-

cision at 20% recall). The contribution of Yapp is less

noticeable: disabling Yapp results in a decrease of 1% in

maximum recall at only 3% lower precision, although it is

significant at lower recall (e.g. disabling Yapp yields a 19%

decrease in precision at 20% recall).

8. Experiments

In this section, we evaluate the impact of using metadata to

discover objects. We first compare the performance of

HerbDisc with and without any metadata on the Kitchen

Dataset in Section 8.3.1. Using metadata, we evaluate the

ability of HerbDisc to discover novel objects during a whole

workday of operating in challenging human environments.

We perform an ablative analysis to assess the impact of

each constraint in the constraint expression Y. Thanks to

our framework, performing such an analysis only requires

modifying the definition of the constraint expression Y, but

not any change in the source code. This feature is critical

for our goal to develop a system that can adapt its behavior

as conditions change, using metadata opportunistically.

Our main testbed is the NSH Dataset (Section 6), with

6 h 20 min of HERB driving into over 200 offices and

engineering labs, and containing 423 annotated ground

truth objects. We use the smaller Kitchen Dataset in Section

8.3.1 to evaluate the visual similarity-only baseline, as it is

too computationally expensive to execute in the NSH

Dataset.

8.1. Baseline and training

The baseline for all our experiments is the full system

HerbDisc, with all constraints enabled. The default candi-

date generator is the objectness segmentation of Collet

et al. (2011) with Ysupport. In each experiment, we enable/

disable individual components (through the constraint

expression) and analyze the resulting behavior.

The constraint expression Ylocal we use in the CSG con-

struction step of HerbDisc is

Ylocal = Ymotion ^ Yseq ^ Ysupport ^ Ystatic ^
Ysize ^ Yshape ^ Yapp ^ Y3D

ð25Þ

In the object CSG clustering, we cluster the CSG built

with

Yglobal =Ysize ^Yshape ^Yapp ^Y3D ð26Þ

We design the constraints Yapp and Y3D to be more

exhaustive for Yglobal than Ylocal. In Ylocal, we compute

the histograms in Yapp with six bins per channel, and com-

pute the FPFH features of Y3D only for the centers of a

Fig. 9. Impact of Yprior in HerbDisc for the NSH-1 dataset. Not

using Yprior yields a decrease of 7% recall and 10% in precision

(at maximum recall).

Fig. 10. Impact of Y3D and Yapp in HerbDisc for the NSH-1

dataset. Disabling Y3D in HerbDisc decreases 7% recall and 15%

precision at maximum recall, as well as 20% lower precision at

20% recall. Disabling Yapp yields a decrease of 1% recall and

3% precision at maximum recall, and 19% lower precision at

20% recall.
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1 cm voxel grid. In Yglobal, the partial objects contain sig-

nificantly more information than individual hypotheses.

We use 10 bins for the histograms in Yapp and compute

FPFH features for Y3D for the centers of a 3 mm voxel

grid. In our experience, the choice of Ylocal has signifi-

cantly more impact in the overall performance than Yglobal

for object CSG clustering. We therefore focus our experi-

ments on the local step and modify only Ylocal, while we

keep Yglobal constant throughout the experiments.

We use the first 20% of the NSH-1 dataset (not included

in the evaluation) to train the parameters and thresholds in

HerbDisc, by maximizing the average F1-measure (defined

in Section 8.2). To do so, we discretize each parameter in

five settings in the range [0,1] and choose the best-

performer configuration according to a grid search. We do

not modify any parameter in any experiment after the initial

training phase. All experiments were performed on a com-

puter with an Intel Core i7-920 CPU, 16 GB of RAM, a

nVidia GTX 580 GPU, and runninng 64-bit Ubuntu Linux

10.04.

8.2. Evaluation procedure

In this section, we describe the metrics to evaluate the abil-

ity of HerbDisc to discover objects during HERB’s work-

day. For a given object model Mk, we define the metrics of

candidate purity, group purity, and 3D purity, as follows.

Candidate purity. We describe an object candidate hi as

pure if over 80% of the area in hi,k overlaps with a ground

truth object.

Group purity. Following Tuytelaars et al. (2009), we mea-

sure the group purity of model M as the largest percentage

of pure object candidates in Mh
k = fh1, k , . . . , hi, kg that

belong to the same object.

3D purity. We require that the 3D models reconstruct the

partial viewpoints seen by HERB. Therefore, we define an

object’s 3D point cloud MP
k as pure if the 3D points in MP

k

cover over 80% of the area visible in the data samples for

that particular object.

Given the open and unsupervised nature of LROD, we

often discover objects that do not appear in the ground truth

set, despite being real objects. Following Kang et al. (2011),

we distinguish between three categories of objects: correct,

valid, and invalid.

We define an object model Mk as correct if (1) it is an object

annotated in the ground truth, (2) its 3D point cloud is pure, and

(3) every object candidate hi,k associated to Mk is pure, i.e. if the

set Mh
k is 100% pure. Other works in the literature commonly

define correct objects as clusters with some minimum percent-

age of purity (e.g. 80% in Kang et al. (2011)), but we believe

that object models need to be 100% correct to be of any use for

robotics. Figure 15 shows multiple examples of correct objects.

We define an object model Mk as valid if (1) its 3D

point cloud is pure, (2) the set of candidates Mh
k is 100%

Fig. 11. CSG graphs for the edge constraints in HerbDisc, displayed as adjacency matrices (where a black dot indicates an edge

between candidates), in the Kitchen Dataset. The overall graph EY (rightmost column) is the product of each adjacency matrix. (Top)

Cascaded CSGs using conjunctive constraints, as implemented in HerbDisc. (Center) CSGs computed for each constraint

independently. The overall CSG EY is the same for the cascaded and independent CSGs. (Bottom) CSGs for the visual similarity

constraints Yapp and Y3D. The overall CSG EY for this case is a regular pairwise similarity graph. The CSGs using metadata (top/

center cols) are much more discriminative than the CSG for visual similarity only.
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pure (as with correct objects), but (3) it has not been

labeled as a ground truth object. We rely on an ‘‘oracle’’

evaluation, as in Tuytelaars et al. (2009). The ‘‘oracle’’ eva-

luation is a human annotator who answers the questions ‘‘Is

Mk an object?’’ and ‘‘Does Mk have a name?’’ when faced

with the set of candidates for object model Mk. The cate-

gory valid mainly contains objects too big or too small to

be grasped (e.g. chairs), immovable objects (e.g. attached

to a wall), or parts of complex objects (which could be

objects themselves, such as a bicycle’s seat). Figure 16

(top) shows multiple examples of valid objects.

We define an object model Mk as invalid if it is neither

correct nor valid. The category invalid mainly includes

models Mk of groups of objects erroneously segmented, of

a single object but \ 100% group purity, or a mix of mul-

tiple objects erroneously clustered together. Figure 16 (bot-

tom) shows multiple examples of invalid objects.

We define precision and recall as in Tuytelaars et al.

(2009) and Kang et al. (2011). In Kang et al. (2011),

Precision is the ratio between the number of correct

+ valid object models and the total number of discovered

models:

Precision=
#correct+#valid

#correct+#valid+#invalid
ð27Þ

We measure recall as the ratio between the number of

unique correct objects and the total number of ground truth

objects.

Recall=
#unique correct obj:

#unique ground truth obj:
ð28Þ

We use the cluster size to estimate the quality of an

object, and use it as the variable to threshold to compute

the precision–recall curves. To summarize the precision–

recall curves in a single number, we use the average F1-

measure, which balances Precision and Recall for each

sample i in the precision–recall curve:

F1 =
1

N

XN

i

2PrecisioniRecalli
Precisioni +Recalli

ð29Þ

8.3. Results

In this section, we evaluate the impact of metadata to dis-

cover objects. We evaluate the use of metadata to using

visual similarity alone in Section 8.3.1, and then show that

we can leverage metadata to process very large datasets

such as the NSH Dataset in Section 8.3.2.

8.3.1 HerbDisc versus visual similarity. Figure 12 shows

the performance of using a CSG with visual similarity only

(Yvisual = Ymotion^Y3D^Yapp), compared with the full

HerbDisc, in the Kitchen Dataset. We include the motion

filter Ymotion in the evaluation of Yvisual so that both sys-

tems have the same initial pool of object candidates.

HerbDisc is the clear winner in the Kitchen Dataset, with

a maximum recall of 65% at 62% precision, compared with

24% maximum recall at 77% precision. For the same recall

of 24%, HerbDisc achieves 90% precision (13% higher

than the visual similarity Yvisual alone). The additional con-

straints provided by the metadata (and especially Yseq)

allow HerbDisc to process the Kitchen Dataset 190 3 faster

than if using visual similarity alone, as shown in Table 3.

The main reason for this speedup is the limited number of

pairwise similarities to evaluate in the CSG (mainly due to

Yseq) compared with the regular pairwise similarity graph

from Yvisual. Namely, HerbDisc evaluates 16,271 pairwise

visual similarities, compared to 1.6 million in Yvisual.

To illustrate the impact of different constraints on the

CSG, we show in Figure 11 the graphs (displayed as

adjacency matrices) generated by each edge constraint

Ymotion^Yseq, Ystatic, Y3D, and Yapp, for the Kitchen

Dataset. Figure 11 (top) displays the CSG after each con-

straint as evaluated in HerbDisc, cascading the multiple

Table 3. Running times of HerbDisc vs. Yvisual in the Kitchen

Dataset. Using no metadata (Yvisual) is 190 3 slower than using

metadata in this dataset, mainly due to the extra cost of

constructing the graph. The Yvisual needs to evaluate 1.6 million

pairwise visual similarities from 1806 object candidates,

compared with the 16,271 pairwise visual similarities to evaluate

when using metadata in HerbDisc.

Component HerbDisc Yvisual

CSG construction 35.9 s 18,981.8 s
CSG clustering 61.3 s 394.0 s
Object CSG clustering 4.4 s 2.8 s
Total processing time 101.6 s 19,378.6 s

Fig. 12. Impact of using metadata in HerbDisc for the Kitchen

Dataset, compared with visual and 3D similarity alone. HerbDisc

achieves with a maximum recall of 65% at 62% precision,

compared with 24% maximum recall at 77% precision. For the

same recall of 24%, HerbDisc achieves 90% precision (13%

higher than the visual similarity Yvisual alone).
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conjunctive constraints for efficiency. Figure 11 (middle)

shows the CSG for each constraint independently. The

product of all adjacency matrices (rightmost column) is the

same for both approaches, but HerbDisc is more efficient.

The metadata-based constraints Yseq, Ystatic are signifi-

cantly more discriminative than the visual features Y3D and

Yapp. The adjacency matrix for Ymotion^Yseq also illus-

trates the behavior of the dynamic motion filter, generating

sequences of different length (i.e., squares of different size)

depending on HERB’s motion. Figure 11 (bottom) shows

the result of using visual similarity constraints with no

metadata. In this case, the product of all adjacency matrices

(rightmost column) is significantly denser than in

HerbDisc, which accounts for the increased computation

time shown in Table 3.

8.3.2 HerbDisc in the NSH Dataset. In Section 7, we

explored the impact of each individual component of

HerbDisc. We provide a summary plot in Figure 14 that

combines the precision–recall curves of all components.

The attempt to evaluate Yvisual on the NSH Dataset was

unsuccessful, after the testing machine had made barely

any progress after a week of processing. HerbDisc

processes the NSH Dataset in 18 min 34 s. We show an

itemized list of running times for the different steps in

Table 4, and the statistics for images, candidates, edges,

etc., in Table 5. The overall running time does not include

data acquisition time (and motion filtering and candidate

generation, which we execute in parallel with the data

acquisition). The most expensive step is the CSG construc-

tion, which processes 732 connected components in the

Table 4. Running times of HerbDisc in the NSH Dataset. The

motion and sequencing constraint and the candidate generation

are executed in parallel with the data acquisition and are not

included. The overall running time is 1113.9 seconds (18 min

34 s), to discover 121 correct and 85 valid objects from an RGBD

video feed of 6 h 20 min (521,234 samples).

Component Time (s)

Data acquisition 22,836
Read sequence/candidate data Yseq 25.9
CSG construction 710.1
CSG clustering 211.9
Object CSG clustering 54.6
Model registration 111.4
Total processing time 1113.9

Table 5. Impact of each component and quantities generated for

the NSH Dataset, from 521,234 input images to 464 output

models (with 121 correct and 85 valid objects).

Component Output Quantity

S Input samples I 521,234
Ymotion Samples I 19,614
Yseq Disjoint sequences Is 732
H^Ysupport Object candidates h 58,682
Ysize^Yshape CSG nodes VY 49,230
Ystatic^Y3D^Yapp CSG edges EY 431,121
CSG clustering Partial objects mk 2215
Object CSG clustering Full objects Mk 464

Fig. 13. Floor-by-floor evaluation of HerbDisc on the NSH

Dataset. HerbDisc achieves a 28% higher recall in regular office

environments (NSH-1) compared with laboratory and machine

shop environments (NSH-3). Mixed environments containing

both laboratories and offices (NSH-2 and NSH-4) achieve similar

recall. HerbDisc achieves a maximum recall of 28.6% in the

overall NSH Dataset at 44.4% precision, compared with 43.9%

maximum recall in office environments (NSH-1) and 15% in

laboratories and machine shops (NSH-3).

Fig. 14. Summary of precision–recall curves for the ablative

analysis. HerbDisc is the best-performing method, combining the

results of all constraints for improved object discovery in the

NSH-1 dataset.
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CSG, for a total of 49,230 nodes and 4.9 million edges,

with 431,121 edges satisfying all constraints, in 11 min

49 s. The CSG clustering step is the second most expen-

sive step, separating 2215 clusters (i.e. partial objects) in

3 min 31 s. The object CSG clustering and model registra-

tion are the most expensive per-unit steps. However, they

leverage the filtered information from the CSGs to cluster

and register 464 objects in 2 min 45 s.

We discover a total of 464 object models in the NSH

Dataset, where 121 unique objects are correct (28.6%

recall) and 85 are valid (44.4% precision). In Figure 13, we

show the precision–recall curves for the NSH Dataset, as

well as a floor-by-floor analysis (NSH-1 to NSH-4). We see

a clear difference in performance as we move from regular

office environments (NSH-1) to laboratories and machine

shops (NSH-3). In office environments, HerbDisc displays a

maximum recall of 43.9% at 52% precision, and 78% preci-

sion at 20% recall. In contrast, we only achieve a maximum

recall of 15% at 41% precision in the laboratories of NSH-3

(e.g. Figure 4 (2, 3–5)), which include multiple shiny metallic

objects, specular reflections, and extreme clutter.

We can also modify the configuration of HerbDisc on

the fly to achieve different behaviors. For example, if we

are more interested in precision than recall, we can use

Ysupport as a standalone candidate generator and achieve

82% precision at 25% recall (on NSH-1), or reject the

lowest-ranked models and achieve 60% precision at 40%

recall. We show examples of correct objects in Figure 15

and of valid and invalid objects in Figure 16.

The correct objects discovered by HerbDisc are predo-

minantly objects we would expect in an office environ-

ment, such as laptops, books, phones, monitors, keyboards,

and mice. Other objects, such as basketball balls, watering

cans, plants, and food items, showcase the object diversity,

and therefore difficulty, from the NSH Dataset. We require

objects to be 100% pure to be considered correct, which

assures a high quality for potential robotics applications.

For example, for the maximum recall configuration, we

discover 75% of the labeled keyboard instances, 66% of

books, 63% of mugs, and 51% of laptops. Shiny, metallic

objects are particularly hard to discover, as the Kinect often

fails to produce decent point clouds with them. Therefore,

objects such as plyers, screwdrivers, adjustable wrenches,

and other mechanic tools are all outright missed.

In an open task such as object discovery, it is nearly

impossible to obtain comprehensive ground truth. HerbDisc

discovers objects that the annotators considered outside the

guidelines for ground truth in Section 6, such as chairs,

trashcans, or wall-mounted paper holders (see Figure 16).

The discovery of such objects can be due to several reasons.

First, the object priors specified in HerbDisc may not be

specific enough, accepting objects that HERB cannot

manipulate (e.g. chairs and people). Other objects are not

considered correct due to semantic meaning (e.g. the object

is a part of a more complex object, such as a bike seat or a

chair’s armrest), because the object is immovable (e.g. a

wall-mounted paper holder), or because the annotators did

not notice or recognize the object (e.g. paper folders,

cables). We believe that the only way to disambiguate

between these cases is to interact with the objects during

the discovery process, which is a future direction. Our

framework can be used to leverage interaction information

if available, as well as any other source of metadata, when

formulated as constraints.

Among the invalid objects, we identify three main cate-

gories: (1) correct but impure objects; (2) groups of

objects; and (3) mixtures of fragments. The first case refers

to correctly discovered objects that contain a few (or some-

times only one) misplaced candidates, such as the red cup

or the plastic bag in Figure 16. Objects in the second case

are usually compound of multiple objects very close to

each other or touching each other, such as groups monitor–

keyboard–mouse or stapler–stapler–table. The third case

comprises unrecognizable groups of object candidates from

multiple objects. Invalid objects in cases (1) and (3) are

mostly due to clustering errors, which improperly unite

candidates from different objects. Objects in case (2) are

mostly due to candidate generation/segmentation errors,

failing to separate the individual objects in complex scenes.

At maximum recall, 69% of the missed objects are part of

invalid objects (i.e. at least one image of the object is cor-

rectly segmented, but incorrectly associated with an invalid

object), and 31% are outright missed (mostly shiny, metal-

lic objects, such as adjustable wrenches and other mechanic

tools, whose images produce very poor segmentation

results). Among the invalid objects, 64% are groups of

objects, 26% are correct but impure objects, and 10% are

mixtures of fragments.

9. Conclusions

In this paper, we have proposed a solution to discover

objects during an entire workday of a robotic agent, pro-

cessing over 6 hours of raw video stream in under 19 min-

utes. This solution is a first step toward solving our long-

term goal of LROD. The LROD problem, which we have

also introduced in this paper, is the problem of discovering

new objects in the environment during an entire robot’s

lifetime: while the robot operates, for as long as the robot

operates.

We claim that the key to make LROD a feasible prob-

lem is domain knowledge (robotic metadata). We have

introduced a novel formulation to encode generic domain

knowledge and visual information as graph constraints in a

graph-based framework. In this formulation, we can com-

bine multiple constraints using boolean logic expressions.

The resulting metadata-augmented graphs, which we term

CSGs, provide a common framework to encode any source

of information for object discovery.

To assess the validity of our framework, we have intro-

duced an optimized implementation of object discovery

called HerbDisc. In HerbDisc, we efficiently discover

objects in large datasets by leveraging the natural
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constraints of service robotics about the environment, the

robotic agent, and the sensors, as well as the visual

information. We have gathered a dataset of over half a mil-

lion RGBD images (6 h 20 min of raw RGBD video) of

Fig. 15. Examples of Correct objects. For each object, we display its object label (text box); its 3D model (left/right); and 10 randomly

selected images from the set of object candidates hi (center), with the 3D point clouds hPi overlaid in red or blue over each image.
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office and lab environments, ranging from moderately to

extremely cluttered, and containing 423 ground truth

objects, in order to evaluate HerbDisc in a dataset of a rea-

listic robotic workday. HerbDisc processed this dataset in

Fig. 16. Examples of Valid and Invalid objects. For each object, we display its object label (text box); its 3D model (left/right); and 10

randomly selected images from the set of object candidates hi (center), with the 3D point clouds hPi overlaid in red or blue over each image.
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under 19 minutes and discovered 206 novel objects, such

as monitors, keyboards, plants, and food items, with a max-

imum recall of 28.6% at 44.4% precision, and 68% preci-

sion at 15% recall (and, for regular office environments,

maximum recall of 43.9% at 52% precision, and 78% pre-

cision at 20% recall). A key feature to make LROD feasi-

ble is system adaptability to changing conditions. In our

framework, we showed that we can opportunistically lever-

age different sources of information adaptively, when con-

ditions change, just by changing the operating constraints

in the graph-based formulation.

And yet, despite discovering hundreds of novel objects,

HerbDisc failed to discover over half of the total number of

objects. We believe that, in order to truly solve the LROD

problem, it will be necessary to transform the robot from

an observer to an active agent, interacting with objects and

leveraging that information to discover and validate discov-

ered objects. With our framework, we can encode the infor-

mation coming from interaction as more effective graph

constraints, to discover objects resulting from that interac-

tion. A future direction for our research is to develop effec-

tive interaction strategies to discover novel objects, to

disambiguate when uncertain, and to validate the discov-

ered objects by interacting with them.

Another related future direction is to explore online

techniques for object discovery. The framework described

here is essentially a batch process, so that it can be pro-

cessed during the robot’s downtime. However, online pro-

cessing could be performed using the sequences provided

by the motion filter. Once the motion filter generates a new

sequence, of up to 20 seconds, we can cluster and generate

partial objects for that sequence. We would perform an

object CSG clustering step every few hours, to join the

most recent partial objects with the full objects found in

previous object CSG clusterings.

Acknowledgements

Special thanks are due to the members of the Personal Robotics

Lab at Carnegie Mellon University for insightful comments and

discussions.

Funding

This work was partially supported by the National Science

Foundation (grant number EEC-0540865).

References

Bjorkman M and Kragic D (2010) Active 3D scene segmentation

and detection of unknown objects. In: IEEE international

conference on robotics and automation, pp. 3114–3120.

Piscataway, NJ: IEEE Press.

Borrmann D, Elseberg J, Lingermann K, Nuchter A and Hertz-

berg J (2008) The efficient extension of globally consistent

scan matching to 6 DOF. In: International symposium on 3D

data processing, visualization and transmission.

Bouvrie JV (2004) Multi-Source Contingency Clustering. Master’s

Thesis, Massachusetts Institute of Technology (MIT), USA.

Brandes U (2001) A faster algorithm for betweenness centrality.

Journal of Mathematical Sociology 25(2): 163–177.

Collet A (2012) Lifelong Robotic Object Perception. Doctoral dis-

sertation, Carnegie Mellon University, USA.

Collet A, Srinivasa SS and Hebert M (2011) Structure discovery

in multi-modal data: a region-based approach. In: IEEE inter-

national conference on robotics and automation, Shanghai.

Piscataway, NJ: IEEE Press.

Collet A, Xiong B, Gurau C, Hebert M and Srinivasa SS (2013)

Exploiting domain knowledge for object discovery. In: IEEE

international conference on robotics and automation.

Fitzpatrick P (2003) First Contact: an active vision approach to

segmentation. In: international conference on intelligent robots

and systems.

Herbst E, Ren X, Fox D and Henry P (2011) Toward object dis-

covery and modeling via 3-D Scene comparison. In: IEEE

international conference on robotics and automation. Piscat-

away, NJ: IEEE Press.

Hoiem D, Stein AN, Efros AA and Hebert M (2007) Recovering

occlusion boundaries from a single image. In: IEEE interna-

tional conference on computer vision, pp. 1–8. Piscataway, NJ:

IEEE Press.

Hore P, Hall L and Goldgof D (2006) A cluster ensemble frame-

work for large data sets. IEEE international conference on sys-

tems, man and cybernetics, pp. 3342–3347.

Izadi S, Kim D, Hilliges O, et al. (2011) KinectFusion: real-time

3D reconstruction and interaction using a moving depth cam-

era. In: ACM symposium on user interface software and

technology.

Kang H, Hebert M, Efros AA and Kanade T (2012) Connecting

missing links : object discovery from sparse observations using

5 million product images. In: European conference on com-

puter vision.

Kang H, Hebert M and Kanade T (2011) Discovering object

instances from scenes of daily living. In: international confer-

ence on computer vision.

Kootstra G and Kragic D (2011) Fast and bottom-up object detec-

tion, segmentation, and evaluation using Gestalt principles. In:

IEEE international conference on robotics and automation,

pp. 3423–3428.

Lalonde JF, Vandapel N, Huber DF and Hebert M (2006) Natural

terrain classification using three-dimensional ladar data for

ground robot mobility. Journal of Field Robotics 23(10):

839–861.

Lee YJ and Grauman K (2011) Learning the easy things first:

self-paced visual category discovery. In: IEEE conference on

computer vision and pattern recognition, pp. 1721–1728.

Marton ZC, Pangercic D, Blodow N, Kleinehellefort J and Beetz

M (2010) General 3D modelling of novel objects from a single

view. In: IEEE international conference on intelligent robots

and systems, pp. 3700–3705.

Mishra AK and Aloimonos Y (2011) Visual segmentation of

‘‘simple’’ objects for robots. In: Robotics: science and systems.

Morwald T, Prankl J, Richtsfeld A, Zillich M and Vincze M

(2010) BLORT - The Blocks World Robotic Vision Toolbox.

In: IEEE international conference on robotics and automation

workshops.

Philbin J, Sivic J and Zisserman A (2010) Geometric Latent

Dirichlet Allocation on a Matching Graph for Large-scale

Image Datasets. International Journal of Computer Vision

95(2): 138–153.

24 The International Journal of Robotics Research 34(1)



Ruhnke M, Steder B, Grisetti G and Burgard W (2009) Unsuper-

vised learning of 3D object models from partial views.

IEEE international conference on robotics and automation,

pp. 801–806

Russell BC, Freeman WT, Efros AA, Sivic J and Zisserman A

(2006) Using multiple segmentations to discover objects and

their extent in image collections. In: IEEE conference on com-

puter vision and pattern recognition. Piscataway, NJ: IEEE

Press.

Russell BC, Torralba A, Murphy KP and Freeman WT (2008)

LabelMe: a database and Web-based tool for image annotation.

international journal of computer vision 77(1–3): 157–173.

Rusu RB, Blodow N and Beetz M (2009) Fast Point Feature Histo-

grams (FPFH) for 3D registration. IEEE international confer-

ence on robotics and automation, pp. 3212–3217.

Rusu RB and Cousins S (2011) 3D is here: Point Cloud Library

(PCL). In: IEEE international conference on robotics and

automation.

Rusu RB, Marton ZC, Blodow N, Dolha M and Beetz M (2008)

Towards 3D point cloud based object maps for household

environments. Robotics and Autonomous Systems 56(11):

927–941.

Sivic J, Russell BC, Efros AA, Zisserman A and Freeman WT

(2005) Discovering objects and their location in images. In:

IEEE international conference on computer vision. Piscataway,

NJ: IEEE Press.

Somanath G, Rohith MV, Metaxas D and Kambhamettu C (2009)

D - Clutter: building object model library from unsupervised

segmentation of cluttered scenes. In: IEEE conference on com-

puter vision and pattern recognition. Piscataway, NJ: IEEE

Press.

Srinivasa SS, Ferguson D, Helfrich CJ, et al. (2010) HERB: a

home exploring robotic butler. Autonomous Robots 28(1):

5–20.

Strehl A and Ghosh J (2002) Cluster ensembles - a knowledge

reuse framework for combining multiple partitions. Journal of

Machine Learning Research 3(1): 583–617.

Tang W, Lu Z and Dhillon IS (2009) Clustering with multiple

graphs. In: IEEE international conference on data mining.

Troyanskaya OG, Dolinski K, Owen AB, Altman RB and Botstein

D (2003) A Bayesian framework for combining heterogeneous

data sources for gene function prediction (in Saccharomyces

cerevisiae). Proceedings of the National Academy of Sciences

100(14): 8348–8353.

Tuytelaars T, Lampert CH, Blaschko MB and Buntine W (2009)

Unsupervised object discovery: a comparison. International

Journal of Computer Vision 88(2): 284–302.

Weber M, Welling M and Perona P (2000) Towards automatic dis-

covery of object categories. In: IEEE conference on computer

vision and pattern recognition, vol. 2, pp. 101–108. Piscat-

away, NJ: IEEE Press.

Zeng E, Yang C, Li T, et al. (2010) Clustering genes using hetero-

geneous data sources. International Journal of Knowledge

Discovery in Bioinformatics 1(2): 12–28.

Collet et al. 25



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ACaslon-Bold
    /ACaslon-BoldItalic
    /ACaslon-Italic
    /ACaslon-Ornaments
    /ACaslon-Regular
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /AdobeCorpID-Acrobat
    /AdobeCorpID-Adobe
    /AdobeCorpID-Bullet
    /AdobeCorpID-MinionBd
    /AdobeCorpID-MinionBdIt
    /AdobeCorpID-MinionRg
    /AdobeCorpID-MinionRgIt
    /AdobeCorpID-MinionSb
    /AdobeCorpID-MinionSbIt
    /AdobeCorpID-MyriadBd
    /AdobeCorpID-MyriadBdIt
    /AdobeCorpID-MyriadBdScn
    /AdobeCorpID-MyriadBdScnIt
    /AdobeCorpID-MyriadBl
    /AdobeCorpID-MyriadBlIt
    /AdobeCorpID-MyriadLt
    /AdobeCorpID-MyriadLtIt
    /AdobeCorpID-MyriadPkg
    /AdobeCorpID-MyriadRg
    /AdobeCorpID-MyriadRgIt
    /AdobeCorpID-MyriadRgScn
    /AdobeCorpID-MyriadRgScnIt
    /AdobeCorpID-MyriadSb
    /AdobeCorpID-MyriadSbIt
    /AdobeCorpID-MyriadSbScn
    /AdobeCorpID-MyriadSbScnIt
    /AdobeCorpID-PScript
    /AGaramond-BoldScaps
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-RomanScaps
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AGar-Special
    /AkzidenzGroteskBE-Bold
    /AkzidenzGroteskBE-BoldEx
    /AkzidenzGroteskBE-BoldExIt
    /AkzidenzGroteskBE-BoldIt
    /AkzidenzGroteskBE-Ex
    /AkzidenzGroteskBE-It
    /AkzidenzGroteskBE-Light
    /AkzidenzGroteskBE-LightEx
    /AkzidenzGroteskBE-LightOsF
    /AkzidenzGroteskBE-Md
    /AkzidenzGroteskBE-MdEx
    /AkzidenzGroteskBE-MdIt
    /AkzidenzGroteskBE-Regular
    /AkzidenzGroteskBE-Super
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /Aldine401BT-BoldA
    /Aldine401BT-BoldItalicA
    /Aldine401BT-ItalicA
    /Aldine401BT-RomanA
    /Aldine401BTSPL-RomanA
    /Aldine721BT-Bold
    /Aldine721BT-BoldItalic
    /Aldine721BT-Italic
    /Aldine721BT-Light
    /Aldine721BT-LightItalic
    /Aldine721BT-Roman
    /Aldus-Italic
    /Aldus-ItalicOsF
    /Aldus-Roman
    /Aldus-RomanSC
    /AlternateGothicNo2BT-Regular
    /AmazoneBT-Regular
    /AmericanTypewriter-Bold
    /AmericanTypewriter-BoldA
    /AmericanTypewriter-BoldCond
    /AmericanTypewriter-BoldCondA
    /AmericanTypewriter-Cond
    /AmericanTypewriter-CondA
    /AmericanTypewriter-Light
    /AmericanTypewriter-LightA
    /AmericanTypewriter-LightCond
    /AmericanTypewriter-LightCondA
    /AmericanTypewriter-Medium
    /AmericanTypewriter-MediumA
    /Anna
    /AntiqueOlive-Bold
    /AntiqueOlive-Compact
    /AntiqueOlive-Italic
    /AntiqueOlive-Roman
    /Arcadia
    /Arcadia-A
    /Arkona-Medium
    /Arkona-Regular
    /ArrusBT-Black
    /ArrusBT-BlackItalic
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /AssemblyLightSSK
    /AuroraBT-BoldCondensed
    /AuroraBT-RomanCondensed
    /AuroraOpti-Condensed
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /Avenir-Black
    /Avenir-BlackOblique
    /Avenir-Book
    /Avenir-BookOblique
    /Avenir-Heavy
    /Avenir-HeavyOblique
    /Avenir-Light
    /Avenir-LightOblique
    /Avenir-Medium
    /Avenir-MediumOblique
    /Avenir-Oblique
    /Avenir-Roman
    /BaileySansITC-Bold
    /BaileySansITC-BoldItalic
    /BaileySansITC-Book
    /BaileySansITC-BookItalic
    /BakerSignetBT-Roman
    /BaskervilleBE-Italic
    /BaskervilleBE-Medium
    /BaskervilleBE-MediumItalic
    /BaskervilleBE-Regular
    /Baskerville-Bold
    /BaskervilleBook-Italic
    /BaskervilleBook-MedItalic
    /BaskervilleBook-Medium
    /BaskervilleBook-Regular
    /BaskervilleBT-Bold
    /BaskervilleBT-BoldItalic
    /BaskervilleBT-Italic
    /BaskervilleBT-Roman
    /BaskervilleMT
    /BaskervilleMT-Bold
    /BaskervilleMT-BoldItalic
    /BaskervilleMT-Italic
    /BaskervilleMT-SemiBold
    /BaskervilleMT-SemiBoldItalic
    /BaskervilleNo2BT-Bold
    /BaskervilleNo2BT-BoldItalic
    /BaskervilleNo2BT-Italic
    /BaskervilleNo2BT-Roman
    /Baskerville-Normal-Italic
    /BauerBodoni-Black
    /BauerBodoni-BlackCond
    /BauerBodoni-BlackItalic
    /BauerBodoni-Bold
    /BauerBodoni-BoldCond
    /BauerBodoni-BoldItalic
    /BauerBodoni-BoldItalicOsF
    /BauerBodoni-BoldOsF
    /BauerBodoni-Italic
    /BauerBodoni-ItalicOsF
    /BauerBodoni-Roman
    /BauerBodoni-RomanSC
    /Bauhaus-Bold
    /Bauhaus-Demi
    /Bauhaus-Heavy
    /BauhausITCbyBT-Bold
    /BauhausITCbyBT-Heavy
    /BauhausITCbyBT-Light
    /BauhausITCbyBT-Medium
    /Bauhaus-Light
    /Bauhaus-Medium
    /BellCentennial-Address
    /BellGothic-Black
    /BellGothic-Bold
    /Bell-GothicBoldItalicBT
    /BellGothicBT-Bold
    /BellGothicBT-Roman
    /BellGothic-Light
    /Bembo
    /Bembo-Bold
    /Bembo-BoldExpert
    /Bembo-BoldItalic
    /Bembo-BoldItalicExpert
    /Bembo-Expert
    /Bembo-ExtraBoldItalic
    /Bembo-Italic
    /Bembo-ItalicExpert
    /Bembo-Semibold
    /Bembo-SemiboldItalic
    /Benguiat-Bold
    /Benguiat-BoldItalic
    /Benguiat-Book
    /Benguiat-BookItalic
    /BenguiatGothicITCbyBT-Bold
    /BenguiatGothicITCbyBT-BoldItal
    /BenguiatGothicITCbyBT-Book
    /BenguiatGothicITCbyBT-BookItal
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /Benguiat-Medium
    /Benguiat-MediumItalic
    /Berkeley-Black
    /Berkeley-BlackItalic
    /Berkeley-Bold
    /Berkeley-BoldItalic
    /Berkeley-Book
    /Berkeley-BookItalic
    /Berkeley-Italic
    /Berkeley-Medium
    /Berling-Bold
    /Berling-BoldItalic
    /Berling-Italic
    /Berling-Roman
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /BernhardTangoBT-Regular
    /BlockBE-Condensed
    /BlockBE-ExtraCn
    /BlockBE-ExtraCnIt
    /BlockBE-Heavy
    /BlockBE-Italic
    /BlockBE-Regular
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /Boton-Italic
    /Boton-Medium
    /Boton-MediumItalic
    /Boton-Regular
    /Boulevard
    /BremenBT-Black
    /BremenBT-Bold
    /BroadwayBT-Regular
    /CaflischScript-Bold
    /CaflischScript-Regular
    /Caliban
    /CarminaBT-Bold
    /CarminaBT-BoldItalic
    /CarminaBT-Light
    /CarminaBT-LightItalic
    /CarminaBT-Medium
    /CarminaBT-MediumItalic
    /Carta
    /Caslon224ITCbyBT-Bold
    /Caslon224ITCbyBT-BoldItalic
    /Caslon224ITCbyBT-Book
    /Caslon224ITCbyBT-BookItalic
    /Caslon540BT-Italic
    /Caslon540BT-Roman
    /CaslonBT-Bold
    /CaslonBT-BoldItalic
    /CaslonOpenFace
    /CaslonTwoTwentyFour-Black
    /CaslonTwoTwentyFour-BlackIt
    /CaslonTwoTwentyFour-Bold
    /CaslonTwoTwentyFour-BoldIt
    /CaslonTwoTwentyFour-Book
    /CaslonTwoTwentyFour-BookIt
    /CaslonTwoTwentyFour-Medium
    /CaslonTwoTwentyFour-MediumIt
    /CastleT-Bold
    /CastleT-Book
    /Caxton-Bold
    /Caxton-BoldItalic
    /Caxton-Book
    /Caxton-BookItalic
    /CaxtonBT-Bold
    /CaxtonBT-BoldItalic
    /CaxtonBT-Book
    /CaxtonBT-BookItalic
    /Caxton-Light
    /Caxton-LightItalic
    /CelestiaAntiqua-Ornaments
    /Centennial-BlackItalicOsF
    /Centennial-BlackOsF
    /Centennial-BoldItalicOsF
    /Centennial-BoldOsF
    /Centennial-ItalicOsF
    /Centennial-LightItalicOsF
    /Centennial-LightSC
    /Centennial-RomanSC
    /Century-Bold
    /Century-BoldItalic
    /Century-Book
    /Century-BookItalic
    /CenturyExpandedBT-Bold
    /CenturyExpandedBT-BoldItalic
    /CenturyExpandedBT-Italic
    /CenturyExpandedBT-Roman
    /Century-HandtooledBold
    /Century-HandtooledBoldItalic
    /Century-Light
    /Century-LightItalic
    /CenturyOldStyle-Bold
    /CenturyOldStyle-Italic
    /CenturyOldStyle-Regular
    /CenturySchoolbookBT-Bold
    /CenturySchoolbookBT-BoldCond
    /CenturySchoolbookBT-BoldItalic
    /CenturySchoolbookBT-Italic
    /CenturySchoolbookBT-Roman
    /Century-Ultra
    /Century-UltraItalic
    /CharterBT-Black
    /CharterBT-BlackItalic
    /CharterBT-Bold
    /CharterBT-BoldItalic
    /CharterBT-Italic
    /CharterBT-Roman
    /CheltenhamBT-Bold
    /CheltenhamBT-BoldCondItalic
    /CheltenhamBT-BoldExtraCondensed
    /CheltenhamBT-BoldHeadline
    /CheltenhamBT-BoldItalic
    /CheltenhamBT-BoldItalicHeadline
    /CheltenhamBT-Italic
    /CheltenhamBT-Roman
    /Cheltenham-HandtooledBdIt
    /Cheltenham-HandtooledBold
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /Christiana-Bold
    /Christiana-BoldItalic
    /Christiana-Italic
    /Christiana-Medium
    /Christiana-MediumItalic
    /Christiana-Regular
    /Christiana-RegularExpert
    /Christiana-RegularSC
    /Clarendon
    /Clarendon-Bold
    /Clarendon-Light
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /CMR10
    /CMR8
    /CMSY10
    /CMSY8
    /CMTI10
    /CommonBullets
    /ConduitITC-Bold
    /ConduitITC-BoldItalic
    /ConduitITC-Light
    /ConduitITC-LightItalic
    /ConduitITC-Medium
    /ConduitITC-MediumItalic
    /CooperBlack
    /CooperBlack-Italic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Light
    /CooperBT-LightItalic
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-BoldCond
    /CopperplateGothicBT-Heavy
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoBC
    /Coronet-Regular
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Critter
    /CS-Special-font
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Della-RobbiaItalicBT
    /Della-RobbiaSCaps
    /Del-NormalSmallCaps
    /Delphin-IA
    /Delphin-IIA
    /Delta-Bold
    /Delta-BoldItalic
    /Delta-Book
    /Delta-BookItalic
    /Delta-Light
    /Delta-LightItalic
    /Delta-Medium
    /Delta-MediumItalic
    /Delta-Outline
    /DextorD
    /DextorOutD
    /DidotLH-OrnamentsOne
    /DidotLH-OrnamentsTwo
    /DINEngschrift
    /DINEngschrift-Alternate
    /DINMittelschrift
    /DINMittelschrift-Alternate
    /DINNeuzeitGrotesk-BoldCond
    /DINNeuzeitGrotesk-Light
    /Dom-CasItalic
    /DomCasual
    /DomCasual-Bold
    /Dom-CasualBT
    /Ehrhard-Italic
    /Ehrhard-Regular
    /EhrhardSemi-Italic
    /EhrhardtMT
    /EhrhardtMT-Italic
    /EhrhardtMT-SemiBold
    /EhrhardtMT-SemiBoldItalic
    /EhrharSemi
    /ELANGO-IB-A03
    /ELANGO-IB-A75
    /ELANGO-IB-A99
    /ElectraLH-Bold
    /ElectraLH-BoldCursive
    /ElectraLH-Cursive
    /ElectraLH-Regular
    /ElGreco
    /EnglischeSchT-Bold
    /EnglischeSchT-Regu
    /ErasContour
    /ErasITCbyBT-Bold
    /ErasITCbyBT-Book
    /ErasITCbyBT-Demi
    /ErasITCbyBT-Light
    /ErasITCbyBT-Medium
    /ErasITCbyBT-Ultra
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EUEX10
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuropeanPi-Four
    /EuropeanPi-One
    /EuropeanPi-Three
    /EuropeanPi-Two
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldCondensed
    /Eurostile-BoldExtendedTwo
    /Eurostile-BoldOblique
    /Eurostile-Condensed
    /Eurostile-Demi
    /Eurostile-DemiOblique
    /Eurostile-ExtendedTwo
    /EurostileLTStd-Demi
    /EurostileLTStd-DemiOblique
    /Eurostile-Oblique
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /ExPonto-Regular
    /FairfieldLH-Bold
    /FairfieldLH-BoldItalic
    /FairfieldLH-BoldSC
    /FairfieldLH-CaptionBold
    /FairfieldLH-CaptionHeavy
    /FairfieldLH-CaptionLight
    /FairfieldLH-CaptionMedium
    /FairfieldLH-Heavy
    /FairfieldLH-HeavyItalic
    /FairfieldLH-HeavySC
    /FairfieldLH-Light
    /FairfieldLH-LightItalic
    /FairfieldLH-LightSC
    /FairfieldLH-Medium
    /FairfieldLH-MediumItalic
    /FairfieldLH-MediumSC
    /FairfieldLH-SwBoldItalicOsF
    /FairfieldLH-SwHeavyItalicOsF
    /FairfieldLH-SwLightItalicOsF
    /FairfieldLH-SwMediumItalicOsF
    /Fences
    /Fenice-Bold
    /Fenice-BoldOblique
    /FeniceITCbyBT-Bold
    /FeniceITCbyBT-BoldItalic
    /FeniceITCbyBT-Regular
    /FeniceITCbyBT-RegularItalic
    /Fenice-Light
    /Fenice-LightOblique
    /Fenice-Regular
    /Fenice-RegularOblique
    /Fenice-Ultra
    /Fenice-UltraOblique
    /FlashD-Ligh
    /Flood
    /Folio-Bold
    /Folio-BoldCondensed
    /Folio-ExtraBold
    /Folio-Light
    /Folio-Medium
    /FontanaNDAaOsF
    /FontanaNDAaOsF-Italic
    /FontanaNDCcOsF-Semibold
    /FontanaNDCcOsF-SemiboldIta
    /FontanaNDEeOsF
    /FontanaNDEeOsF-Bold
    /FontanaNDEeOsF-BoldItalic
    /FontanaNDEeOsF-Light
    /FontanaNDEeOsF-Semibold
    /FormalScript421BT-Regular
    /Formata-Bold
    /Formata-MediumCondensed
    /ForteMT
    /FournierMT-Ornaments
    /FrakturBT-Regular
    /FrankfurterHigD
    /FranklinGothic-Book
    /FranklinGothic-BookItal
    /FranklinGothic-BookOblique
    /FranklinGothic-Condensed
    /FranklinGothic-Demi
    /FranklinGothic-DemiItal
    /FranklinGothic-DemiOblique
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItal
    /FranklinGothic-HeavyOblique
    /FranklinGothicITCbyBT-BookItal
    /FranklinGothicITCbyBT-Demi
    /FranklinGothicITCbyBT-DemiItal
    /FranklinGothicITCbyBT-Heavy
    /FranklinGothicITCbyBT-HeavyItal
    /FranklinGothic-Medium
    /FranklinGothic-MediumItal
    /FranklinGothic-Roman
    /Freeform721BT-Bold
    /Freeform721BT-BoldItalic
    /Freeform721BT-Italic
    /Freeform721BT-Roman
    /FreestyleScrD
    /Freestylescript
    /FreestyleScript
    /FrizQuadrataITCbyBT-Bold
    /FrizQuadrataITCbyBT-Roman
    /Frutiger-Black
    /Frutiger-BlackCn
    /Frutiger-BlackItalic
    /Frutiger-Bold
    /Frutiger-BoldCn
    /Frutiger-BoldItalic
    /Frutiger-Cn
    /Frutiger-ExtraBlackCn
    /Frutiger-Italic
    /Frutiger-Light
    /Frutiger-LightCn
    /Frutiger-LightItalic
    /Frutiger-Roman
    /Frutiger-UltraBlack
    /Futura
    /FuturaBlackBT-Regular
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldCondensedItalic
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Heavy
    /FuturaBT-HeavyItalic
    /FuturaBT-Light
    /FuturaBT-LightCondensed
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /Futura-CondensedLight
    /Futura-CondensedLightOblique
    /Futura-ExtraBold
    /Futura-ExtraBoldOblique
    /Futura-Heavy
    /Futura-HeavyOblique
    /Futura-Light
    /Futura-LightOblique
    /Futura-Oblique
    /Futura-Thin
    /Galliard-Black
    /Galliard-BlackItalic
    /Galliard-Bold
    /Galliard-BoldItalic
    /Galliard-Italic
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Galliard-Roman
    /Galliard-Ultra
    /Galliard-UltraItalic
    /Garamond-Antiqua
    /GaramondBE-Bold
    /GaramondBE-BoldExpert
    /GaramondBE-BoldOsF
    /GaramondBE-CnExpert
    /GaramondBE-Condensed
    /GaramondBE-CondensedSC
    /GaramondBE-Italic
    /GaramondBE-ItalicExpert
    /GaramondBE-ItalicOsF
    /GaramondBE-Medium
    /GaramondBE-MediumCn
    /GaramondBE-MediumCnExpert
    /GaramondBE-MediumCnOsF
    /GaramondBE-MediumExpert
    /GaramondBE-MediumItalic
    /GaramondBE-MediumItalicExpert
    /GaramondBE-MediumItalicOsF
    /GaramondBE-MediumSC
    /GaramondBE-Regular
    /GaramondBE-RegularExpert
    /GaramondBE-RegularSC
    /GaramondBE-SwashItalic
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BoldItalic
    /Garamond-Book
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-BookItalic
    /Garamond-Halbfett
    /Garamond-HandtooledBold
    /Garamond-HandtooledBoldItalic
    /GaramondITCbyBT-Bold
    /GaramondITCbyBT-BoldCondensed
    /GaramondITCbyBT-BoldCondItalic
    /GaramondITCbyBT-BoldItalic
    /GaramondITCbyBT-BoldNarrow
    /GaramondITCbyBT-BoldNarrowItal
    /GaramondITCbyBT-Book
    /GaramondITCbyBT-BookCondensed
    /GaramondITCbyBT-BookCondItalic
    /GaramondITCbyBT-BookItalic
    /GaramondITCbyBT-BookNarrow
    /GaramondITCbyBT-BookNarrowItal
    /GaramondITCbyBT-Light
    /GaramondITCbyBT-LightCondensed
    /GaramondITCbyBT-LightCondItalic
    /GaramondITCbyBT-LightItalic
    /GaramondITCbyBT-LightNarrow
    /GaramondITCbyBT-LightNarrowItal
    /GaramondITCbyBT-Ultra
    /GaramondITCbyBT-UltraCondensed
    /GaramondITCbyBT-UltraCondItalic
    /GaramondITCbyBT-UltraItalic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garamond-Light
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Garamond-LightItalic
    /GaramondNo4CyrTCY-Ligh
    /GaramondNo4CyrTCY-LighItal
    /GaramondThree
    /GaramondThree-Bold
    /GaramondThree-BoldItalic
    /GaramondThree-BoldItalicOsF
    /GaramondThree-BoldSC
    /GaramondThree-Italic
    /GaramondThree-ItalicOsF
    /GaramondThree-SC
    /GaramondThreeSMSIISpl-Italic
    /GaramondThreeSMSitalicSpl-Italic
    /GaramondThreeSMSspl
    /GaramondThreespl
    /GaramondThreeSpl-Bold
    /GaramondThreeSpl-Italic
    /Garamond-Ultra
    /Garamond-UltraCondensed
    /Garamond-UltraCondensedItalic
    /Garamond-UltraItalic
    /GarthGraphic
    /GarthGraphic-Black
    /GarthGraphic-Bold
    /GarthGraphic-BoldCondensed
    /GarthGraphic-BoldItalic
    /GarthGraphic-Condensed
    /GarthGraphic-ExtraBold
    /GarthGraphic-Italic
    /Geometric231BT-HeavyC
    /GeometricSlab712BT-BoldA
    /GeometricSlab712BT-ExtraBoldA
    /GeometricSlab712BT-LightA
    /GeometricSlab712BT-LightItalicA
    /GeometricSlab712BT-MediumA
    /GeometricSlab712BT-MediumItalA
    /Giddyup
    /Giddyup-Thangs
    /GillSans
    /GillSans-Bold
    /GillSans-BoldCondensed
    /GillSans-BoldExtraCondensed
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-ExtraBold
    /GillSans-ExtraBoldDisplay
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSans-LightShadowed
    /GillSans-Shadowed
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /Gill-Special
    /Giovanni-Bold
    /Giovanni-BoldItalic
    /Giovanni-Book
    /Giovanni-BookItalic
    /Glypha
    /Glypha-Bold
    /Glypha-BoldOblique
    /Glypha-Oblique
    /Gothic-Thirteen
    /Goudy
    /Goudy-Bold
    /Goudy-BoldItalic
    /GoudyCatalogueBT-Regular
    /Goudy-ExtraBold
    /GoudyHandtooledBT-Regular
    /GoudyHeavyfaceBT-Regular
    /GoudyHeavyfaceBT-RegularCond
    /Goudy-Italic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-ExtraBold
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudySans-Black
    /GoudySans-BlackItalic
    /GoudySans-Bold
    /GoudySans-BoldItalic
    /GoudySans-Book
    /GoudySans-BookItalic
    /GoudySansITCbyBT-Black
    /GoudySansITCbyBT-BlackItalic
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Light
    /GoudySansITCbyBT-LightItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GoudySans-Medium
    /GoudySans-MediumItalic
    /Granjon
    /Granjon-Bold
    /Granjon-BoldOsF
    /Granjon-Italic
    /Granjon-ItalicOsF
    /Granjon-SC
    /GreymantleMVB-Ornaments
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Black-SemiBold
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Compressed
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-Light-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Condensed-Thin
    /Helvetica-ExtraCompressed
    /Helvetica-Fraction
    /Helvetica-FractionBold
    /HelveticaInserat-Roman
    /HelveticaInserat-Roman-SemiBold
    /Helvetica-Light
    /Helvetica-LightOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /HelveticaNeue-Black
    /HelveticaNeue-BlackCond
    /HelveticaNeue-BlackCondObl
    /HelveticaNeue-BlackExt
    /HelveticaNeue-BlackExtObl
    /HelveticaNeue-BlackItalic
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldCond
    /HelveticaNeue-BoldCondObl
    /HelveticaNeue-BoldExt
    /HelveticaNeue-BoldExtObl
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-ExtBlackCond
    /HelveticaNeue-ExtBlackCondObl
    /HelveticaNeue-Extended
    /HelveticaNeue-ExtendedObl
    /HelveticaNeue-Heavy
    /HelveticaNeue-HeavyCond
    /HelveticaNeue-HeavyCondObl
    /HelveticaNeue-HeavyExt
    /HelveticaNeue-HeavyExtObl
    /HelveticaNeue-HeavyItalic
    /HelveticaNeue-Italic
    /HelveticaNeue-Light
    /HelveticaNeue-LightCond
    /HelveticaNeue-LightCondObl
    /HelveticaNeue-LightExt
    /HelveticaNeue-LightExtObl
    /HelveticaNeue-LightItalic
    /HelveticaNeueLTStd-Md
    /HelveticaNeueLTStd-MdIt
    /HelveticaNeue-Medium
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-MediumExt
    /HelveticaNeue-MediumExtObl
    /HelveticaNeue-MediumItalic
    /HelveticaNeue-Roman
    /HelveticaNeue-Thin
    /HelveticaNeue-ThinCond
    /HelveticaNeue-ThinCondObl
    /HelveticaNeue-ThinItalic
    /HelveticaNeue-UltraLigCond
    /HelveticaNeue-UltraLigCondObl
    /HelveticaNeue-UltraLigExt
    /HelveticaNeue-UltraLigExtObl
    /HelveticaNeue-UltraLight
    /HelveticaNeue-UltraLightItal
    /Helvetica-Oblique
    /Helvetica-UltraCompressed
    /HelvExtCompressed
    /HelvLight
    /HelvUltCompressed
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-ExtraBold
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /Humanist521BT-UltraBold
    /Humanist521BT-XtraBoldCondensed
    /Humanist531BT-BlackA
    /Humanist531BT-BoldA
    /Humanist531BT-RomanA
    /Humanist531BT-UltraBlackA
    /Humanist777BT-BlackB
    /Humanist777BT-BlackCondensedB
    /Humanist777BT-BlackItalicB
    /Humanist777BT-BoldB
    /Humanist777BT-BoldCondensedB
    /Humanist777BT-BoldItalicB
    /Humanist777BT-ExtraBlackB
    /Humanist777BT-ExtraBlackCondB
    /Humanist777BT-ItalicB
    /Humanist777BT-LightB
    /Humanist777BT-LightCondensedB
    /Humanist777BT-LightItalicB
    /Humanist777BT-RomanB
    /Humanist777BT-RomanCondensedB
    /Humanist970BT-BoldC
    /Humanist970BT-RomanC
    /HumanistSlabserif712BT-Black
    /HumanistSlabserif712BT-Bold
    /HumanistSlabserif712BT-Italic
    /HumanistSlabserif712BT-Roman
    /ICMEX10
    /ICMMI8
    /ICMSY8
    /ICMTT8
    /Iglesia-Light
    /ILASY8
    /ILCMSS8
    /ILCMSSB8
    /ILCMSSI8
    /Imago-Book
    /Imago-BookItalic
    /Imago-ExtraBold
    /Imago-ExtraBoldItalic
    /Imago-Light
    /Imago-LightItalic
    /Imago-Medium
    /Imago-MediumItalic
    /Industria-Inline
    /Industria-InlineA
    /Industria-Solid
    /Industria-SolidA
    /Insignia
    /Insignia-A
    /IPAExtras
    /IPAHighLow
    /IPAKiel
    /IPAKielSeven
    /IPAsans
    /ITCGaramondMM
    /ITCGaramondMM-It
    /JAKEOpti-Regular
    /JansonText-Bold
    /JansonText-BoldItalic
    /JansonText-Italic
    /JansonText-Roman
    /JansonText-RomanSC
    /JoannaMT
    /JoannaMT-Bold
    /JoannaMT-BoldItalic
    /JoannaMT-Italic
    /Juniper
    /KabelITCbyBT-Book
    /KabelITCbyBT-Demi
    /KabelITCbyBT-Medium
    /KabelITCbyBT-Ultra
    /Kaufmann
    /Kaufmann-Bold
    /KeplMM-Or2
    /KisBT-Italic
    /KisBT-Roman
    /KlangMT
    /Kuenstler480BT-Black
    /Kuenstler480BT-Bold
    /Kuenstler480BT-BoldItalic
    /Kuenstler480BT-Italic
    /Kuenstler480BT-Roman
    /KunstlerschreibschD-Bold
    /KunstlerschreibschD-Medi
    /Lapidary333BT-Black
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /LASY10
    /LASY5
    /LASY6
    /LASY7
    /LASY8
    /LASY9
    /LASYB10
    /LatinMT-Condensed
    /LCIRCLE10
    /LCIRCLEW10
    /LCMSS8
    /LCMSSB8
    /LCMSSI8
    /LDecorationPi-One
    /LDecorationPi-Two
    /Leawood-Black
    /Leawood-BlackItalic
    /Leawood-Bold
    /Leawood-BoldItalic
    /Leawood-Book
    /Leawood-BookItalic
    /Leawood-Medium
    /Leawood-MediumItalic
    /LegacySans-Bold
    /LegacySans-BoldItalic
    /LegacySans-Book
    /LegacySans-BookItalic
    /LegacySans-Medium
    /LegacySans-MediumItalic
    /LegacySans-Ultra
    /LegacySerif-Bold
    /LegacySerif-BoldItalic
    /LegacySerif-Book
    /LegacySerif-BookItalic
    /LegacySerif-Medium
    /LegacySerif-MediumItalic
    /LegacySerif-Ultra
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldSlanted
    /LetterGothic-Slanted
    /Life-Bold
    /Life-Italic
    /Life-Roman
    /LINE10
    /LINEW10
    /Linotext
    /Lithos-Black
    /LithosBold
    /Lithos-Bold
    /Lithos-Regular
    /LOGO10
    /LOGO8
    /LOGO9
    /LOGOBF10
    /LOGOSL10
    /LOMD-Normal
    /LubalinGraph-Book
    /LubalinGraph-BookOblique
    /LubalinGraph-Demi
    /LubalinGraph-DemiOblique
    /LucidaHandwritingItalic
    /LucidaMath-Symbol
    /LucidaSansTypewriter
    /LucidaSansTypewriter-Bd
    /LucidaSansTypewriter-BdObl
    /LucidaSansTypewriter-Obl
    /LucidaTypewriter
    /LucidaTypewriter-Bold
    /LucidaTypewriter-BoldObl
    /LucidaTypewriter-Obl
    /LydianBT-Bold
    /LydianBT-BoldItalic
    /LydianBT-Italic
    /LydianBT-Roman
    /LydianCursiveBT-Regular
    /Machine
    /Machine-Bold
    /Marigold
    /MathematicalPi-Five
    /MathematicalPi-Four
    /MathematicalPi-One
    /MathematicalPi-Six
    /MathematicalPi-Three
    /MathematicalPi-Two
    /MatrixScriptBold
    /MatrixScriptBoldLin
    /MatrixScriptBook
    /MatrixScriptBookLin
    /MatrixScriptRegular
    /MatrixScriptRegularLin
    /Melior
    /Melior-Bold
    /Melior-BoldItalic
    /Melior-Italic
    /MercuriusCT-Black
    /MercuriusCT-BlackItalic
    /MercuriusCT-Light
    /MercuriusCT-LightItalic
    /MercuriusCT-Medium
    /MercuriusCT-MediumItalic
    /MercuriusMT-BoldScript
    /Meridien-Bold
    /Meridien-BoldItalic
    /Meridien-Italic
    /Meridien-Medium
    /Meridien-MediumItalic
    /Meridien-Roman
    /Minion-Black
    /Minion-Bold
    /Minion-BoldCondensed
    /Minion-BoldCondensedItalic
    /Minion-BoldItalic
    /Minion-Condensed
    /Minion-CondensedItalic
    /Minion-DisplayItalic
    /Minion-DisplayRegular
    /MinionExp-Italic
    /MinionExp-Semibold
    /MinionExp-SemiboldItalic
    /Minion-Italic
    /Minion-Ornaments
    /Minion-Regular
    /Minion-Semibold
    /Minion-SemiboldItalic
    /MonaLisa-Recut
    /MrsEavesAllPetiteCaps
    /MrsEavesAllSmallCaps
    /MrsEavesBold
    /MrsEavesFractions
    /MrsEavesItalic
    /MrsEavesPetiteCaps
    /MrsEavesRoman
    /MrsEavesRomanLining
    /MrsEavesSmallCaps
    /MSAM10
    /MSAM10A
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM10A
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MTEX
    /MTEXB
    /MTEXH
    /MTGU
    /MTGUB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MTSYN
    /MusicalSymbols-Normal
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-CnBold
    /Myriad-CnBoldItalic
    /Myriad-CnItalic
    /Myriad-CnSemibold
    /Myriad-CnSemiboldItalic
    /Myriad-Condensed
    /Myriad-Italic
    /MyriadMM
    /MyriadMM-It
    /Myriad-Roman
    /Myriad-Sketch
    /Myriad-Tilt
    /NeuzeitS-Book
    /NeuzeitS-BookHeavy
    /NewBaskerville-Bold
    /NewBaskerville-BoldItalic
    /NewBaskerville-Italic
    /NewBaskervilleITCbyBT-Bold
    /NewBaskervilleITCbyBT-BoldItal
    /NewBaskervilleITCbyBT-Italic
    /NewBaskervilleITCbyBT-Roman
    /NewBaskerville-Roman
    /NewCaledonia
    /NewCaledonia-Black
    /NewCaledonia-BlackItalic
    /NewCaledonia-Bold
    /NewCaledonia-BoldItalic
    /NewCaledonia-BoldItalicOsF
    /NewCaledonia-BoldSC
    /NewCaledonia-Italic
    /NewCaledonia-ItalicOsF
    /NewCaledonia-SC
    /NewCaledonia-SemiBold
    /NewCaledonia-SemiBoldItalic
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothic-BoldOblique
    /NewsGothicBT-Bold
    /NewsGothicBT-BoldCondensed
    /NewsGothicBT-BoldCondItalic
    /NewsGothicBT-BoldExtraCondensed
    /NewsGothicBT-BoldItalic
    /NewsGothicBT-Demi
    /NewsGothicBT-DemiItalic
    /NewsGothicBT-ExtraCondensed
    /NewsGothicBT-Italic
    /NewsGothicBT-ItalicCondensed
    /NewsGothicBT-Light
    /NewsGothicBT-LightItalic
    /NewsGothicBT-Roman
    /NewsGothicBT-RomanCondensed
    /NewsGothic-Oblique
    /New-Symbol
    /NovareseITCbyBT-Bold
    /NovareseITCbyBT-BoldItalic
    /NovareseITCbyBT-Book
    /NovareseITCbyBT-BookItalic
    /Nueva-BoldExtended
    /Nueva-Roman
    /NuptialScript
    /OceanSansMM
    /OceanSansMM-It
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /OnyxMT
    /Optima
    /Optima-Bold
    /Optima-BoldItalic
    /Optima-BoldOblique
    /Optima-ExtraBlack
    /Optima-ExtraBlackItalic
    /Optima-Italic
    /Optima-Oblique
    /OSPIRE-Plain
    /OttaIA
    /Otta-wa
    /Ottawa-BoldA
    /OttawaPSMT
    /Oxford
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /Parisian
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PhotinaMT
    /PhotinaMT-Bold
    /PhotinaMT-BoldItalic
    /PhotinaMT-Italic
    /PhotinaMT-SemiBold
    /PhotinaMT-SemiBoldItalic
    /PhotinaMT-UltraBold
    /PhotinaMT-UltraBoldItalic
    /Plantin
    /Plantin-Bold
    /Plantin-BoldItalic
    /Plantin-Italic
    /Plantin-Light
    /Plantin-LightItalic
    /Plantin-Semibold
    /Plantin-SemiboldItalic
    /Poetica-ChanceryI
    /Poetica-SuppLowercaseEndI
    /PopplLaudatio-Italic
    /PopplLaudatio-Medium
    /PopplLaudatio-MediumItalic
    /PopplLaudatio-Regular
    /ProseAntique-Bold
    /ProseAntique-Normal
    /QuaySansEF-Black
    /QuaySansEF-BlackItalic
    /QuaySansEF-Book
    /QuaySansEF-BookItalic
    /QuaySansEF-Medium
    /QuaySansEF-MediumItalic
    /Quorum-Black
    /Quorum-Bold
    /Quorum-Book
    /Quorum-Light
    /Quorum-Medium
    /Raleigh
    /Raleigh-Bold
    /Raleigh-DemiBold
    /Raleigh-Medium
    /Revival565BT-Bold
    /Revival565BT-BoldItalic
    /Revival565BT-Italic
    /Revival565BT-Roman
    /Ribbon131BT-Bold
    /Ribbon131BT-Regular
    /RMTMI
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /RotisSansSerif
    /RotisSansSerif-Bold
    /RotisSansSerif-ExtraBold
    /RotisSansSerif-Italic
    /RotisSansSerif-Light
    /RotisSansSerif-LightItalic
    /RotisSemiSans
    /RotisSemiSans-Bold
    /RotisSemiSans-ExtraBold
    /RotisSemiSans-Italic
    /RotisSemiSans-Light
    /RotisSemiSans-LightItalic
    /RotisSemiSerif
    /RotisSemiSerif-Bold
    /RotisSerif
    /RotisSerif-Bold
    /RotisSerif-Italic
    /RunicMT-Condensed
    /Sabon-Bold
    /Sabon-BoldItalic
    /Sabon-Italic
    /Sabon-Roman
    /SackersGothicLight
    /SackersGothicLightAlt
    /SackersItalianScript
    /SackersItalianScriptAlt
    /Sam
    /Sanvito-Light
    /SanvitoMM
    /Sanvito-Roman
    /Semitica
    /Semitica-Italic
    /SIVAMATH
    /Siva-Special
    /SMS-SPELA
    /Souvenir-Demi
    /Souvenir-DemiItalic
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /Souvenir-Light
    /Souvenir-LightItalic
    /SpecialAA
    /Special-Gali
    /Sp-Sym
    /StempelGaramond-Bold
    /StempelGaramond-BoldItalic
    /StempelGaramond-Italic
    /StempelGaramond-Roman
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-PhoneticAlternate
    /StoneSans-PhoneticIPA
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /StoneSerif
    /StoneSerif-Italic
    /StoneSerif-PhoneticAlternate
    /StoneSerif-PhoneticIPA
    /StoneSerif-Semibold
    /StoneSerif-SemiboldItalic
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-BlackRounded
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-BoldRounded
    /Swiss721BT-Heavy
    /Swiss721BT-HeavyItalic
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Medium
    /Swiss721BT-MediumItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721BT-ThinItalic
    /Swiss921BT-RegularA
    /Symbol
    /Syntax-Black
    /Syntax-Bold
    /Syntax-Italic
    /Syntax-Roman
    /Syntax-UltraBlack
    /Tekton
    /Times-Bold
    /Times-BoldA
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Italic
    /Times-NewRoman
    /Times-NewRomanBold
    /Times-Oblique
    /Times-PhoneticAlternate
    /Times-PhoneticIPA
    /Times-Roman
    /Times-RomanSmallCaps
    /Times-Sc
    /Times-SCB
    /Times-special
    /TimesTenGreekP-Upright
    /TradeGothic
    /TradeGothic-Bold
    /TradeGothic-BoldCondTwenty
    /TradeGothic-BoldCondTwentyObl
    /TradeGothic-BoldOblique
    /TradeGothic-BoldTwo
    /TradeGothic-BoldTwoOblique
    /TradeGothic-CondEighteen
    /TradeGothic-CondEighteenObl
    /TradeGothicLH-BoldExtended
    /TradeGothicLH-Extended
    /TradeGothic-Light
    /TradeGothic-LightOblique
    /TradeGothic-Oblique
    /Trajan-Bold
    /TrajanPro-Bold
    /TrajanPro-Regular
    /Trajan-Regular
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /Transitional551BT-MediumB
    /Transitional551BT-MediumItalicB
    /Univers
    /Universal-GreekwithMathPi
    /Universal-NewswithCommPi
    /Univers-BlackExt
    /Univers-BlackExtObl
    /Univers-Bold
    /Univers-BoldExt
    /Univers-BoldExtObl
    /Univers-BoldOblique
    /Univers-Condensed
    /Univers-CondensedBold
    /Univers-CondensedBoldOblique
    /Univers-CondensedOblique
    /Univers-Extended
    /Univers-ExtendedObl
    /Univers-ExtraBlackExt
    /Univers-ExtraBlackExtObl
    /Univers-Light
    /Univers-LightOblique
    /UniversLTStd-Black
    /UniversLTStd-BlackObl
    /Univers-Oblique
    /Utopia-Black
    /Utopia-BlackOsF
    /Utopia-Bold
    /Utopia-BoldItalic
    /Utopia-Italic
    /Utopia-Ornaments
    /Utopia-Regular
    /Utopia-Semibold
    /Utopia-SemiboldItalic
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Viva-BoldExtraExtended
    /Viva-Regular
    /Weidemann-Black
    /Weidemann-BlackItalic
    /Weidemann-Bold
    /Weidemann-BoldItalic
    /Weidemann-Book
    /Weidemann-BookItalic
    /Weidemann-Medium
    /Weidemann-MediumItalic
    /WindsorBT-Elongated
    /WindsorBT-Light
    /WindsorBT-LightCondensed
    /WindsorBT-Roman
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /ZapfCalligraphic801BT-Bold
    /ZapfCalligraphic801BT-BoldItal
    /ZapfCalligraphic801BT-Italic
    /ZapfCalligraphic801BT-Roman
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Demi
    /ZapfChanceryITCbyBT-Medium
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Demi
    /ZapfHumanist601BT-DemiItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZapfHumanist601BT-Ultra
    /ZapfHumanist601BT-UltraItalic
    /ZurichBT-Black
    /ZurichBT-BlackExtended
    /ZurichBT-BlackItalic
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldExtended
    /ZurichBT-BoldExtraCondensed
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraBlack
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-LightCondensedItalic
    /ZurichBT-LightExtraCondensed
    /ZurichBT-LightItalic
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
  ]
  /NeverEmbed [ true
    /TimesNewRomanPS
    /TimesNewRomanPS-Bold
    /TimesNewRomanPS-BoldItalic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-Italic
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /NLD <>
    /NOR <>
    /PTB <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /SVE <>
    /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


