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Fig. 1: The three tasks we consider, GearInsertion, GraspCoin, and GraspCube, along with our three task objects: a coin, a Lego gear, and a small cube.

Abstract— We consider imitation learning with access only
to expert demonstrations, whose real-world application is often
limited by covariate shift due to compounding errors during
execution. We investigate the effectiveness of the Continuity-
based Corrective Labels for Imitation Learning (CCIL) frame-
work in mitigating this issue for real-world fine manipulation
tasks. CCIL generates corrective labels by learning a locally
continuous dynamics model from demonstrations to guide the
agent back toward expert states. Through extensive experiments
on insertion and fine grasping tasks, we provide the first em-
pirical validation that CCIL can significantly improve imitation
learning performance despite discontinuities present in contact-
rich manipulation. We find that: (1) real-world manipulation
exhibits sufficient local smoothness to apply CCIL, (2) gener-
ated corrective labels are most beneficial in low-data regimes,
and (3) label filtering based on estimated dynamics model error
enables performance gains. To effectively apply CCIL to robotic
domains, we offer a practical instantiation of the framework
and insights into design choices and hyperparameter selection.
Our work demonstrates CCIL’s practicality for alleviating
compounding errors in imitation learning on physical robots.

I. INTRODUCTION

Imitation learning has shown remarkable scalability with
large datasets [1, 2], emerging as a promising paradigm for
robots to mimic complex behaviors from demonstrations [3–
5]. However, usage of imitation learning in robotics is often
constrained by covariate shift and the scarcity of demon-
strations [6, 7]. Real-world robotic policies can suffer from
an accumulation of sensor and joint noises when a robot
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executes a trajectory. These compounding errors can cause
the agent to encounter out-of-distribution states, resulting in
task failures.

Though various methods have been proposed to address
this issue, their application can be limited by requirements
such as the availability of interactive experts [8, 9], sim-
ulators [10], a large-batch of sub-optimal data [11], and
task-specific domain knowledge [12–16]. To achieve broad
applicability without complex prerequisites, we focus on
imitation learning that operates under practical assumptions,
relying solely on offline demonstrations without requiring
interactive experts or simulators.

In this context, the framework of Continuity-based Correc-
tive labels for Imitation Learning (CCIL) [17] has demon-
strated promising results in simulations across multiple
domains. CCIL combats compounding errors in imitation
learning by generating corrective labels that bring the robot
back to expert states. To do so without the ground truth
dynamics model, CCIL learns a dynamics model from the
demonstrations and uses it to synthesize labels. Importantly,
it leverages local Lipschitz continuity in the system dynam-
ics, which allows fitting a dynamics model while having
explicit guarantees on where the learned model has bounded
errors, namely in the neighborhood near the demonstration
data. This insight enables corrective label generation with
theoretical guarantees, potentially alleviating compounding
errors in imitation learning.

Despite CCIL’s effectiveness in simulation domains, there
is an absence of empirical evidence supporting its real-world
applicability, and there remains a gap in understanding its
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parameter choices for practical application. Critically, CCIL
assumes the presence of local Lipschitz continuity [18] in
the system dynamics—a physical property that can vary
across tasks and datasets. Many tasks, such as manipulation,
involve complex contact interactions that exhibit discontinu-
ities in dynamics, raising doubts about CCIL’s efficacy under
such challenging real-world conditions. Therefore, research
questions persist about required design decisions, parameter
choices, and tuning procedures to enable its success.

Our work aims to answer these questions by compre-
hensively analyzing CCIL’s performance on real-world fine
manipulation tasks. Through extensive ablation studies, we
explore CCIL’s assumptions and examine the impact of de-
sign choices on its practicality. These studies give rise to our
key insight, namely, that even in contact-rich manipulation
domains with varying discontinuities in dynamical systems,
it is feasible and practical to use CCIL to generate corrective
labels in the sub-space that contains local continuity. To
this end, we propose a practical instantiation of the CCIL
framework tailored to identify and fit dynamics models for
domains with mixed local Lipschitz continuity. Our ablation
study tests vary controlled variables—i.e., data quantity,
dynamics model learning, and hyperparameter sensitivity—
to produce practical guidelines for applying CCIL. Our
experiments provide empirical evidence that generating cor-
rective labels using the CCIL framework significantly benefits
imitation learning.

We focus on the domain of fine manipulation, an area that
encompasses a wide range of real-world applications, from
manufacturing to assistive robotics [19–21]. Fine manipula-
tion tasks are notably challenging even for human experts
due to their demand for precise control and susceptibility
to failure from minor inaccuracies, resulting in limited data
availability. However, learning from demonstration is often
preferred over model-based methods for many fine manipu-
lation tasks with hard-to-define cost functions (e.g., stitching
wounds), or hard to model dynamics. Thus, the inherent
difficulties of fine manipulation underscore a critical need
for strategies to mitigate compounding errors in imitation
learning, making it an ideal testing ground.

In summary, we contribute:
• Experiments that demonstrate CCIL’s capability to im-

prove the performance of imitation learning agents on
real-world fine manipulation tasks with limited data avail-
ability. CCIL boosts the success rate for GraspCube from
23% to 83%, for GearInsertion from 58% to 72%, and
for GraspCoin from 17% to 48%.

• Experiments with varying availability of expert data
that validate with statistical significance the performance
boost CCIL offers in low-data regimes.

• Extensive ablation tests that analyze how design choices
and hyperparameters affect the local Lipschitz continuity
and label errors, key conditions for CCIL to succeed. Our
insights provide practical guidance on choosing Lipschitz
constraints for training dynamics and choosing error
bounds to generate corrective labels.

Algorithm 1: Our Instantiation of CCIL: Continuity-based Corrective labels
for Imitation Learning

1: Input: D∗ = (s∗i , a
∗
i , s

∗
i+1)

2: Initialize: DG ← ∅
3: // Learn Dynamics
4: MSE ← E(s∗i ,a

∗
i ,s

∗
i+1)∼D∗

[
f̂(s∗i , a

∗
i ) + s∗i − s∗i+1)

]
5: f̂ ← argminf̂ MSE s.t. ∥W∥2 ≤ L
6: // Generate Labels
7: for i = 1..n do
8: (sGi , a

G
i )← GenLabels (s∗i , a

∗
i , s

∗
i+1)

9: if ||Jf̂ (s
∗
i , a

∗
i )||2 · ||sGi − s∗i || < ϵ then

10: DG ← DG ∪ (sGi , a
G
i )

11: end if
12: end for
13: D ← D∗ ∪ DG

14: // Learn Policy
15: LearnPolicy π
16: Function GenLabels
17: aGi ← a∗i
18: sGi ← s∗i − f̂(s∗i , a

∗
i )

19: Function LearnPolicy
20: L(a, â)← policy loss function, as defined in Eq 9
21: π = argminπ E(si,ai)∼D [L(ai, π(si))]

II. CONTINUITY-BASED CORRECTIVE LABELS

This section describes the framework we use to train
imitation learning policies and highlights the design choices
we made. Our training framework uses behavior cloning
[1] and Continuity-based Corrective Labels for Imitation
Learning (CCIL). Behavior cloning is an imitation learning
algorithm that trains a policy from expert demonstrations,
and CCIL is a data augmentation framework to enhance
the robustness of imitation learning agents. Our derivation
follows the existing CCIL framework, but we provide a self-
contained instantiation in Section II-B. Choosing variants and
parameters for this framework is largely domain-specific and
can be costly to tune in the real world. We detail our practical
instantiation in Section II-C.

A. Notation for Imitation Learning and Behavior Cloning

We consider a finite-horizon Markov Decision Process
(MDP),M = {S,A, f, P0}, where S is the state space, A is
the action space, f is the ground truth dynamics function, and
P0 is the initial state distribution. A policy maps a state to a
distribution of actions π : s→ a. We assume a deterministic
world dynamics function, where f maps a state st and an
action at at time t to the change in state such that the
next state is st+1 = st + f(st, at). Following the common
setting in imitation learning, the true dynamics function f
is unknown, and we have only expert demonstrations D∗ as
a collection of transition triplets: D∗ = {(s∗j , a∗j , s∗j+1)}j ,
where s∗j+1 = s∗j + f(s∗j , a

∗
j ), i.e., for state s∗j the expert

provided an action label of a∗j . Behavior cloning learns
a policy from these traces by maximizing the likelihood



of the expert actions being produced at the expert states:
argmaxπ̂ Es∗j ,a

∗
j ,s

∗
j+1∼D∗ log(π̂(a∗j | s∗j )).

B. Continuity-based Corrective Labels

CCIL aims to reduce compounding errors in imitation
learning by generating corrective labels that guide the robot
back to expert-visited states and recovery from mistakes. For
each transition in expert data, (s∗t , a

∗
t , s

∗
t+1), CCIL proposes

to generate some state-action pair (sGt , a
G
t ) to bring the agent

to expert state s∗t . With a known dynamics model f , we can
sample labels and query f to ensure sGt +f(sGt , a

G
t )−s∗t → 0.

Without it, CCIL must first train a dynamics model.
Training a Dynamics Model. We can train a dynamics

model by minimizing the following loss:

E(s∗t ,a
∗
t ,s

∗
t+1)∼D∗

[
f̂(s∗t , a

∗
t ) + s∗t − s∗t+1

]
. (1)

A learned dynamics model can yield reliable predictions only
near its data support, not on arbitrary states and actions.
CCIL decides where to query the learned dynamics models
by leveraging the presence of local Lipschitz continuity in the
system dynamics, as specified in Definition 2.1. If (s∗, a∗)
belongs to a space with local Lipschitz continuity, given
small changes in the input state or actions, the resultant
changes in the system’s state are bounded and predictable
to a degree, as follows.

Definition 2.1 (Local Lipschitz Continuity). A function f is
locally Lipschitz continuous around (s, a) with coefficient K
if there exists a neighborhood of (s, a) of size δ such that
for every (s̃, ã) where ∥(s, a)− (s̃, ã)∥ ≤ δ:

∥f(s, a)− f(s̃, ã)∥ ≤ K∥(s, a)− (s̃, ã)∥. (2)

CCIL encourages the learned dynamics function to ex-
hibit local Lipschitz continuity by modifying the training
objective. We choose spectral normalization regularization
and elaborate on the reasons in Sec. II-C. Specifically, to
train a dynamics model f̂ using a neural network of n-layers
with weight matrices W1,W2, . . . ,Wn, we can iteratively
minimize the training objective (Eq. 1) while regularizing
the model by setting

Wi ←
Wi

max(∥Wi∥2,K−n)
·K−n (3)

for all Wi, where K is the desired Lipschitz constant.
Label Generation. With a learned dynamics model f̂ ,

CCIL attempts to find a corrective label (sGt , a
G
t ) for each

expert data point (s∗t , a
∗
t ) such that sGt + f̂(sGt , a

G
t ) ≈ s∗t . We

consider the BackTrack label generator inspired by Backward
Euler used in modern simulators:

sGt ← s∗t − f̂(s∗t , a
∗
t )

aGt ← a∗t
(4)

Filtering Generated Labels by Label Distance. The
generated label (sGt , a

G
t ) aims to bring the agent to some

expert state s∗t . Its error on the true dynamics is ∥f(sGt , a∗t )−
f̂(sGt , a

∗
t )∥. CCIL provides a bound for this error, as follows.

Theorem 2.2. When the dynamics model has a bounded
training error ϵ on the training data, if the learned dynamics
f̂ and true dynamics f are respectively locally K1 and K2-
Lipschitz within some neighborhood of (s∗t , a

∗
t ) of size δ, and

∥sGt − s∗t ∥ < δ, then∥∥∥f (
sGt , a

∗
t

)
− f̂

(
sGt , a

∗
t

)∥∥∥ ≤ ϵ+ (K1 +K2)
∥∥sGt − s∗t

∥∥ .
(5)

To ensure the generated labels are of low error bound,
CCIL sets a hyperparameter δ, denoting the desired size of
the neighborhood for local Lipschitz continuity. It filters out
generated labels outside the neighborhood ∥sGt − s∗t ∥ > δ.
Sec. II-C describes our modification to this filtering.

Learn Policy. A straightforward way to utilize the gen-
erated labels is to add them to the demonstration dataset to
train any imitation learning agent. For simplicity, we consider
the following behavior cloning objective to train a policy:

π = argmin
π

E(si,ai)∼D [L(ai, π(si))] . (6)

C. Our Practical Instantiation of CCIL

CCIL’s effectiveness critically hinges on (1) training a
dynamics model for the locally continuous state-action space,
and (2) using it to generate labels with reasonable error
bounds. We recommend simple design choices based on
practical insights. Alg. 1 summarizes our approach.

Training Dynamic Models. CCIL requires training a
dynamics model that contains local Lipschitz continuity and
proposes a few candidate loss functions. We aim to achieve
this goal using only spectral normalization regularization. We
highlight that the local Lipschitz constant K varies not just
between domains, but also between different state-actions in
the same domain. Regardless of the training objective, as
long as f̂ is modeled via a neural network, we can measure
the local Lipschitz constant at any state-action by calculating
the local Jacobian matrix Jf̂ as follows.

Remark 2.3. For a continuous function f̂ , the local Lipschitz
constant in a neighborhood around a given point (s, a) is

K(s, a) ≈ ∥Jf̂ (s, a)∥2. (7)

Training with spectral normalization imposes an upper
bound on the Lipschitz constant. The learned model will
still exhibit local Lipschitz continuity with varying Lipschitz
constants at different state-actions. In practice, we can set
a loose upper bound on the local Lipschitz continuity and
still achieve local Lipschitz continuity at various regions in
the state space, thereby satisfying the condition required by
CCIL.

Filtering Generated Labels by Label Error. CCIL
proposes to filter out generated labels (sGt , a

G
t ) if the label

distance ∥sGt − s∗t ∥ violates a set threshold ∥sGt − s∗t ∥ > δ.
This implicitly assumes that the size of the neighborhood
of local Lipschitz continuity stays constant throughout the
state space, making it challenging to tune the threshold δ.
We refine this rejection process, as indicated in line 9 of
Alg. 1.



(a) Robot Hardware (b) Teleoperation

Fig. 2: System overview. (a) Our HEBI-based 7-DOF robot with a chopstick
end-effector. (b) Teleoperation mimicking leader chopsticks tracked using a
motion-capture cage.

The error bound for each generated label (Theorem 2.2)
depends not only on the label distance but also on the
training error ϵ and the local Lipschitz coefficients of f̂ ,
K1. By measuring ϵ and K1 (Remark 2.3), we can calculate
an error bound for each generated label. For a synthetic
label (sGt , a

G
t ) generated from expert demonstrations (s∗t , a

∗
t ),

knowing aGt = a∗t and assuming ϵ ≈ 0 and K2 ∝ K1, we
can set a threshold on the acceptable label error bound σ and
reject the label if

∥Jf̂ (s
∗
t , a

∗
t )∥2 · ∥sGt − s∗t ∥ ≥ σ. (8)

In practice, we first generate all labels and examine the
distribution of label error bounds. We then define σ to be
some quantile of the distribution. We effectively compute a
“trust” region around the expert data to generate labels, and
the size of the region varies for each data point. We visualize
this region in empirical experiments in Fig. 4(b).

III. EXPERIMENT DESIGN

A. Motivation

The CCIL framework has shown notable success in var-
ious simulation domains. However, its application to real-
world scenarios hinges on several critical research questions:

Local Continuity in Dynamics and Real-World Appli-
cation. CCIL relies on local Lipschitz continuity in system
dynamics, yet real-world robotic tasks often involve dis-
continuities due to physical contact. Can this foundational
assumption be validated in realistic domains? Can CCIL still
enhance imitation learning agent performance amidst such
challenges?

Data Scarcity and Augmentation Impact. Limited real-
world robot demonstrations highlight the importance of
efficient data augmentation. While abundant data typically
guarantees better outcomes, the critical question lies in the
low-data regime: How effectively can CCIL address data
scarcity, and what data volume is required to observe a
tangible impact?

Sensitivity to Hyperparameters. Tuning imitation learn-
ing algorithms on physical robots is logistically challenging.
Direct execution on robots, while being the most reliable
evaluation method, risks unpredictable behaviors and neces-
sitates numerous real-world trials to achieve statistical signif-
icance. How sensitive is CCIL to hyperparameter variations?

Can we offer guidelines for its real-world application that
mitigate the high evaluation and tuning costs?

B. Hypotheses

We explore the following hypotheses:
• H1: CCIL can improve imitation learning policies in

real-world fine-manipulation tasks. This improvement is
statistically significant, especially in low-data regimes.

• H2: Real-world tasks with complex contacts and dis-
continuities in dynamics can still exhibit local Lipschitz
continuity to justify CCIL’s assumptions.

• H3: The performance of CCIL is highly sensitive to
the label rejection hyperparameter, which determines
the acceptable error bound for generated labels.

• H4: The performance of CCIL exhibits relative ro-
bustness to variations in the local Lipschitz constraint
enforced during the training of the dynamics model.

To evaluate H.1, we compare the success rate of a behavior
cloning agent trained with and without CCIL-generated la-
bels. We vary the amount of demonstration data to investigate
the impact of data quantity on these methods.

To evaluate H.2, we measure the local Lipschitz continuity
of the trained dynamics model for tasks with complex
discontinuity. We also vary the hyperparameter of the upper
bound on the local Lipschitz constant.

To evaluate H.3 and H.4, we run ablation studies varying
the hyperparameters of the label rejection threshold and the
Lipschitz constraint to investigate (1) their impact on the
success rate of CCIL, and (2) the interplay between these
hyperparameters.

C. Hardware

We conducted experiments on a fine manipulator platform
introduced in [13] and shown in Fig. 2(a). The robot has 7
joints and is equipped with a pair of chopsticks as its end-
effector. It runs a hierarchical controller, where the high-
level command consists of a 6-DOF end-effector pose target
plus 1-DOF for the last joint to open or close the gripper
chopsticks. A policy sends high-level commands at 20Hz.
The robot computes inverse kinematics to send each joint
a low-level positional command, which is tracked by a
positional PID controller running at 1KHz. For perception,
we use a motion capture system. We follow [22] to also
collect human teleoperation demonstrations (Fig. 2(b)).

D. Tasks and Data Collection

We consider three fine manipulation tasks that require a
millimeter level of precision.
1) GraspCube: Grasps and lifts a tiny 1cm cube above the

table. Despite being the easiest of all three tasks, the task
is non-trivial with scarce data (e.g., 100 trajectories).

2) GearInsertion: Inserts a Lego gear into a hole on a
board. This mini-gear insertion task (Fig. 1) is inspired
by industrial assembly [23]. Proper insertion leaves a gap
of less than 0.2 mm.

3) GraspCoin: Uses chopsticks to grasp and lift a metal coin
lying flat on the table. The coin’s thin round shape and



slippery texture makes it difficult even for human experts
to pick up using chopsticks.

For all tasks, we vary the initial positions of the object. To
collect demonstrations, we use a mix of heuristic controllers
and human teleoperation. For GraspCube and GearInsertion,
we designed heuristic controllers and collected 500 trajecto-
ries for GraspCube and 100 trajectories for GearInsertion.
Note that the heuristic controllers did not have perfect
success rates, and we filtered out failed demonstrations. For
GraspCoin, designing a heuristic controller was complicated
due to the difficulty of the task, so we instead used 200
successful trajectories from an human expert teleoperation.

E. Training

For each task, we train two behavior cloning agents, with
and without CCIL-generated labels. The training follows
Alg. 1, and we formulate the action loss for our hardware
and detail the parameter tuning procedure below.

Loss Formulation. To train a policy using behavior
cloning following Eq. 6, we need to design an action
loss L(a∗, â). We denote the action a for our hardware
as (x, q, c), which represents the end-effector xyz location,
orientation, and chopstick angle. Given the target action
a∗ = (x, q, c) and the predicted action â = (x̂, q̂, ĉ), the
action loss is:

L(a, â) = α1∥x− x̂∥2 + α2θ
2 + α3(c− ĉ)2, (9)

where θ is the angle between the orientations q and q̂ and
α1, α2, α3 weight each component of the loss function. In
our experiments, we use α1 = 10, α2 = 1, α3 = 10.

Parameter Tuning. Applying CCIL introduces two key
parameters: (1) the Lipschitz constraint for training the dy-
namics model, and (2) a threshold for filtering the generated
labels. The Lipschitz constraint, K (Eq. 3), upper bounds
the Lipschitz continuity of the learned dynamics model. A
loose upper bound makes the training process easier and
more likely to yield low training error. Conversely, a tighter
bound is more likely to yield a dynamics model with lower
Lipschitz coefficients, enabling CCIL to generate higher
quality corrective labels. The label error bound is defined
in Theorem. 2.2, and the threshold σ controls the acceptable
bound.

To set the Lipschitz constraint K, we first train an uncon-
strained model and analyze the distribution of local Lipschitz
coefficients on the learned model. If this distribution suggests
that the learned model has limited local Lipschitz continuity,
we choose a tighter Lipschitz constraint.

To set threshold σ, we first generate corrective labels
without filtering and analyze the distribution of label errors.
Based on the distribution, we choose a label rejection quan-
tile (between 0 to 1, where 0 means to filter out all generated
labels) that filters out outliers or long tails.

F. Evaluation

We test each agent’s success rate by conducting 48 trials
per agent to establish statistical significance. To ensure
fairness, for each task we select 16 fixed initial conditions

(i.e., for grasping agents, we place the object to grasp at
16 fixed positions across the workspace). For each initial
condition, we test the learned policy for 3 trials. For each
trial, we denote the success as a binary variable. To report the
statistical significance of the empirical results, we compare
the success rates between the two policies by performing
two-proportion z-tests.

IV. RESULTS

Across three tasks, we trained 36 agents and tested their
success rate in the real world (Fig. 3(a)). For ablation, we
further evaluated 33 agents on the GraspCube task.

A. Corrective Labels’ Improvement to Imitation Learning

H.1 motivates the investigation of whether CCIL can
improve imitation learning performance in real-world fine-
manipulation tasks. These tasks involve complex contact
dynamics between objects, end-effectors, and the workspace,
making it unclear if CCIL’s assumptions hold.

CCIL yields an increase in performance for behavior
cloning. Fig. 3(a) shows that training with labels generated
by CCIL generally improves the performance of behavior
cloning over all three tasks, as measured by success rate.
We validated the statistical significant of the improvement.
The performance boost is significant at the p < 0.05 level
for the cube grasping and coin grasping tasks.

The CCIL boost is significant in the low-data regime.
The empirical performance gain from applying CCIL is
statistically significant in low-data regimes, as shown in
Fig. 3(a). CCIL boosts behavior cloning performance from
23% to 83% (using 100 GraspCube trajectories), from 6%
to 17% (using 20 GearInsertion trajectories) or 58% to 72%
(using 100 GearInsertion trajectories), and from 17% to
48% (using 200 GraspCoin trajectories). These limited-data
regimes face substantial challenges from covariate shift due
to limited data support from expert demonstrations. CCIL
demonstrated promising results to alleviate this problem.

Remark. Our experiments validate how CCIL can be
applied to complex fine manipulation tasks in the real world
despite the presence of discontinuity in the contact dynamics.

B. CCIL’s Assumptions on Local Lipschitz Continuity

H.2 motivates the investigation of whether CCIL’s local
continuity assumptions are sufficiently valid and realistic to
apply to real-world fine manipulation tasks.

Real-world tasks contain local Lipschitz continuity
that can be realized by learning dynamics models. In
training the dynamics model, we experiment with different
Lipschitz constraints, measure the resulting models’ local
Lipschitz coefficient, and plot the average of the coefficient
in Fig. 3(b). With a large upper bound on the Lipschitz
constraint (loose constraint), the local coefficients increase
but converge to those of an unconstrained model. These
findings imply that our environments exhibit local continuity
that the learned dynamics models are fitting to, even without
explicitly enforcing the Lipschitz continuity coefficient.

The learned dynamics model and generated labels have
varying continuity that correlates with the real world. For
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Fig. 4: (a) The 20% dataset for the GraspCube task reveals two distinct clusters of corrective labels. (b) The green cluster mainly corresponds to labels
where the cube is being manipulated, and the blue cluster to arm-free space motion. (c) Policies trained using just the blue cluster (low label rejection
threshold) are more successful compared to those trained with the green cluster or both (high label rejection threshold).

each generated label, we can measure the local Lipschitz
coefficients using the learned dynamics model (“Local L”).
We generate a scatterplot for the generated labels in Fig. 4(a)
and see two clusters (green and blue). We then sample
some of the labels for visualization and plot them along
an expert trajectory in Fig. 4(b). We observe that the green
cluster corresponds to labels generated near the cube, and
the blue labels are mainly in free space when the robot
moves without collision. Intuitively, the learned model and
generated label have higher errors for the green group that
contains discontinuity.

We test how policy performance changes as we incorporate
into the demonstration dataset (1) blue labels, (2) green
labels, and (3) both labels, as shown in Fig. 4(c). Training
with blue labels improves the agent’s success rate. However,
training with the green labels associated with contact-rich
states and higher errors is not as useful. Such labels actually
diminish performance. This highlights how label quality can
impact CCIL performance and the significance of filtering
generated labels.

C. Impact of the Quality of Generated Labels

The label filtering threshold controls what generated labels
are used when training a policy. It is therefore crucial to
understand its effects and how to tune it properly. We propose
a practical way to enforce a filtering threshold via label
rejection quantile; H.3 motivated exploring how this design
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Fig. 5: Policy performance when filtering out varying fractions of the
generated labels due to label error.

choice affects CCIL’s performance, which we do below.
We choose the GraspCube task with 100 trajectories. We

evaluate running CCIL with different label rejection quantiles
and report the success rate in Fig. 5. The rejection quantile
controls how many generated labels are used (25%, 75%,
etc.) based on their computed error bound.

Low-quality labels can harm policy performance. Using
all generated labels (i.e., choosing a quantile close or equal
to 1) makes CCIL performance similar to or worse than
behavior cloning. With this quantile, the generated labels
have high error bounds and could be incorrect under the
true dynamics. If these labels are included when training the
policy, they could potentially diminish policy performance.



There is a need to balance label error and usefulness
for CCIL to succeed. Labels with lower error bounds are
more trustworthy. However, these labels tend to be closer
to the demonstration data (small label distance). Including
labels with conservative error bounds may fail to expand
the data support. Conversely, a label that is further from
the demonstration data can expand the data support while
potentially introducing a higher associated error. Fig. 5 shows
intermediate values of the label error quantile that achieve
a higher success rate, indicating the need to balance label
accuracy and usefulness to maximize CCIL’s performance.

D. Impact of Continuity Constraint
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Fig. 6: Hyperparameter ablation for CCIL, varying the Lipschitz constraint
and the label rejection quantile. Green cells indicate a performance boost
over behavior cloning, while red cells show worse performance. Crossed
out cells are not significant at the p < 0.05 level, while the others are.

H.4 asks how enforcing Lipschitz continuity for training
the dynamics model impacts CCIL’s performance.

We train several dynamics models using different Lipschitz
constraints and test CCIL’s performance while varying the
label rejection quantiles. We show the resulting success rate
in Fig. 6, crossing out the cells whose performance is not
statistically significant compared to behavior cloning.

CCIL can work with different Lipschitz constraints.
For each Lipschitz constraint, we observe a label rejection
quantile that achieves a significant boost in performance over
behavior cloning. This indicates that CCIL could be less
sensitive to the enforced Lipschitz continuity parameter.

CCIL can work with unconstrained dynamics models.
Surprisingly, even with an unconstrained dynamics model,
as indicated by a Lipschitz constraint of ∞, CCIL still
performs well at 20% and 80% quantile. We investigate this
phenomenon in Fig. 3(b) and observe that the unconstrained
model still exhibits some local continuity, as shown by
the relatively small local Lipschitz coefficients across the
dataset. We see that as the Lipschitz constraint relaxes, the
distribution of local Lipschitz coefficients converges to that
of the unconstrained model.

Remark. These findings together imply that in envi-
ronments with sufficient local continuity, explicit Lipschitz
constraint enforcement may be unnecessary and tuning the
label rejection quantile can be more critical. When applying
CCIL to new environments, we can start with unconstrained
dynamics models for their simplicity.

V. CONCLUSION

This paper demonstrated the effectiveness of corrective
labels for offline imitation learning through real-world fine-
manipulation experiments, highlighting its impact in the low-
data regime. Our results validate that the local continuity
assumptions are applicable even in the presence of discon-
tinuous contact dynamics. Furthermore, we provide practical
guidelines for choosing the continuity constraint and label
quality threshold to enable CCIL’s success. Future work can
explore extending CCIL to high-dimensional state spaces,
such as images, and investigating different policy classes,
such as diffusion policies.

VI. RELATED WORK

Imitation Learning and Behavior Cloning. Imitation
learning can enable robots to mimic complex behaviors from
expert demonstrations [6, 24]. Behavior cloning (BC) [1] is a
simple and practical imitation learning method that requires
only demonstration data to learn a robotics policy, remaining
a strong candidate for practical application and therefore
gaining popularity over the years [4, 25–28]. Empirical
studies have reported performance gaps between simulation
and real world results and highlighted the importance of real-
world evaluation [29, 30].

Covariate Shift and Data Augmentation. Compounding
errors in robot execution can cause agents to encounter
unexpected and out-of-distribution states [6]. Various works
that address covariate shift often require additional infor-
mation, including data from interactive experts [31–33],
environmental samples [34–36], alternative sources [11] and
domain knowledge [13–17]. To achieve broad applicability
without such prerequisites, we focus on CCIL, an imitation
learning method that operates under minimal assumptions,
relying solely on offline demonstrations without requiring
interactive experts or simulators. Instead, it makes a light
assumption about the presence of local Lipschitz continuity.
Despite promising results, there is scant empirical evidence
for CCIL’s real-world applicability, which we aim to provide.

Local Lipschitz Continuity in Dynamics. Classical con-
trol methods and modern robot applications [37–39] often
assume local Lipschitz continuity in system dynamics to
guarantee solution existence and uniqueness. However, they
operate with pre-specified models and cost functions. Most
works on learning dynamics from data neither leverage nor
enforce the local Lipschitz continuity constraint [40–42]. In
contrast, this work focuses on learning locally continuous dy-
namics models from data without requiring human-specified
models. While some prior works have enforced Lipschitz
constraints during modeling of training dynamics [43, 44],
their application focuses on global continuity assumptions
or simulation scenarios. It remains unclear how to learn
dynamics models that capture the complex contacts and high
precision requirements of real-world fine manipulation tasks
while achieving local Lipschitz continuity, a key focus of our
exploration in this paper.
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