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Abstract Robotic manipulation systems suffer from two
main problems in unstructured human environments: uncer-
tainty and clutter. We introduce a planning framework ad-
dressing these two issues. The framework plans rearrange-
ment of clutter using non-prehensile actions, such as push-
ing. Pushing actions are also used to manipulate object pose
uncertainty. The framework uses an action library that is
derived analytically from the mechanics of pushing and is
provably conservative. The framework reduces the problem
to one of combinatorial search, and demonstrates planning
times on the order of seconds. With the extra functionality,
our planner succeeds where traditional grasp planners fail,
and works under high uncertainty by utilizing the funnel-
ing effect of pushing. We demonstrate our results with ex-
periments in simulation and on HERB, a robotic platform
developed at the Personal Robotics Lab at Carnegie Mellon
University.

Keywords Manipulation among movable obstacles ·
Manipulation under uncertainty · Non-prehensile
manipulation · Pushing

1 Introduction

Humans routinely perform remarkable manipulation tasks
that our robots find impossible. Imagine waking up in the
morning to make coffee. You reach into the fridge to pull
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out the milk jug. It is buried at the back of the fridge. You
immediately start rearranging content—you push the large
heavy casserole out of the way, you carefully pick up the
fragile crate of eggs and move it to a different rack, but along
the way you push the box of leftovers to the corner with your
elbow.

Humans perform such manipulation tasks everyday. The
variety of actual situations we encounter are endless, but our
approach to them share common themes: the list of manip-
ulation primitives that we use are not limited to grasping
and include non-prehensile actions such as pushing, pulling,
toppling; we are fearless in rearranging clutter surround-
ing our primary task—we care about picking up the milk
jug and everything else is in the way; we are acutely aware
of the consequences of our actions—we push the casserole
with enough control to be able to move it without ejecting it
from the fridge.

Successful robotic manipulation in human environments
requires similar characteristics. In this work we propose a
framework for robotic manipulation that plans a rearrange-
ment of clutter, uses non-prehensile pushing actions as well
as grasping actions, and tracks the consequences of actions
by reasoning about the uncertainty in object pose and mo-
tion.

We present an example scene in Fig. 1. The robot’s task
is retrieving the red can which is surrounded by clutter. The
robot first pushes the large box to the side and then uses
that space to grasp the red can. It produces these actions
autonomously using our planning framework. The planner
identifies the objects to be moved: in the example the box is
chosen among other objects in the scene. The box is a good
choice but it is a big object that does not easily fit inside
the robot hand, i.e. it is not graspable. Since our framework
can work with non-prehensile actions, the box can be moved
without grasping it.
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Fig. 1 The planner rearranging clutter to reach to a goal object. Pushing actions are useful for moving large objects that do not fit inside the hand,
i.e. are not graspable. Planning time for the full sequence of actions in this example is 16.6 s

Fig. 2 The planner generates pushing actions that are robust to the pose uncertainty of objects. Uncertainty is represented using copies of the
same object at different poses. Planning time for the full sequence of actions in this example is 23.4 s

Our planner reasons about the uncertainty before and dur-
ing the motion of objects. Figure 2 illustrates the problem of
planning under object pose uncertainty more clearly. One
source of uncertainty is perception: robot cameras are used
to detect and estimate the poses of objects but these pose es-
timates come with some amount of error. The second source
of uncertainty is the action of the robot on an object: our
predictions of how an object moves when it is pushed are
not exact. Our framework accounts for both types of un-
certainty when generating manipulation plans. When pos-
sible, our framework utilizes pushing actions to funnel large
amounts of uncertainty into smaller amounts. In Fig. 2 the
uncertainty of the red can is funneled into the hand using a
pushing action before it is grasped.

The idea of rearranging objects to accomplish a task has
been around for a few hundred years. We encounter this
idea in games like the Tower of Hanoi (Chartrand 1985),
the 15-Puzzle and numerous others. The blocks-world prob-
lem (Winograd 1971) introduced this idea to the AI com-
munity. STRIPS (Fikes and Nilsson 1971) is a well-known
planner to solve this problem. In robotics, the problem
is named planning among movable obstacles. The general
problem is NP-hard (Wilfong 1988). Most of the existing
planners work in the domain of two-dimensional robot nav-
igation and take advantage of the low-dimensionality by
explicitly representing, or discretizing, the robot C-space
(Ben-Shahar and Rivlin 1998b; Chen and Hwang 1991;
van den Berg et al. 2008). These approaches are not practical
for a manipulator arm with high degrees of freedom (DOF).
Another group of planners are based on a search over dif-

ferent orderings to move the obstacle objects in the environ-
ment (Ben-Shahar and Rivlin 1998a; Overmars et al. 2006;
Stilman and Kuffner 2006). Planners that solve similar re-
arrangement problems in manipulation using real robotic
hardware are also known (Stilman et al. 2007). The plan-
ner from Stilman et al. (2007) works backwards in time and
identifies the objects that needs to be moved by comput-
ing the swept volume of the robot during actions. Recently,
Kaelbling and Lozano-Perez (2011) proposed a planner that
also identifies obstacles by computing swept volumes of fu-
ture actions. In all of these cases, the physical act of ma-
nipulating an object is abstracted into a simple action, like
pick-and-place. While extremely successful and algorithmi-
cally elegant, the simplified assumptions on actions severely
restrict versatility. For example, such an algorithm would
produce a solution whereby the robot carefully empties the
contents of the fridge onto the countertop, pulls out the milk
jug and then carefully refills the fridge. A perfectly valid
plan, but one that is inefficient, and often impossible to exe-
cute with heavy, large, or otherwise ungraspable objects.

Pick-and-place actions are, however, easy to analyze.
Once an object is rigidly grasped, it can be treated as an ex-
tension of the robot body, and the planning problem reduces
to one of geometry. Performing actions other than pick-and-
place requires reasoning about the non-rigid interaction be-
tween the robot effector and the object.

A separate thread of work, rooted in Coulomb’s formula-
tion of friction, uses mechanics to analyze the consequences
of manipulation actions (Mason 1986; Goyal et al. 1991;
Howe and Cutkosky 1996; Peshkin and Sanderson 1988;
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Brost 1988). Mason (1986) investigates the mechanics and
planning of pushing for robotic object manipulation. One of
the first planners that incorporates the mechanics of pushing
was developed by Lynch and Mason (1996). Using the plan-
ner, a robot is able to push an object in a stable manner us-
ing edge-edge contact to a goal position. Goyal et al. (1991)
show that, in the quasi-static case, the motion of a pushed
object is determined by the limit surface, which we use in
predicting consequences of pushing actions. Manipulation
planners and robot actions that use these physical models
have been developed (Lynch and Mason 1996; Lynch 1999a;
Akella and Mason 1998; Peshkin and Sanderson 1988;
Agarwal et al. 1997; Hauser and Ng-Thow-Hing 2011;
Kappler et al. 2012). Our planner uses pushing to address
uncertainty and as a pre-grasp strategy, similar to these plan-
ners. A key difference of our framework is its ability to ad-
dress clutter through rearrangement planning.

In this work we make an attempt at merging these two
threads of work: geometric rearrangement planning and me-
chanical modeling and analysis. We present a framework
that plans sequences of actions to rearrange clutter in ma-
nipulation tasks. This is a generalization of the planner from
Stilman et al. (2007). But our framework is not restricted
to pick-and-place operations and can accommodate non-
prehensile actions. We also present mechanically realistic
pushing actions that are integrated into our planner.

Through the use of different non-prehensile actions, our
planner generates plans where an ordinary pick-and-place
planner cannot; e.g. when there are large, heavy ungraspable
objects in the environment. We also show that our planner is
robust to uncertainty.

2 Framework

In this section we present our framework to rearrange the
clutter around a goal object. The framework uses non-
prehensile actions that respects quasi-static mechanics. It
produces open-loop plans which are conservative to the un-
certainty in object poses. This uncertainty may be coming
from either the non-stable non-prehensile actions or from
the perception system that initially detects the objects. The
framework consists of a high-level planner that decides on
the sequence of objects to move and where to move them.
The high-level planner uses a library of lower level actions
to plan the actual robot trajectories that move the objects.
The lower-level actions are also open-loop and do not re-
quire sensor feedback during execution.

We first present the high-level planning framework, and
then present the quasi-static pushing actions used by the
high-level planner.

Fig. 3 An example scene. The robot’s task is picking up the red can.
The robot rearranges the clutter around the goal object and achieves the
goal in the final configuration. The robot executes the series of actions
shown in Fig. 4. We present the planning process in Fig. 5

2.1 Planning Framework

In a given scene with multiple movable objects and a goal
object to be grasped, the planner decides which objects to
move and the order to move them, decides where to move
them, chooses the lower-level actions to use on these ob-
jects, and accounts for the uncertainty in the environment
all through this process. This section describes how we do
that.

We describe our framework with the example in Fig. 3.
The robot’s task is picking up the red can. There are two
other objects on the table: a brown box which is too large to
be grasped, and the dark blue dumbbell which is too heavy
to be lifted.

The sequence of robot actions shown in Fig. 4 solves this
problem. The robot first pushes the dumbbell away to clear a
portion of the space, which it then uses to push the box into.
Afterwards it uses the space in front of the red can to grasp
and move it to the goal position.

Figure 4 also shows that the actions to move objects are
planned backwards in time. We visualize part of this plan-
ning process in Fig. 5. In each planning step we move a sin-
gle object and plan two actions. The first one (e.g. Push-
grasp and Sweep in Fig. 5) is to manipulate the object. The
second one (GoTo in Fig. 5) is to move the arm to the initial
configuration of the next action to be executed. We explain
the details of these specific actions in Sect. 2.1.6. We discuss
a number of questions below to explain the planning process
and then present the algorithm in Sect. 2.1.5.

2.1.1 Which Objects to Move?

In the environment there are a set of movable objects, obj.
The planner identifies the objects to move by first attempting
to grasp the goal object (Step 1 in Fig. 5). During this grasp,
both the robot and the red can, as it is moved by the robot,
are allowed to penetrate the space other objects in obj oc-
cupy. Once the planner finds an action that grasps the red
can, it identifies the objects whose spaces are penetrated by
this action and adds them to a list called move. These ob-
jects need to be moved for the planned grasp to be feasible.
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Fig. 4 We show the snapshots of the planned actions in the order they
are executed. The execution timeline goes from left to right. Each dot
on the execution timeline corresponds to a snapshot. Planning goes
from right to left. Each dot on the planning timeline corresponds to

a planning step. The connections to the execution timeline shows the
robot motions planned in a planning step. Details of this planning pro-
cess are in Fig. 5

Fig. 5 The planning timeline.
Three snapshots are shown for
each planning step. The planner
plans two consecutive arm
motions at each step, from the
first snapshot to the second
snapshot, and from the second
snapshot to the third snapshot.
These motions are represented
by blue dashed lines. The purple
regions show the negative goal
regions (NGRs), which are the
regions the object needs to be
moved out of (Sect. 2.1.4). The
object pose uncertainty is
represented using a collection of
samples of the objects

At the end of Step 1 in Fig. 5, the brown box is added to
move.

We define the operator FindPenetrated to identify the
objects whose spaces are penetrated:

FindPenetrated(vol,obj)

= {o ∈ obj | volume vol penetrates the space of o}

In the case of identifying objects to put into move, vol is the
volume of space swept by the robot during its motion and
by the object as it is manipulated. We compute the volume

of space an object occupies by taking into account the pose
uncertainty (Sect. 2.1.2).

In subsequent planning steps (e.g. Step 2 in Fig. 5) the
planner searches for actions that move the objects in move.
Again, the robot and the manipulated object are allowed to
penetrate other movable objects’ spaces. We add the pene-
trated objects to move.

This recursive process continues until all the objects in
move are moved. The objects that are planned for earlier
should be moved later in the execution. In other words, we
plan backwards in identifying the objects to move.
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Allowing the actions to freely penetrate other objects’
spaces can result in a plan where objects are moved unnec-
essarily. Hence, our planner tries to minimize the number of
these objects. This is described in Sect. 2.1.6.

We also restrict the plans to monotone plans; i.e. plans
where an object can be moved at most once. This avoids
dead-lock situations where a plan to move object A results in
object B being moved, which in turn makes object A move,
and so on. But more importantly restricting the planner to
monotone plans makes the search space smaller: the gen-
eral problem of planning with multiple movable objects is
NP-hard (Wilfong 1988). We enforce monotone plans by
keeping a list of objects called avoid. At the end of each
successful planning step the manipulated object is added to
avoid. The planner is not allowed to penetrate the spaces
of the objects in avoid. In Fig. 5 in Step 2 the avoid list
includes the red can, in Step 3 it includes the red can and the
brown box.

2.1.2 How to Address Uncertainty?

Robots can detect and estimate the poses of objects with
a perception system (in our experiments we use Martinez
et al. 2010). Inaccuracies occur in pose estimation, and ma-
nipulation plans that do not take this into account can fail.
Non-prehensile actions can also decrease or increase object
pose uncertainty. Our planner generates plans that are robust
to uncertainty. We explicitly represent and track the object
pose uncertainty during planning.

Given a probability density function, fo, over the set of
possible poses, we define the uncertainty region of an object
o as the set of poses it can be in such that fo is larger than ε:

U(o) = {
q ∈ SE(3)|fo(q) > ε

}

We define the uncertainty region to be in SE(3) because we
assume no uncertainty in objects’ height and we also assume
that the objects are standing upright on a surface.

Before the planning starts, the robot’s perception system
suggests a pose q̂o for each object o in the scene. We es-
timate the initial pose uncertainty of o as a multivariate
normal distribution centered at q̂o with the covariance ma-
trix Q. We estimate the covariance matrix Q by empirically
modeling the error profile of our perception system (Sect. 3
presents the values we used to build the matrix Q in our ex-
periments). In the rest of this paper we use U(o) specifically
to refer to the initial pose uncertainty of an object o.

The manipulation actions change the uncertainty of an
object o. We represent this as a trajectory νo:

νo : [0,1] → R

where R is the power set of SE(3). We call νo the evolu-
tion of the uncertainty region of object o. νo[0] is the same

as U(o). νo[1] refers to the final uncertainty region of the
object after manipulation. Each manipulation action outputs
νo, i.e. how it evolves the uncertainty region of the object.
Section 2.2.7 describes how νo is estimated for pushing ac-
tions as a series of shrinking capture regions.

We used random sampling to represent all uncertainty re-
gions. We present the number of samples we use for differ-
ent uncertainty levels in Sect. 3. Figure 5 illustrates the pose
uncertainty using such samples.

During planning, we compute the volume of space an
object occupies using U , not only the most likely pose.
Likewise we compute the space swept by a manipulated
object using νo. We define the operator Volume, which
takes as input an object and a region, and computes the
total 3-dimensional volume of space the object occupies
if it is placed at every point in the region. For example,
Volume(o,U(o)) gives the volume of space occupied by
the initial uncertainty region of object o.

We overload Volume to accept trajectories of regions
and robots too; e.g. Volume(o, νo) gives the volume of
space swept by the uncertainty of the object during its
manipulation, and Volume(robot, τ ) computes the three-
dimensional volume the robot occupies during a trajec-
tory τ . We compute this volume using a high-resolution
sampling of configurations along the trajectory. We place
three-dimensional models of the robot links at the corre-
sponding poses at all the sampled points and sum them up
to get the volume needed by the full trajectory.

2.1.3 How to Move an Object?

At each planning step, our planner searches over a set of
possible actions in its action library. For example in Step 1
of Fig. 5 the planner uses the action named push-grasp, and
in Step 2 it uses the action sweep. Push-grasp uses push-
ing to funnel a large object pose uncertainty into the hand.
Sweep uses the outside of the hand to push large objects.
Each low-level action, in turn, searches over different action-
specific parametrizations to move the object; e.g. different
directions to push-grasp an object, or different trajectories
to use when moving the arm from one configuration to the
other. We will describe the details of specific actions we use
(e.g. push-grasp and sweep) and the search over the action-
specific parametrizations in Sects. 2.1.6 and 2.2. Below we
present the general properties an action should have so that
it can be used by our high-level planner.

In grasp based planners robot manipulation actions
are simply represented by a trajectory of the robot arm:
τ : [0,1] → C where C is the configuration space of the
robot. The resulting object motion can be directly derived
from the robot trajectory. With non-prehensile actions this
is not enough and we also need information about the tra-
jectory of the object motion: the evolution of the uncertainty
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region of the object. Hence the interface of an action a in our
framework takes as an input the object to be moved o, a re-
gion of goal configurations for the object G, and a volume
of space to avoid avoidVol; and outputs a robot trajectory τ ,
and the evolution of the uncertainty region of the object dur-
ing the action νo:

(τ, νo) ← a(o,G,avoidVol) (1)

The returned values τ and νo must satisfy:

– νo[1] ⊆ G; i.e. at the end all the uncertainty of the object
must be inside the goal region.

– Volume(robot, τ ) and Volume(o, νo) must be collis-
ion-free w.r.t avoidVol; where robot is the robot body.

If the action cannot produce such a τ and νo, it returns an
empty trajectory, indicating failure.

We also use a special action called GoTo, that does not
necessarily manipulate an object, but moves the robot arm
from one configuration to another. GoTo is also used to plan
from the end of one object manipulation action to the start
of other.

2.1.4 Where to Move an Object?

The planner needs to decide where to move an object—the
goal of the action. This is easy for the original goal object,
the red can in the example above. It is the goal configuration
passed into the planner, e.g. the final configuration in Fig. 3.
But for subsequent objects, the planner does not have a di-
rect goal. Instead the object (e.g. the box in Step 2 of Fig. 5)
needs to be moved out of a certain volume of space in or-
der to make the previously planned actions (Step 1 in Fig. 5)
feasible. We call this volume of space the negative goal re-
gion (NGR) at that step (shown as a purple region in Fig. 5).1

Given an NGR we determine the goal G for an object o by
subtracting the NGR from all possible stable poses of the
object in the environment: G ← StablePoses(o) − NGR.

The NGR at a planning step is the sum of the volume
of space used by all the previously planned actions. This in-
cludes both the space the robot arm sweeps and the space the
manipulated objects’ uncertainty regions sweep. At a given
planning step, we compute the negative goal region to be
passed on to the subsequent planning step, NGRnext , from
the current NGR by:

NGRnext ← NGR + Volume(robot, τ ) + Volume(o, νo)

where τ is the planned robot trajectory, o is the manipulated
object, and νo is the evolution of the uncertainty region of
the object at that planning step.

1Note that the NGR has a 3D volume in space. In Fig. 5 it is shown as
a 2D region for clarity of visualization.

Algorithm 1: plan ← Rearrange(o,G,NGR,

move,avoid, rt+2) o: The goal object; G: The goal
region; i.e. set of acceptable configurations o should
end up in; NGR: The negative goal region as described
in Sect. 2.1.4; move: The list of objects as described in
Sect. 2.1.1; avoid: The list of objects as described in
Sect. 2.1.1; rt+2: The goal configuration for the robot
after manipulating the object

repeat1

a ← next action from action library2

avoidVol ← ∑

i∈avoid
Volume(i,U(i))

3

(τ1, νo) ← a(o,G,avoidVol)4

if τ1 is empty then5

Continue at line 26

τ2 ←7

GoTo(τ1[1], rt+2,avoidVol + Volume(o, νo[1]))
if τ2 is empty then8

Continue at line 29

τ ← τ1 + τ210

vol ← Volume(robot, τ ) + Volume(o, νo)11

movenext ← move+ FindPenetrated(vol,obj)12

if movenext is empty then13

return {τ }14

NGRnext ← NGR + vol15

avoidnext ← avoid+ {o}16

foreach i ∈ movenext do17

plan← Rearrange(i,StablePoses(i) −18

NGRnext ,NGRnext ,movenext −
{i},avoidnext, τ [0])
if plan is not empty then19

return plan+ {τ }20

until all actions in action library are tried21

return empty22

2.1.5 Algorithm

In our problem, a robot whose configurations we denote by
r ∈ C ⊆ R

n interacts with movable objects in the set obj.
We wish to generate a sequence of robot motions plan that
brings a goal object goal ∈ obj into a goal pose qgoal ∈
SE(3). We initiate the planning process with the call:

plan← Rearrange
(
goal, {qgoal}, {}, {}, {},∗

)

The arguments to Rearrange are described in Algorithm 1.
The ∗ passed as the last argument here means that the final
configuration of the robot arm does not matter as long as the
object is moved to qgoal.

Each recursive call to the Rearrange function is a plan-
ning step (Algorithm 1). The function searches over the ac-
tions in its action library between lines 1–21, to find an ac-
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Fig. 6 (a) The capture region of a for a rotationally symmetric bottle
for a push-grasp. Every point corresponds to a bottle position where the
coordinate frame of the bottle is at its center. (b) Uncertainty region of

the object after the push, before closing the fingers. (c–f) A push-grasp
funneling the uncertainty into the hand

tion that moves the goal object to the goal configuration
(line 4), and then to move the arm to the initial configura-
tion of the next action (line 7). On line 11 it computes the
total volume of space the robot and the manipulated object
uses during the action. Then it uses this volume of space to
find the objects whose spaces have been penetrated and adds
these objects to the list move (line 12). If move is empty the
function returns the plan. On line 15 the function adds the
volume of space used by the planned action to the NGR. On
line 16 it adds the current object to avoid. Between lines
17–20 the function iterates over objects in move making re-
cursive calls. If any of these calls return a plan, the current
trajectory is added at the end and returned again (line 20).
The loop between 17–20 effectively does a search over dif-
ferent orderings of the objects in move. If none works, the
function returns an empty plan on line 22, indicating fail-
ure, which causes the search tree to backtrack. If the planner
is successful, at the end of the complete recursive process
plan includes the trajectories in the order that they should
be executed.

2.1.6 Action Library

The generic interface for actions is given in Eq. (1). In this
section we briefly describe the actions in our action library
and explain how they satisfy this generic interface. There are
four actions in our action library: Push-grasp, Sweep, GoTo,
and PickUp.

– Push-grasp:
Push-grasping is a robust way of grasping objects un-

der uncertainty. It is a straight motion of the hand parallel
to the pushing surface along a certain direction, followed
by closing the fingers. In effect, a push-grasp sweeps a re-
gion on the pushing surface, so that wherever an object is
in that region, at the end of the push it ends up inside the
hand, ready to be grasped.

For a given object, the capture-region of a parametriz-
ed push-grasp is the set of all object poses that results in

Fig. 7 (a) Sweeping can move objects that are too large to be grasped.
(b) The capture region of the sweep action for the a cylindrically sym-
metric bottle

a successful grasp. Example capture regions are shown in
Figs. 6 and 9. We compute capture regions using a real-
istic quasi-static pushing analysis. We use the capture re-
gions to decide whether a push-grasp will succeed given
an object and its uncertainty region.

We present a detailed analysis of push-grasping in
Sect. 2.2, where we also explain how to compute and use
capture regions.

– Sweep:
Sweep is another action we use to move obstacles out

of negative goal regions. Sweep uses the outside region
of the hand to push an object. Sweeping can move ob-
jects that are too large to be grasped (Fig. 7(a)). Similar
to Push-grasp, we parametrize a Sweep by a direction and
distance to push.

A push-grasp requires a minimum pushing distance
because it has to keep pushing the object until it com-
pletely rolls into the hand. Since sweeping only needs to
move an object out of a certain volume of space, it does
not require a particular pushing distance. But we still use
the capture region to guarantee that the object will not es-
cape the push by rolling outside during the sweep. When
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Fig. 8 An example push-grasp of an object in contact with the surrounding clutter

Fig. 9 (a) Parametrization of a push-grasp. (b) The capture region of
a radially symmetric bottle is the area bounded by the black curve.
We divided the plane into different regions using the green dashed

lines. (c) Capture regions for push-grasps of different distances. (d) 3D
capture region of a rectangular box

computing the capture region for sweep (Fig. 7(b)) we use
a realistic model for the side of the fingers but approxi-
mate the other side with a straight line located at the end
of the wrist link.

The sweep action can also address initial object pose
uncertainty. Similar to Push-grasp, we check that the cap-
ture region of the Sweep includes all the poses sampled
from the uncertainty region of the object (Fig. 7(b)).

– GoTo: The GoTo action moves the robot arm from one
configuration to the other. The search space of the GoTo
action is the configuration space of the arm. To implement
this action we use an extension of the Rapidly-Exploring
Random Tree (RRT) (Lavalle and Kuffner 2000) plan-
ner, namely the Constrained Bi-directional RRT planner
(CBiRRT) (Berenson et al. 2009a).

The GoTo action either does not manipulate an object
or moves an already grasped object. At the end the object
pose is derived from the forward kinematics of the arm.

– PickUp: This is the prehensile manipulation of an ob-
ject. We implement PickUp as a Push-grasp followed by
a GoTo.

2.2 Push-Grasping

In this section we present details of push-grasping.

2.2.1 The Push-Grasp

The push-grasp is a straight motion of the hand parallel to
the pushing surface along a certain direction, followed by
closing the fingers (Fig. 8). We parametrize (Fig. 9(a)) the
push-grasp G(ph, a, d) by:

– The initial pose ph = (x, y, θ) ∈ SE(2) of the hand rela-
tive to the pushing surface.

– The aperture a of the hand during the push. The hand is
shaped symmetrically and is kept fixed during motion.

– The pushing direction v along which the hand moves in a
straight line. In this study the pushing direction is normal
to the palm and is fully specified by ph.

– The push distance d of the hand measured as the transla-
tion along the pushing direction.

We execute the push-grasp as an open loop action.
We make certain assumptions while modeling and exe-

cuting push-grasps:

– The interaction between the robot hand and the object is
quasi-static, meaning that the inertial forces are negligi-
ble.

– The objects do not topple easily. To prevent objects from
toppling, the robot pushes them as low as possible.
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– The robot has the three-dimensional models of the ob-
jects.

– The coefficient of friction between the objects and the
pushing surface is uniform.

– Additionally, our model of how a pushed object moves is
most realistic if the object’s pressure distribution has ro-
tational symmetry. This includes not only circularly sym-
metric distributions, but also rectangles, equilateral tri-
angles; any distribution that repeats itself in a revolution
about the center of pressure (Howe and Cutkosky 1996).

2.2.2 The Capture Region of a Push-Grasp

A successful push-grasp is one whose execution results in
the stable grasp of an object. Given the push-grasp, the ob-
ject’s geometry and physical properties, which we term O ,
and the object’s initial pose, we can utilize the mechanics
of manipulation described before to predict the object’s mo-
tion. Coupling the simulation with a suitable measure of sta-
bility, like caging or force-closure, we can compute the set of
all object poses that results in a stable push-grasp. We call
this set the capture region C(G,O) ⊂ SE(2) of the push-
grasp.

We use a simulation of quasi-static pushing to compute a
capture region. We performs this simulation offline once for
each object.

Howe and Cutkosky (1996) show that the limit surface
can be approximated by a three-dimensional ellipsoid. We
use the aspect ratio of this ellipsoid, in calculating the nor-
mal to a point on it. The equatorial radii are found by calcu-
lating the maximum friction force (fmax ) that the supporting
surface can apply to the object, which occurs when the ob-
ject is translating. The polar radius is found by calculating
the maximum moment (mmax ) that the supporting surface
can apply, which occurs when the object is rotating around
its center of friction. Then the quasi-static motion of the ob-
ject is determined by the ratio c = mmax/fmax . The mass of
the object and the coefficient of friction between the object
and the supporting surface (μs ) are multipliers in both the
numerator and denominator of this fraction, and cancel out.
Hence, as long as the ellipsoid approximation holds, we do
not need to know the object mass or μs to predict the mo-
tion. (These parameters simply inflate or deflate the ellipsoid
but do not change the normal at a point on it.) The pressure
distribution supporting the object on the surface and the co-
efficient of friction between the robot finger and the object,
μc, do affect the motion of the object. We compute capture
regions conservatively with respect to these parameters, so
that the capture region will be valid for a wide range of val-
ues these parameters can take. For a cylindrical object the
conservative capture region is given by assuming the pres-
sure distribution to be at the periphery of the object, and
assuming μc to have a very large value. A proof of this is
presented in Appendix.

We present the capture region of a juice bottle produced
by our pushing simulation in Fig. 9(b), which is a 2D re-
gion as the bottle is radially symmetric. The capture region
is the area bounded by the black curve. The shape of the
curve represents three phenomena. The part near the hand
(inside regions IV, V, and VI) is the boundary of the con-
figuration space obstacle generated by dilating the hand by
the radius of the bottle. The line at the top (inside region II)
represents the edge of the fingers’ reach. We conservatively
approximate the curve traced out by the fingers while they
are closing by the line segment defining the aperture.

Regions I and III of the capture region curve are the most
interesting. Let us consider the left side of the symmetric
curve. If an object is placed at a point on this curve then
during the push-grasp the left finger will make contact with
the object and the object will eventually roll inside the hand.
If an object is placed slightly to the left of this curve, then
the left finger will push that object too, but it will not end up
inside the hand at the end of the push: it will either roll to the
left and out of the hand or it will roll right in the correct way
but the push-distance will not be enough to get it completely
in the hand. We can observe the critical event at which the
object starts to slide on the finger, producing a discontinuity
on the upper part of the curve.

We also present the three-dimensional capture region of
a rectangular box in Fig. 9(d). We compute it by computing
the two-dimensional regions of the object at different orien-
tations.

2.2.3 Efficient Representation of Capture Regions

Each push-grasp G for an object O produces a unique cap-
ture region C(G,O). By computing C(G,O) relative to the
coordinate frame of the hand, we can reduce the dependence
to the aperture a and the pushing distance d . Every other
capture region is obtained by a rigid transformation of the
hand-centric capture region. This can be formally stated as
C(G(ph, a, d),O) = T (ph)C(G(0h, a, d),O).

To illustrate the effects of the pushing distance d on the
shape of a capture region, we overlaid the capture regions
produced by different pushing distances in Fig. 9(c). We can
see that as the pushing distance gets smaller, the upper part
of the larger capture region (regions I, II, and III in Fig. 9(b))
is shifted down in the vertical axis. To understand why this
is the case, one can divide a long push into two parts, and
think of the last part as an individual push with the remaining
distance.

This lets us pre-compute the capture region for a long
push distance, Dmax , and use it to produce the capture re-
gions of shorter pushes. Given all the other variables of a
push-grasp, our planner uses this curve to compute the min-
imum push distance d required by an object at a certain pose
(Fig. 10). The cases to handle are:
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– If the object is already inside the hand (see P1 in Fig. 10),
no push is required; d = 0m.

– Else, if the object is outside the capture region (see P2 in
Fig. 10) there is no way to grasp it with a push shorter
than Dmax . Reject this object.

– Else, the minimum pushing distance required can be
found by using the formula

d = Dmax − dsub

where dsub is the distance between the object and the top
part of the capture region curve along the pushing direc-
tion v (see P3 and P4 in Fig. 10). dsub can be interpreted
as the value we can shorten the push-distance Dmax such

Fig. 10 Given an object pose, the minimum required pushing distance
d to grasp that object can be found using a precomputed capture re-
gion of a push-grasp with pushing distance Dmax . In the figure, d = 0
for P1 since it is already in the hand; P2 can not be grasped with
a push shorter than Dmax since it is outside the capture region; for
P3 and P4 the required pushing distances can be found by computing
d = Dmax − d3sub and d = Dmax − d4sub respectively

that the object is exactly on the boundary of the capture
region.

In our implementation we use Dmax = 1m as an overes-
timate of the maximum distance our robot arm can execute
a pushing motion.

The effect of changing the hand aperture, a, is straightfor-
ward. Referring again to the regions in Fig. 9(b), changing
a only affects the width of the regions II and V, but not I
and III. Therefore, we do not need to compute capture re-
gions for different aperture values. Note that this is only true
assuming the fingertips are cylindrical in shape, hence the
contact surface shapes do not change with different aper-
tures. If the fingertip contact surfaces dramatically change
with different apertures of the hand, one can compute the
capture regions for a predefined set of different apertures.

2.2.4 Validating Capture Regions

We ran 150 real robot experiments to determine if the pre-
computed models were good representations of the motion
of a pushed object, and whether they were really conser-
vative about which objects will roll into the hand during a
push.

To validate the capture region, we repeatedly executed
a push of the same d and placed the object in front of the
hand at different positions on a grid of resolution 0.01m

(Fig. 11(b)). Then we checked if the object was in the hand
at the end of a push. The setup and two example cases where
the push grasp failed and succeeded are shown in Fig. 11(c).

The results (Fig. 11(a)) show that, the simulated capture
region is a conservative model of the real capture region.
There are object poses outside the region for which the real
object rolled into the hand (green circles outside the black
curve); but there are no object poses inside the curve for

Fig. 11 Capture region generated with our push-grasping simulation and validated by robot experiments. 150 validation tests were performed in
total
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Fig. 12 If the uncertainty region of an object is included in the capture
region of a push-grasp, then the push-grasp will be successful

which the real object did not roll into the hand. This is in ac-
cordance with our expectations, since, for the system param-
eters that are hard to know (the pressure distribution under-
neath the object, and the coefficient of friction between the
finger and the object) our simulation of pushing uses conser-
vative values. This guarantees success, in the sense that our
planner always overestimates the pushing distance needed.
But this is a tight overestimate, as can be seen in Fig. 11(a).

2.2.5 Overlapping Uncertainty and Capture Regions

The overlap between a capture region and an uncertainty re-
gion indicates whether a push-grasp will succeed under un-
certainty. To guarantee that a push-grasp will succeed it is
sufficient to make sure that the uncertainty region of the goal
object is included in the capture region of the push-grasp.

We illustrate this idea in Fig. 12. Here the robot detects
a juice bottle (Fig. 12(a)). We illustrate the uncertainty re-
gion of the juice bottle in Fig. 12(b), and the capture region
of the push-grasp in Fig. 12(c). If the uncertainty region is
completely included in the capture region as in Fig. 12(c),
then we can guarantee that the push-grasp will succeed.

The uncertainty and capture regions are two-dimensional
in Fig. 12 only because the bottle is radially symmetric.
In general, these regions are three-dimensional, non-convex
and potentially even disjoint (e.g. multi-modal uncertainty
regions). Checking inclusion/exclusion of two generic three-
dimensional regions is a computationally expensive prob-
lem.

We use a sampling strategy to overcome this problem.
We draw n random samples from the uncertainty region, and
check if all of these samples are in the capture region of a
push-grasp. Samples are drawn according to the probability
distribution of the uncertainty region: poses of higher prob-
ability also have a higher chance of being sampled.

2.2.6 Finding a Successful Push-Grasp

The planner searches for a push-grasp such that the hand can
grasp all the samples drawn from the uncertainty region of
the object, and the resulting hand motion can be executed
with the arm.

Given a goal object in the environment, the planner
searches for a push grasp by changing the parameters v, a,
and the lateral offset in approaching the object, o. The lat-
eral offset o changes the initial pose of the hand by moving it
along the line perpendicular to the pushing direction v. Dur-
ing the search, these parameters are changed between cer-
tain ranges, with a user defined step size. v changes between
[0,2π); a changes between the maximum hand aperture and
the minimum hand aperture for the object; and o is changed
between the two extreme positions, where the object is too
far left or right relative to the hand.

The push-grasp is allowed to penetrate the space of other
movable objects as explained in Sect. 2.1.1. But we try to
minimize the number of such objects to get more efficient
plans. Therefore we compute a heuristic value for the differ-
ent directions to push-grasp an object. We rotate the robot
hand around the goal object and check the number of objects
it collides with. We prefer directions with a smaller number
of colliding objects.

2.2.7 Evolution of Uncertainty Region During Pushing

We use the capture region to also represent the evolution of
the uncertainty region of a manipulated object, νo.

As explained in Sect. 2.2.3 we can use a capture region
for a push of length d to compute capture regions for shorter
pushes (Fig. 9(c)). Using the same formulation, at any fu-
ture point before the end of a push, we construct the cap-
ture region for the remaining distance. A push with a push-
ing distance d is executed only if its capture region contains
the initial uncertainty region of the object, which indicates
that the evolved uncertainty of the object will always stay
in the subsequent capture regions until the object is inside
the hand at the end of the push. Hence, we discretize a push
into smaller steps, and use these series of capture regions to
conservatively approximate the evolution of the uncertainty
region, νo, of the object o.

3 Experiments and Results

3.1 Push-Grasping Experiments

In this section we present our experiments with the push-
grasping action. We will present our experiments with the
complete framework in Sect. 3.2. We conducted experiments
in simulation and on HERB (Srinivasa et al. 2009) to evalu-
ate the performance of our planner. Simulation experiments
are performed in OpenRAVE (Diankov and Kuffner 2008).

3.1.1 Robotic Platform

HERB has two 7-DoF WAM arms and 4-DoF Barrett hands
with three fingers. A camera is attached to the palm to detect
objects and estimate their poses.
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Table 1 Planner performance

3.1.2 Planner Performance

We compared the performance of our push-grasp planner
with another grasp planner that can handle uncertainty about
the object pose. We used the uncertainty task space regions
(TSRs) algorithm from Berenson et al. (2009b). In our im-
plementation, to supply the TSRs with a set of hypotheses
we used samples from the uncertainty region of our objects.
We used the same number of samples that we use for our
push-grasp planner.

Table 1 presents results in simulation comparing the per-
formance of our push-grasp planner (PG) and the Uncer-
tainty TSR planner. We categorize scenes as no clutter (1 ob-
ject), medium clutter (2–3 objects placed apart from each
other), and high clutter (3–4 objects placed close to each
other). For each category we created ten different scenes.
For each scene we added increasing amount of uncertainty,
where σ1 is no uncertainty, and σ4 is the highest uncertainty.

In each cell of Table 1 we present four numbers. The top
left number indicates in how many of the ten scenes Uncer-
tainty TSR planner was able to come up with a plan. The
same value for the Push-Grasp planner is in the top right.
We indicate the average planning time in seconds, for TSR,
on the lower left corner. The same value for the push-grasp
planner is at the lower right. We used three-dimensional
multivariate normal distributions (in x, y, and θ ) as the
uncertainty regions. We modeled each dimension as mu-
tually independent and used the following standard devia-
tions in object translation and rotation for different uncer-
tainty levels: σ1: no uncertainty; σ2: (0.005 m, 0.034 rad);
σ3: (0.02 m, 0.175 rad); σ4: (0.06 m, 0.785 rad). The num-
ber of samples, n, we used for these uncertainty levels are:
1, 30, 50, 50.

Table 1 shows that the push-grasp planner is able to plan
in environments with higher uncertainty. When the uncer-
tainty is high, the Uncertainty TSR planner is not able to
find any static pose of the hand that grasps all the samples
of the object. The push-grasp planner, on the other hand, is
not limited to static grasps, and can sweep larger regions
over the table than any static hand pose can. Note also that
a push-grasp with no real pushing (d = 0) is possible, hence

Fig. 13 A high-clutter scene where the TSR planner fails but push–
grasp planner is able to find a plan

the push-grasp planner is able to find a solution whenever
the TSR planner finds one.

We can see from Table 1 that push-grasp planner also
performs better in high clutter. One example scene of high
clutter, where push-grasp planner is able to find a grasp but
the Uncertainty TSR planner cannot, is presented in Fig. 13.
Here the goal object is right next to other objects. The Un-
certainty TSR planner cannot find any feasible grasps in
this case since any enveloping grasp of the object will col-
lide with the obstacle objects. In this case, the push-grasp
planner comes up with the plan presented in Fig. 13, which
moves the object away from the clutter first and then grasps.

The planning times also shown in Table 1. We see that in
environments where the Uncertainty TSR planner succeeds,
the push-grasp planning times are compatible. Push-grasp
planner takes a longer but reasonable amount of time (tens of
seconds) in difficult environments where Uncertainty TSR
planner fails.

3.1.3 Real Robot Experiments

We conducted two sets of experiments on our real robot. In
the first, we used the actual uncertainty profile of our object
pose estimation system. In the second set of experiments,
we introduced higher noise to the detected object poses.

In the first set of experiments we created five scenes, de-
tected the objects using the palm camera and planned to
grasp them using both the Uncertainty TSR planner and our
push-grasp planner. As described in Sect. 2.1.2 we empiri-
cally modeled the uncertainty profile of our object pose es-
timation system as a multivariate normal distribution. We
assumed each dimension to be mutually independent and
used the standard deviation values σ : (0.007 m, 0.07 rad) to
build the covariance matrix Q. The number of samples we
used, n, was 30. Uncertainty TSR planner was able to find a
plan three out of five times, and the push-grasp planner was
able to find a plan four out of five times. All the executions
of these plans were successful. Again the Uncertainty TSR
planner was not able to find a plan when the goal object was
right next to another obstacle object, making it impossible
to grasp the goal object without colliding with the obstacles.

In another set of experiments on the real robot we intro-
duced higher uncertainty by adding noise to the positions
of the objects reported by the object detection system. For
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Fig. 14 Example push-grasps executed by our robot

Gaussian noise in translation with σ = 0.02 m and n = 50,
the Uncertainty TSR planner was not able to find a plan for
any of the five scenes, while the push-grasp planner found
a plan and successfully executed them in three of the five
scenes. The failures were due to the collision of the arm with
the clutter while moving the end-effector to the starting pose
of the push-grasp. In the next section we present our experi-
ments with the complete framework, where the arm motions
are also planned by taking into account the uncertainty in
the environment.

Execution of some of the push-grasps can be seen in
Fig. 14. Videos of our robot executing push-grasps are on-
line at www.cs.cmu.edu/~mdogar/pushgrasp.

3.2 Planning Framework Experiments

This section describes our experiments with the complete
framework, including not only the Push-grasp but also the
Sweep, GoTo, and PickUp.

We created scenes in simulation and in real world. The
robot’s goal was to retrieve objects from the back of a clut-

tered shelf and from a table. We used everyday objects like
juice bottles, poptart boxes, coke cans. We also used large
boxes which the robot cannot grasp.

We present snapshots from our experiments in the fig-
ures of this section. The video versions can be viewed at
www.cs.cmu.edu/~mdogar/pushclutter.

3.2.1 Pushing vs. Pick-and-Place

Here, we compare our planner in terms of the efficiency
(planning and execution time) and effectiveness (whether
the planner is able to find a plan or not) with a planner that
can only perform pick-and-place operations. To do this, we
used our framework algorithm to create a second version
of our planner, where the action library consisted of only
the PickUp and GoTo actions, similar to the way traditional
planners are built using Transfer and Transit operations. We
modified the PickUp action for this planner, so that it does
not perform the pushing at the beginning, instead it grasps
the object directly. We call this planner the pick-and-place
planner, and our original planner the pushing planner.

http://www.cs.cmu.edu/~mdogar/pushgrasp
http://www.cs.cmu.edu/~mdogar/pushclutter


230 Auton Robot (2012) 33:217–236

Fig. 15 The plans that the pushing planner and the pick-and-place
planner generates in the same scene are presented. The pushing plan-
ner is more efficient as it is able to sweep the large box to the side.

The pick-and-place plan needs to move more objects and takes more
time to execute. The planning time is also more for the pick-and-place
planner (27.8 s vs. 16.6 s) as it needs to plan more actions

Fig. 16 An example plan to retrieve a can behind a large ungraspable box on a shelf. The robot first pushes the ungraspable large box to the side
and then reaches in to get the can out

An example scene where we compare these two planners
is given in Fig. 15. The robot’s goal is to retrieve the coke
can from among the clutter. We present the plans that the
two different planners generate. The pushing planner sweeps
the large box blocking the way. The pick-and-place planner
though cannot grasp and pick up the large box, hence needs
to pick up two other objects and avoid the large box. This
results in a longer plan, and a longer execution time for the
pick-and-place planner. The planning time for the pick-and-
place planner is also longer, since it has to plan more actions.
These times are shown on the figure.

In the previous example the pick-and-place planner was
still able to generate a plan. Figure 16 presents a scene where
the pick-and-place planner fails: the large ungraspable box
needs to be moved to reach the goal object, the can. The
pushing planner generates a plan and is presented in the fig-
ure.

3.2.2 Addressing Uncertainty

One of the advantages of using pushing is that pushing ac-
tions can account for much higher uncertainty than direct
grasping approaches. To demonstrate this we created scenes
where we applied high uncertainty to the detected object

poses. Figure 2 presents an example scene. Here the ob-
jects have an uncertainty region with σ : (0.02 m, 0.05 rad)
and n = 20. The pick-and-place planner fails to find a plan
in this scene too, as it cannot find a way to guarantee
the grasp of the objects with such high uncertainty. The
pushing planner generates plans even with the high uncer-
tainty.

4 Discussion and Future Work

We presented a framework for manipulation in clutter. This
framework uses non-prehensile, as well as prehensile, ac-
tions to rearrange the environment. In this section we present
a discussion around the limitations of this framework and
possible extensions to it.

Conservative Nature of Backward Chaining Our planner
starts from the goal and plans backwards. At any step we
take into account all uncertainty associated with previously
planned actions. This is reflected in the negative goal re-
gions for our planner. When the uncertainty about the con-
sequence of an action is large, this is reflected as a large
negative goal region in the following planning steps. If the



Auton Robot (2012) 33:217–236 231

NGR becomes too large, the planner can run out of space to
move objects to. This is a result of our planner being con-
servative with respect to uncertainty. In future work, we will
explore the idea of risk-taking actions as a solution to this
problem.

Unknown Spaces Clutter does not only block a robot’s
links from reaching into certain parts of the space, but it also
blocks its sensors (e.g. the cameras and laser scanners). In
other words clutter does not only create unreachable spaces
but also creates invisible or unknown spaces. If the robot
cannot see behind a large box, there is no way for it to know
if there is another object sitting there. If the robot needs to
use the space behind that box, what can it do? Our existing
framework assumes that these spaces are free. This assump-
tion does not have to be correct and can result in failures
during execution. To solve this problem we can take an ac-
tive approach where the robot manipulates objects to see the
space behind.

Actions with Sensor Feedback The actions presented in
this paper are open-loop. To guarantee success they are
conservative with respect to uncertainty. In future work we
plan to use sensor feedback during pushing. One challenge
when implementing this push-grasping strategy will be find-
ing a good flow of sensor feedback. Cameras on a robot’s
head are usually obstructed by the robot hand during ma-
nipulation. Therefore our main focus will be using tactile
sensors and force/torque sensors on the end-effector of the
robot.

Other Non-Prehensile Actions The framework we present
in this paper opens up the possibility to use different non-
prehensile manipulation actions as a part of the same plan-
ner. Therefore we view different non-prehensile actions,
such as the ones described below, as possible primitives that
can be integrated into our framework. Lynch (1999b) uses
toppling as a manipulation primitive. Berretty et al. (2001)
presents an algorithm to plan a series of pulling actions to
orient polygons. Diankov et al. (2008) use caging to open
doors as an alternative to grasping the handle rigidly. Chang
et al. (2010) present a system that plans to rotate an object on
the support surface, before grasping it. Omrcen et al. (2009)
propose a method to learn the effect of pushing actions on
objects and then use these actions to bring an object to the
edge of a table for successful grasping.

Pushing Multiple Objects Simultaneously When a robot
rearranges clutter using our existing framework it manip-
ulates objects one by one. If there are n objects blocking
the way to achieve the primary goal, the robot executes n

distinct actions to move them. If the robot could simultane-
ously move some of these objects out of the way, it would

achieve its goal in a faster way. In future work we plan to
use pushing actions that can move multiple objects simulta-
neously.

5 Conclusion

In this paper we presented a framework for manipulation in
clutter. The framework consists of a high-level rearrange-
ment planner, and a low-level library of non-prehensile and
prehensile actions. We presented the details of how we im-
plement a non-prehensile action, the push-grasp. We plan to
extend this framework such that it can use sensor feedback,
it can actively look for parts of the space that are occluded,
and it can move multiple objects simultaneously in rearrang-
ing clutter.
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Appendix: Computing Conservative Capture Regions

We compute the capture region for a push-grasp using a
pushing simulation. This simulation assumes that an object’s
limit surface can be approximated with an ellipsoid in the
force-moment space as in Howe and Cutkosky (1996).

As described in Sect. 2.2.2 two parameters of this simu-
lation affect the boundaries of the computed capture region:
the pressure distribution between the object and the support
surface, ρ; and the coefficient of friction between the robot
finger and the object, μc. These values are difficult to know
and we assume that our robot does not know the exact values
for any object.

When we run our simulation we generate capture regions
that are conservative with respect to these parameters; i.e.
capture regions that work for a range of reasonable values
of μc and ρ. For μc such a reasonable region is given by the
values between a very small value (a very slippery contact
between the robot finger and the object), and a very high
value (a high friction contact). The pressure distribution ρ

can take any rotationally symmetric shape, but it is limited
by the boundaries of the object making contact with the sup-
port surface.

One way to achieve a conservative capture region is by
discretizing the values a parameter can take, running the
simulation for each of the values, and then intersecting the
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Fig. 17 Some of the force and
velocity vectors we will be
using in our proof. In the figure
the finger is pushing the
cylinder towards right

resulting capture regions to find a capture region that works
for all the values. But for certain object shapes we can do
better.

For a cylindrical object the conservative capture region
can be found simply by running the simulation for specific
values of μc and ρ. For μc if we choose a very high value
the computed capture region will also be valid for any lower
value. For ρ if we choose a pressure distribution that is com-
pletely at the periphery of the cylinder (like a rim), the cap-
ture region will be valid for any other rotationally symmetric
pressure distribution that is closer to the center of the cylin-
der. This is equivalent to saying that, as μc gets smaller or as
ρ gets concentrated around the center, the required pushing
distance for the push-grasp will decrease. In this section we
prove this claim.

In Fig. 17 we present some of the force and velocity vec-
tors that determine how a cylinder moves under quasi-static
pushing. The following notation will be used:

– n̂ is the unit normal at the contact between the finger and
the object.

– fL and fR are the left and right edges of the friction cone.
The friction cone is found by drawing the vectors that
make the angle α = arctanμc with n̂.

– f is the force applied to the object by the finger. The di-
rection of f is bounded by the friction cone.

– v and ω are the linear and angular velocities of the object
at its center. v and ω can be found by computing the force
and moment at the center of the object due to f, finding the
corresponding point on the limit surface, and taking the
normal to the limit surface. Our ellipsoid approximation
of the limit surface dictates that v ‖ f (Howe and Cutkosky
1996).

– mL and mR are the left and right edges of the motion
cone. The edges of the motion cone are found by:
– taking one of the edges of the friction cone, say the left

edge;
– computing the force and moment it creates at the object

center;
– using the limit surface to find the corresponding linear

and angular velocity of the object, in response to this
force and moment;

– using the linear and angular velocity at the center of
the object to find the velocity at the contact point. This
gives the left edge of the motion cone; the right one
is found by starting with the right edge of the friction
cone.

– v̂d is the unit vector pointing in the opposite direction of
ω × r where r is the vector from the center of the object
to the contact; v̂d = (ω×r)

|ω×r| .
– vp is the velocity of the pusher/finger at the contact point.

The voting theorem (Mason 1986) states that vp and the
edges of the friction cone votes on the direction the object
will rotate. For a cylinder the friction cone edges always
fall on different sides of the center of the object, and vp
alone dictates the rotation direction; vp.(ω × r) > 0. In
terms of v̂d this means vp.v̂d < 0.

– vc is the velocity of the object at the contact point; vc =
v + ω × r.

– The grasp-line is the line at the fingertip orthogonal to
the pushing direction. The push-grasp continues until the
object center passes the grasp-line.

During quasi-static pushing, the contact between the fin-
ger and the object can display three different modes: sepa-
ration, sticking, or sliding. The case of separation is trivial,
in which the finger moves away from the object resulting in
no motion for the object. In the case of sticking contact the
contact point on the finger and the contact point on the ob-
ject moves together, i.e. vp = vc. This happens when f falls
inside the friction cone, and correspondingly when vc falls
inside the motion cone. In sliding contact the object slides
on the finger as it is being pushed. In this case f aligns with
the friction cone edge opposing the direction the object is
sliding on the finger. Similarly vc aligns with the motion
cone edge opposing the direction the object is sliding on the
finger. vp is outside of the motion cone.

What follows is a series of lemmas and their proofs;
which we then use to prove our main theorem.

Lemma 1 During sticking and sliding contact v.n̂ = vp.n̂.

Proof During sticking contact vp = vc, which implies

vp.n̂ = vc.n̂

We know that vc = v + ω × r. Then,

vp.n̂ = (v + ω × r).n̂

Since (ω × r).n̂ = 0,

vp.n̂ = v.n̂

During sliding contact, the relation between vc and vp is
given by

vc = vp + vslide
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Fig. 18 The relation between v, vp, and vc during sliding contact

where vslide is the velocity the object slides on the finger.
Taking the projection of both sides along the contact normal
gives

vc.n̂ = (vp + vslide).n̂

Sliding can only happen along the contact tangent. For a
cylindrical object, this means vslide.n̂ = 0. Then,

vp.n̂ = vc.n̂

This is also illustrated in Fig. 18. The rest of the proof pro-
ceeds the same as the sticking contact case. �

Lemma 2 During sticking contact, as we change ρ such
that it is concentrated closer to the center of the cylinder,
the magnitude of the angular velocity, |ω|, will get larger.

Proof As ρ concentrates at the center, the limit surface ellip-
soid gets a more flattened shape at the top and bottom. This
implies that for the same force and moment applied to the
object, the ratio |ω|/|v| will get larger (Howe and Cutkosky
1996).

We can express |v| as,

|v| =
√

(v.v̂d)2 + (v.n̂)2

and using Lemma 1,

|v| =
√

(v.v̂d)2 + (vp.n̂)2 (2)

During sticking contact vp = vc, hence

vp = v + (ω × r)

Since (ω × r) = −|ω||r|v̂d we have

vp = v − |ω||r|v̂d

Rearranging and projecting both sides onto v̂d gives:

v.v̂d = vp.v̂d + |ω||r|

Inserting this into Eq. (2),

|v| =
√(

vp.v̂d + |ω||r|)2 + (vp.n̂)2

Except |ω|, the terms on the right hand side are independent
of ρ. Since vp.v̂d < 0, as |ω| increases |v| decreases, and
vice versa. Then the only way |ω|/|v| can increase is when
|ω| increases. �

Lemma 3 For a given configuration of the object and the
finger, if we change the pressure distribution ρ such that it
is concentrated closer to the center of the object, the change
in v will have a non-negative projection on v̂d.

Proof We will look at different contact modes separately.
The separation mode is trivial. The object will not move for
both values of ρ. The change in v will have a null projection
on v̂d.

Assume that the contact mode is sliding. Then f will be
aligned with one of the friction cone edges; let’s assume fR
without loss of generality. Since v ‖ f, then v is also a vector
with direction fR

v = |v|f̂R

where f̂R is the unit direction along fR. Inserting this into the
result from Lemma 1 we have

|v|f̂R.n̂ = vp.n̂

Then

|v| = vp.n̂

f̂R.n̂

Multiplying both sides with f̂R we have

v = vp.n̂

f̂R.n̂
f̂R

None of the terms get affected by a change in ρ, i.e. the
change in v will have a null projection on v̂d.

As ρ concentrates at the center, |ω|/|v| will get larger.
The motion cone edges will then get more and more aligned
with the direction of ω × r, making the motion cone wider.
At the point when the motion cone edge reaches vp the con-
tact is no more a sliding contact but a sticking one.

When the contact is sticking we have

vp = vc = v + ω × r.

Then

v = vp − (ω × r)

If we rewrite (ω × r) using the direction v̂d, we get

v = vp + |ω||r|v̂d
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Except |ω|, the terms on the right hand side are independent
of ρ. By Lemma 2, we know that as ρ concentrates around
the center of the object, |ω| increases; i.e. the change in v
has a positive projection on v̂d. �

Now we look at the effect of μc , the friction coefficient
between the object and the finger.

Lemma 4 For a given configuration of the object and the
finger, if we decrease the value of μc, the change in v will
have a non-negative projection on v̂d.

Proof Again we look at the two contact modes separately.
The sticking contact case is trivial. f is inside the friction

cone. If we decrease μc, the friction cone will get narrower,
but as long as it does not get narrow enough to leave f out-
side, the contact is still sticking. There is no effect to the
velocities of the motion, including v. The change in v has a
null projection on v̂d.

If we continue to decrease μc at one point the contact
will become sliding. f will be at the edge of the friction cone
and the friction cone will get narrower as we decrease μc .
Without loss of generality, let’s assume f is along fR. Since
v ‖ f, v will also move with fR. Pictorially v will change as
in Fig. 19, resulting in a change along v̂d. Formally, in the
proof of Lemma 3 we showed that during sliding contact

v = vp.n̂

f̂R.n̂
f̂R

By the definition of the friction cone we have

f̂R = cos (arctanμc)n̂ − sin (arctanμc)v̂d

Replacing this into the equation above and noting that
v̂d.n̂ = 0 we have

v = vp.n̂
cos (arctanμc)

(
cos (arctanμc)n̂ − sin (arctanμc)v̂d

)

Then we have

v = (vp.n̂)n̂ − (vp.n̂)μcv̂d

Except μc itself, the terms on the right hand side are in-
dependent of μc. The contact mode requires that vp.n̂ > 0.
Hence, as μc decreases the change in v will be positive in
the direction of v̂d. �

Now we are ready to state and prove our main theorem.

Theorem 1 For a cylindrical object under quasi-static
pushing, where the quasi-static motion is approximated by
the ellipsoid limit surface (Howe and Cutkosky 1996), as μc

gets smaller or as ρ gets concentrated around the center, the
required pushing distance for a push-grasp will decrease or
stay the same (but not increase).

Fig. 19 v changes along with the edge of the friction cone as μc is
decreased

Fig. 20 Independent of μc and ρ, the finger and the object goes
through the same set of relative configurations during the push-grasp

Proof The push-grasp starts at a certain configuration be-
tween the finger and the object, and continues until the ob-
ject’s center passes the grasp-line at the fingertip and orthog-
onal to the pushing direction (Fig. 20). Since we assume that
μc is uniform all around the object, we can ignore the rota-
tion of the cylinder and simply consider its position relative
to the finger. Then, independent of ρ or μc, the finger and
the object will go through all the configurations between
rstart to rfinal during the push-grasp. We will show below
that the velocity the object center moves towards the grasp-
line never decreases as μc gets smaller or as ρ gets concen-
trated around the center.

For a given configuration of the object and the finger, the
object center’s velocity is given by v (ω does not have an
effect). We can express v using its components

v = (v.n̂)n̂ + (v.v̂d)v̂d

Lemma 1 tells us that the component of v along n̂ is fixed
for different ρ or μc:

v = (vp.n̂)n̂ + (v.v̂d)v̂d

Hence, the only change in the object center’s motion hap-
pens along v̂d. Lemmas 3 and 4 states that the change in v
will be non-negative along v̂d. �
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