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Abstract We investigate the problem of a robot searching
for an object. This requires reasoning about both perception
and manipulation: some objects are moved because the target
may be hidden behind them, while others are moved because
they block the manipulator’s access to other objects. We con-
tribute a formulation of the object search by manipulation
problem using visibility and accessibility relations between
objects. We also propose a greedy algorithm and show that
it is optimal under certain conditions. We propose a second
algorithm which takes advantage of the structure of the vis-
ibility and accessibility relations between objects to quickly
generate plans. Our empirical evaluation strongly suggests
that our algorithm is optimal under all conditions. We sup-
port this claim with a partial proof. Finally, we demonstrate
an implementation of both algorithms on a real robot using
a real object detection system.
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1 Introduction

Imagine looking for the salt shaker in a kitchen cabinet. Upon
opening the cabinet, you are greeted with a cluttered view of
jars, cans, and boxes—but no salt shaker. It must be hidden
near the back of the cabinet, completely obscured by the
clutter. You start searching for it by pushing some objects out
of the way and moving others to the counter until, eventually,
you reveal your target.

Humans frequently manipulate their environment when
searching for objects. If robotic manipulators are to be suc-
cessful in human environments, they require a similar capa-
bility of searching for objects by removing the clutter that is
in the way. In this context, clutter removal serves two pur-
poses. First, removing clutter is necessary to gain visibility
of the target. Second, it is necessary to gain access to objects
that would be otherwise inaccessible.

Prior work has addressed the issues of interacting with
objects to gain visibility and accessibility as separate prob-
lems. Work on the sensor placement (Espinoza et al. 2011)
and search by navigation (Ye and Tsotsos 1995, 1999; Shu-
bina and Tsotsos 2010; Sjo et al. 2009; Ma et al. 2011; Anand
et al. 2013) problems focuses on moving the sensor to gain
visibility. One canonical example of the sensor placement
problem is the Art Gallery problem (de Berg et al. 2008),
which would be equivalent to instrumenting the cabinet with
enough sensors to guarantee that the salt shaker is visible.
Similarly, the search by navigation problem would involve
moving a mobile sensor through the cabinet to search for the
target.

Conversely, the reconfiguration planning (Ben-Shahar
and Rivlin 1998; Dogar and Srinivasa 2012; Ota 2009) and
manipulation planning among movable obstacles (Stilman
et al. 2007; van den Berg et al. 2008; Chen and Hwang 1991;
Overmars et al. 2006) problems focus on moving objects
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Fig. 1 An example of the object search problem on a real robot. The
robot is searching for a target object (highlighted by the bounding box)
on the table, but its view is occluded (drawn as gray regions) by other
objects. The robot must remove these objects to search for the target.
Objects may block the robot’s access to other objects

to grant the manipulator access to previously-inaccessible
configurations. These approaches would be effective at
gaining access to the salt shaker once its pose is known,
but are incapable of planning before the target is visually
revealed. Recent work discusses the object search by manip-
ulation problem (Gupta and Sukhatme 2012; Kaelbling and
Lozano-Perez 2012) without reference to optimality. One of
these works uses a generative model of object-object co-
occurrence and spatial constraints (Wong et al. 2013) to guide
the robot’s search, which is similar to the prior distribution
we introduce in §8. Other related work includes exploring
the environment with the goal of building three-dimensional
models of novel objects using maximally informative actions
(van Hoof et al. 2012).

One of our key insights is that the object search by manip-
ulation problem requires simultaneously reasoning about
both perception and manipulation. Some objects are moved
because they are likely to hide the target, while others are
moved only because they prevent the manipulator from
accessing other objects in the scene.

Figure 1 shows a scene in which both situations occur. In
this figure, HERB (Srinivasa et al. 2012)—a robotic platform
designed by the Personal Robotics Lab at Carnegie Mellon
University—is searching for the white battery pack hidden on
a cluttered table. HERB uses its camera to detect and localize
objects. As Fig. 1-top shows, HERB is initially unable to
detect the battery pack because it is occluded by the blue
Pop-Tart box. From HERB’s perspective, the battery pack

could be hiding in any of the occluded regions shown in
Fig. 1-left. With no additional knowledge about the location
of the target, HERB must sequentially remove objects from
the scene subject to the physical limitations of its manipulator
until the target is revealed. For example, Fig. 1-right shows
that HERB is unable to grasp the large white box without
first moving the brown juicebox out of the way.

In this paper, we formally describe the object search by
manipulation problem by defining the expected time to find
the target as a relevant optimization criterion and the concept
of accessibility and visibility relations (§2). Armed with these
definitions, we are able to propose and analyze algorithms
for object search by manipulation. We make the following
theoretical contributions:

1.1 Greedy is sometimes optimal

We prove that, under an appropriate definition of utility, the
greedy approach to removing objects is optimal under a set
of conditions, and provide insight into when it is suboptimal
(§3).

1.2 The connected components algorithm

We introduce an alternative algorithm, called the connected
components algorithm, which takes advantage of the struc-
ture of the scene to approach polynomial time complexity on
some scenes (§5). Our extensive experiments show that this
algorithm produces optimal plans under all situations, and
we present a partial proof of optimality.

Finally, we demonstrate both algorithms on our robot
HERB (§6.1, §6.2) and provide extensive experiments that
confirm the algorithms’ theoretical properties (§6).

The interplay between visibility and accessibility has
revealed deep structure in the object search problem, struc-
ture that we were able to identify and exploit to derive the
connected components algorithm. We discuss several exten-
sions in §7, §8, and §9. We discuss limitations and future
work in §10. We believe that our algorithms are a step
towards enabling robots to perform complex manipulation
tasks under high clutter and occlusions.

2 Object search by manipulation

We start with a scene that is comprised of a known, static
world populated with the set of movable objects O, each of
which has known geometry and pose.

A robot perceives the scene with its sensors and has partial
knowledge of the objects that the scene contains. To the robot,
the scene is comprised of the set of visible objects Oseen ⊂ O
and the volume of space V that is occluded to its sensors. In
the object search problem, the occluded volume hides a target

123



Auton Robot (2014) 36:153–167 155

object target ∈ O with known geometry, but unknown
pose. For the remainder of this paper, we study a specific
variant of the problem in which the target is the only hidden
object, i.e. O = Oseen∪{target}. We discuss the presence
of other hidden objects in §9.

The robot searches for the target by removing objects from
Oseen until the target is revealed to its sensors. As objects are
removed, fewer objects remain in the scene, which we denote
by s ⊆ Oseen ·Oseen refers to the initial set of visible objects
and does not change as objects are removed. We define the
order in which objects are removed as an arrangement.

Definition 1 (Arrangement) An arrangement of the set of
objects o is a bijection Ao : {1, . . . , |o|} → o where Ao(i) is
the i th object removed.

Additionally, we define Ao(i, j) as the sequence of the i th
through the j th objects removed by arrangement Ao.

Given an arrangement Ao that reveals the target, the
expected time to find the target is

E(Ao) =
|o|∑

i=1

PAo(i) · TAo(1,i) (1)

where PAo(i) is the probability that the target will be revealed
after removing object Ao(i) and TAo(1,i) is the time to move
all objects up to and including Ao(i).

Our goal is to find the arrangement A∗Oseen
that minimizes

E(A∗Oseen
); i.e. reveals the target as quickly as possible.

2.1 Visibility

When the robot removes a set of objects from the scene
it reveals a set of candidate poses of the target object that
were previously occluded. These revealed configurations are
defined in target’s configuration space C .

Definition 2 (Revealed Configurations) The set of candidate
target poses Co|s ⊆ C revealed by removing objects o ⊆ s
from a scene containing objects s ⊆ Oseen .

The probability of revealing the target after removing o
from s is determined by the volume of Co|s . We call this the
revealed volume of those objects.

Definition 3 (Revealed Volume) The volume Vo|s revealed
by removing objects o ⊆ s from a scene containing objects
s ⊆ Oseen is

Vo|s =
∫

x∈Co|s

P0(x) dx (2)

where P0(x) is a prior distribution over the pose of the target
object.

(a) (b)

Fig. 2 a An example of a scene containing a joint occlusion. Occlu-
sions are drawn as dark gray and the joint occlusions as light gray. b
The scene after A is removed. a Initial scene, b A removed

We assume that P0(x) is uniform for the remainder of this
discussion to simplify our examples. We discuss the gen-
eral case of using a non-uniform P0(x) to encode semantic
knowledge about the scene in §8.

Additionally, we will drop the scene s from this nota-
tion whenever it is obvious from the context. For example in
Fig. 2a we write VA instead of the more verbose V{A}|{A,B,C}.
Similarly, instead of using VAo(i, j)|Ao(i,|o|) to refer to the
volume revealed between the i th and j th steps of an arrange-
ment, we will simply use VAo(i, j).

In Fig. 2a we show the revealed volumes of objects in an
example scene1. Vjoint is jointly occluded by object A and B,
and is not included in either VA or VB. This is because Vjoint

will not be revealed if only A or only B is removed from the
scene.

In Fig. 2b we show VB after A is removed from the scene
in Fig. 2a. Since A is no longer in the scene, VB now includes
Vjoint . Similarly, VA would expand to include Vjoint if Bwas
the first object removed from the scene. Regardless of the
order in which A and B are removed, the revealed volume of
{A,B} is V{A,B} = VA+VB+Vjoint . In the most general case,
an arbitrary number of objects can jointly occlude a volume.
In that case, the volume would be revealed only after all of
the occluding objects are removed from the scene.

Given an arrangement AOseen we compute the probability
that the target will be revealed at the i th step using the
revealed volume

PAOseen (i) =
VAOseen (i)

VOseen

(3)

2.2 Accessibility

The manipulator uses a motion planner to grasp an object and
remove it from the scene. To achieve this, the object must
be accessible to the manipulator. Accessibility is blocked by

1 We use two-dimensional examples, e.g. Fig. 2, throughout the paper
for clarity of illustration. Our actual formulation and implementation
uses complete three-dimensional models of the scene, objects, and vol-
umes.
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other visible objects, and also by the occluded volume, which
the manipulator is forbidden to enter.

Definition 4 (Accessibility Constraint) There is an accessi-
bility constraint from an object A to object B if A must be
removed for the manipulator to access B.

Any arrangement of objects in a scene must respect the
objects’ accessibility constraints. For example, in Fig. 1-
right, the access to the big box is blocked by the smaller
box in front of it.

We identify the accessibility constraints using a motion
planner, which returns a manipulator trajectory for each
object in the scene. The manipulator trajectory for an object
sweeps a certain volume in the space (illustrated as light
blue regions in Fig. 1). Objects that penetrate the swept vol-
ume result in accessibility constraints. Additionally, objects
for which the occluded volume penetrates the swept volume
also result in accessibility constraints.

We also use the manipulator trajectory for an object A to
compute TA by estimating the time necessary to execute the
trajectory on the robot. Since there is only a single action for
each object, TA is constant for a given scene and does not
depend on the sequence in which objects are removed.

3 Utility and greedy search

In this section, we discuss a greedy approach to solving the
object search by manipulation problem.

While the overall goal is to minimize the amount of time
it takes to find the target, a greedy approach requires a util-
ity function to maximize at every step. The faster the robot
reveals large volumes, the sooner it will find the target. Using
this intuition, we define the utility of an object similar to the
utility measures defined for sensor placement (Ye and Tsot-
sos 1995; Espinoza et al. 2011).

Definition 5 (Utility) The utility of an object A is given by

U (A) = VA
TA

This measure naturally lends itself to greedy search. A
greedy algorithm for our problem ranks the accessible objects
in the scene based on their utility and the removes highest
utility object. This results in a new scene, whereby the algo-
rithm repeats until the target is revealed. In the worst case,
this continues until all objects are removed.

Unsurprisingly, it is easy to create situations where greedy
search is suboptimal. Consider the scene in Fig. 3. In this
scene, VB � VC > VA. For the sake of simplicity we assume
that the time to move each object is similar, hence U (C) >

U (A). As B is not accessible, the greedy algorithm compares
U (A) and U (C) and chooses to move C first, producing the

(a) (b)

Fig. 3 A scene where the greedy algorithm performs suboptimally due
to an accessibility constraint. a Initial scene, b A removed

(a) (b)

Fig. 4 A scene where the greedy algorithm performs suboptimally due
to a visibility constraint. a Initial scene. b A removed

final arrangement C→ A→ B. However, moving the lower
utilityA first is the optimal choice because it reveals VB faster
(Fig. 3b), and gives the optimal arrangement A→ B→ C. It
is easy to see that greedy can be made arbitrarily suboptimal
by adding more and more objects with utility U (C) to the
scene.

We present a second example of greedy’s suboptimality
in Fig. 4. In this scene, all objects are accessible, VC > VA,
and VC > VB. The greedy algorithm inspects the utili-
ties and moves C first. However, there is a large volume
jointly occluded by A and B, such that when either A or B
is removed, the volume revealed by the second object sig-
nificantly increases. We illustrate this in Fig. 4b with A is
removed. Hence, the optimal arrangement is A → B → C
because it quickly reveals the large volume jointly occluded
by A and B.

The examples in Figs. 3 and 4 may suggest a k-step looka-
head planner for optimality. However, the problem is funda-
mental: one can create scenes where arbitrarily many objects
jointly occlude large volumes, or where arbitrarily many
objects block the accessibility to an object that hides a large
volume behind it.

Surprisingly, however, it is possible to create nontrivial
scenes where greedy search is optimal. We define the require-
ments of such scenes in the following theorem.

Theorem 1 In a scene where all objects are accessible and
no volume is jointly occluded, a planner that is greedy over
utility minimizes the expected time to find the target.
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Proof Suppose that A∗ is a minimum expected time (i.e.
optimal) arrangement. For any i, 1 ≤ i < |Oseen|, we can
create a new arrangement, A, such that the i th and (i + 1)th
objects are swapped; i.e. A(i) = A∗(i + 1) and A(i + 1) =
A∗(i). A must be a valid arrangement because all objects are
accessible.

No volume is jointly occluded, so the revealed vol-
ume of all objects will stay the same after the swap; i.e.
VA∗(i) = VA(i+1) and VA∗(i+1) = VA(i). Since the rest of
the two arrangements are also identical, using Eqs. 1 and 3,
we can compute the difference between E (A) and E (A∗)
to be:

E (A)− E
(A∗) = VA∗(i) · TA∗(i+1) − VA∗(i+1) · TA∗(i).(4)

E (A∗) is optimal, therefore E (A)− E (A∗) ≥ 0 and

VA∗(i)
TA∗(i)

≥ VA∗(i+1)

TA∗(i+1)

,

which is simply U (A∗(i)) ≥ U (A∗(i + 1)). Hence, the
optimal arrangement consists of objects sorted in weakly-
descending order by their utilities.

There can be more than one weakly-descending ordering
of the objects if multiple objects have the same utility. To see
that all weakly-descending orderings are optimal, the same
reasoning can be used to show that swapping two objects
of the same utility does not change the expected time of an
arrangement. ��

This result is rather startling. The greedy algorithm is
incredibly efficient in terms of computational complexity. At
each step, the algorithm finds the accessible object with max-
imum utility in linear time. In a scene of n objects, this results
in a total computational complexity of O(n2). We show in
§5 that the worst-case complexity of the optimal search is
O(n22n). The theorem, however, shows that there are scenes
in which greedy is optimal. We shall show in §6 that these
scenes do occur surprisingly regularly even with randomly
generated object poses. However, as we have shown above,
the greedy algorithm can also produce arbitrarily suboptimal
results.

In the next section we present an algorithm based on A-
Star search, which is always optimal but has exponential
computational complexity. Then, in §5 we present a new
algorithm which approaches the polynomial complexity of
the greedy algorithm, yet maintains optimality in the general
case as shown by our empirical evaluations in §6.

4 A-star search algorithm

In this section we present an optimal algorithm for solving the
object search by manipulation problem. We first formulate
the problem as a deterministic single-source shortest path

problem. We then find the optimal solution by executing an
A-Star search with an admissible heuristic.

Formulating this problem as a deterministic single-source
shortest path problem is possible only because of special
structure in the problem. The optimal policy always removes
objects from the scene in a deterministic order (i.e. an
arrangement) until the target is found. See §10 for a derivation
of this fact from a formulation of the problem as a Markov
decision process.

4.1 Single-source shortest path problem

Define a directed acyclic graph G = (N , E, c) with nodes
N ⊆ 2Oseen , edges E ⊆ Oseen × Oseen , and cost function
c : E → R

+. A node s ∈ N is the set visible objects
remaining in the scene. The directed edge (s, s \ {a}) ∈ E
removes object a from scene s.

Consider the single-source shortest path problem in G
with Oseen as the start node and ∅ as the goal node. Let
edges exist between nodes s and s′ if they differ by a single
object and if that object is accessible in s. Every path from
the start to the goal removes all objects from the scene in a
different order and corresponds to a different arrangement.

Furthermore, each edge (s, s \ {a}) ∈ E has cost

c(s, s′) =
(

Va|s
VOseen

)
TOseen\s′

where TOseen\s′ is the total time required to reach s′ = s \ {a}
from the initial scene Oseen . For every path going through
an edge, the cost indicates the probability that the target will
be revealed at that edge multiplied with the time required to
reach and execute the edge.

The sum of the edge costs along any path from the start to
the goal is exactly Eq. (1). In other words, the cost of a path
in this graph is equal to the expected time to find the target
while following corresponding arrangement. Therefore, the
minimum-cost in G corresponds the optimal arrangement
A∗Oseen

that minimizes E(A∗Oseen
).

4.2 Admissible heuristic

The single-source shortest path problem can be solved using
several well-known algorithms. We use the A-Star search
algorithm (Hart et al. 1968) with an admissible heuristic to
efficiently find the optimal solution. A-Star is optimal if its
heuristic is admissible, i.e. does not overestimate the cost
from a state to the goal.

Suppose we start at the arbitrary node
s = {a1, a2, . . . , an} and the minimum-cost path to the goal
is given by the sequence of actions [a1, a2, . . . , an]. Then,
the optimal cost-to-go is
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h∗(s) = c(s, s \ a1)+ c(s \ a1, s \ {a1, a2})+ . . . b

+c(s \ {a1, a2, . . . , an−1},∅)

=
(

Va1|s
VOseen

)
(TOseen\s + Ta1)

+
(

Va2|s\a1

VOseen

)
(TOseen\s + Ta1 + Ta2)

+ . . . b

+
(

Van |s\{a1,...c,an−1}
VOseen

)
(TOseen\s + Ta1

+ . . . b + Tan ).

Now we present our heuristic,

h(s) =
(

Va1|s
VOseen

)
(TOseen\s +min

a∈s
Ta)

+
(

Va2|s\a1

VOseen

)
(TOseen\s +min

a∈s
Ta)

+ . . . b

+
(

Van |s\{a1,...c,an−1}
VOseen

)
(TOseen\s +min

a∈s
Ta)

=
(

Vs

VOseen

) [
TOseen\s +min

a∈s
Ta

]
.

Since h(s) ≤ h∗(s), h(s) is admissible. Intuitively, h(s)
optimistically reasons that: (1) we execute the minimum-
time action and (2) it reveals all of the remaining volume.
Since h(s) is admissible, A-Star is optimal and will return
the minimum-cost path.

4.3 Computational complexity

Running an A-Star search on a graph with n nodes and m
edges has a worst-case complexity of O((m + n) log n).
Unfortunately, the graph constructed for a scene of size
n = |Oseen| has up to 2n nodes and no more than n2n

edges, resulting in a worst-case complexity of O(n22n). Our
experimental results (§6) confirm that A-Star approaches this
worst-case bound in practice and it is intractable to run this
algorithm on large scenes.

5 Connected components algorithm

The structure of the object search problem becomes more
clear once we represent the visibility and accessibility con-
straints of a scene as a graph. Each node of this graph corre-
sponds to an object in the scene. There is an edge between
the nodes A and B if:

– A is blocking the access to B, or vice versa; or
– A and B are jointly occluding a non-zero volume.

Fig. 5 Left an example scene. Volumes occluded by a single object are
shown in dark gray, joint occlusions are shown in light gray, and swept
volumes are shown in light blue. Right The corresponding graph with
three connected components (Color figure online)

Algorithm 1: Object Search With Connected Compo-
nents
{c1, c2, ..., cm} ← FindConnectedComponents;1

foreach connected component ci do2

A∗
ci ← AStar(ci );3

A∗Oseen
← [ ];4

repeat5
bag← ∅;6

foreach component arrangement A∗
ci do7

for j ← 1 to |ci | do8
bag.Add( Aci (1, j) );9

seq← arg max
A∈bag

U (A);
10

Add seq to the end of A∗Oseen
;11

Remove seq from the A∗
ci it belongs;12

until all objects are in the plan;13
return A∗Oseen

;14

An example scene and the corresponding graph is in
Fig. 5.

We can divide the constraint graph into connected com-
ponents. A connected component of the graph is a subgraph
such that there exists a path between any two nodes in the
subgraph (Hopcroft and Tarjan 1973). For example, there are
three connected components in Fig. 5: {A, B, C}, {D}, and
{E, F}.

A key insight is that the objects in a connected component
do not affect the utility of the objects in another connected
component. Hence, we can perform an optimal search, e.g.
using A-Star, to solve the arrangement problem for a con-
nected component independently and then merge the solu-
tions to produce a complete arrangement of the scene.

It is non-trivial to merge arrangements of multiple con-
nected components. The complete plan may switch from one
connected component to the other and then switch back to
a previous component. Our algorithm provides an efficient
greedy way to perform this merge.

The examples in Figs. 3 and 4 show that the utility of
a single object is not informative enough to achieve general
optimality with a greedy algorithm. Instead, we consider the
utility of removing multiple objects from the scene.
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Definition 6 (Collective Utility) The collective utility of a
set of objects o is given by

U (o) = Vo

To

A general greedy approach which considers the collective
utility of all possible sequences of all sizes in the scene would
quickly become infeasible as the number of such sequences
is O(|o|!). In our case, we take advantage of the fact that we
have optimal plans for each connected component in which
the objects are already sorted. We then need to compute col-
lective utilities of only the prefixes (i.e. the first k objects
where k ranges from 1 to the size of the connected compo-
nent) of these optimal sequences.

We present our algorithm in Algorithm 1 that uses the col-
lective utility of sequences from connected components to
generate an arrangement of the complete scene. It first iden-
tifies the connected components in the scene (Line 1). Then it
finds the optimal arrangement internal to a connected com-
ponent using A-Star search (Line 3). It then merges these
arrangements iteratively by finding the maximum utility2

prefixes of the optimal arrangements of the connected com-
ponents.

In §6 we show that Algorithm 1 generates the optimal
result in all scenes we tried it on and it uses a fraction of
the time A-Star requires on the complete scene. We present
a partial proof of our algorithm’s optimality in the appendix.

5.1 Complexity of the connected components algorithm

The connected components algorithm divides the set of
objects into smaller sets, runs A-Star on each connected com-
ponent, and then merges the plans for each component. If the
scene has no constraints, then there is one object per con-
nected component and this algorithm reduces to the greedy
algorithm. Conversely, if the constraint graph is connected,
this algorithm is equivalent to running A-Star on the full
scene. Therefore, the performance of this algorithm ranges
from O(n2), the performance of the greedy algorithm, to
O(n22n), the performance of A-Star, depending upon the size
of the connected components. Geometric limitations put an
upper bound on the number of accessibility and joint occlu-
sion constraints that are possible in a given scene, so it is
unlikely that any scene will exercise the worst case perfor-
mance. These performance gains will be most significant on
large scenes in which objects are spatially partitioned, e.g.
on different shelves in a fridge, but will be modest on small,
densely packed scenes.

2 In the rare event that that multiple sequences share the maximum
utility, the algorithm breaks the tie by choosing the sequence with the
maximum utility prefix recursively.

6 Experiments and results

We investigated the performance of the different algorithms
through extensive experiments in simulation and on a real
robot. We implemented the greedy, A-Star, and connected
components algorithms in OpenRAVE (Diankov and Kuffner
2008). We also implemented a baseline algorithm which ran-
domly picks an accessible object and removes it from the
scene. We evaluated these algorithms on randomly generated
scenes. Each scene contained n objects—half juice bottles
and half large boxes—that were uniformly distributed over a
wide 1.4 × 0.8 m workspace. None of the generated scenes
contained hidden objects and the planner used a motion plan-
ner based on the capabilities of a simple manipulator. The
manipulator was only capable of moving straight, parallel to
the table and at a constant speed of 0.1 m/s.

In our implementation, we assume that the target rests
stably on the workspace and C = SE(2). We approximate C
with a discrete set of configurations C̃ ⊂ C . Next, we com-
pute a discrete approximation of each set of revealed config-
urations C̃o|s = {x ∈ C̃ : �(x |s \ o) ∧ ¬�(x |s)} using the
visibility criterion �(x |s) that returns whether x ∈ C is visi-
ble in the scene s. Finally, we compute Vo|s by approximating
the integral over Co|s in Eq. (2) with a summation over C̃o|s .
In principle, our framework supports any deterministic vis-
ibility criterion � : C × 2Oseen → {0, 1}. However partial
views of objects are difficult to detect in practice. Therefore,
our implementation considers the target at a certain pose vis-
ible if and only if it is entirely visible. This is implemented
by sampling points on the surface of the target, raytracing
from the sensor to each point, and verifying that no rays are
occluded.

We present results from scenes with 4, 6, 8, 10, and 12
objects in Fig. 6 along with the 95 % confidence intervals.
We conducted 400 simulations for each different number of
objects, resulting a in total of 2,000 different scenes. The data
in Fig. 6a shows that the greedy algorithm becomes increas-
ingly suboptimal as the number of objects increases. All three
algorithms significantly outperform the random algorithm,
which serves as a rough upper bound for the expected search
duration. Unfortunately, the optimality of A-Star comes with
the cost of exponential complexity in the number of objects.
This complexity causes the planning time of A-Star to dom-
inate the other planning times shown in Fig. 6b (note the
logarithmic scale).

While still optimal in all 2,000 scenes, the connected com-
ponents algorithm achieves much lower planning times than
A-Star. By running A-Star on smaller subproblems, the con-
nected components algorithm is exponential in the size of
the largest connected component, k, instead of the size of
the entire scene. Fig. 6c shows that k ≈ n/2 for n ≤ 8 and
increases when n = 10, causing the large increase in planning
time between n = 8 and n = 10 in Fig. 6b. With fixed com-
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Fig. 6 Performance of the random, greedy, A-Star, and connected
component planners as a function of number of objects. All results are
averaged over 400 random scenes and are plotted with their 95 % confi-
dence interval. The planning times are presented in log-scale, where the

confidence intervals are also plotted as log-scale relative errors (Baird
1995). The relationship between scene size and the size of the largest
connected component is also plotted as a two-dimensional histogram

Fig. 7 a 95th percentile of
expected time to find the target.
b Two example scenes where
greedy performed poorly. The
black lines denote the workspace
boundary. a Expected search
duration. b Example scenes

(a) (b)

putational resources, these results show that the connected
components algorithm is capable of solving most scenes of
size 2n in the amount of time it would take A-Star to solve
a scene of size n. For sparse scenes, the connected compo-
nents algorithm achieves optimality with planning times that
are comparable those of the greedy algorithm.

One surprising results of our experiments is that, while
greedy is not optimal in the general case, it does remarkably
well on average. We found that in 50 % of the 2,000 different
scenes, the greedy algorithm produced the optimal sequence.
Our explanation for greedy’s performance is that the geome-
try of our workspace enforces a tradeoff between the volume
occluded by an object and the number of objects that block its
accessibility: For an object to occlude a large volume it must
be near the front of the workspace, which makes it unlikely
that multiple objects can be placed in front of it.

To see the greedy’s worst-case behavior, we plotted
the expected time to find the target for the 5 % of
scenes where greedy performed worst in Fig. 7a. Across
all the scenes, the worst performance was 2.04 times the
expected duration of the optimal sequence. We show two
example scenes where greedy performs poorly in Fig. 7b.
Both scenes include small bottles blocking access to large

boxes. There is very little volume hidden behind the bot-
tles, so the boxes are—suboptimally—removed late in the
plan.

If the goal is to minimize the total time to plan and also
execute the search, then we must trade-off the gains in plan-
ning time achieved by the greedy algorithm with the extra
actions the robot needs to execute due to the greedy algo-
rithm’s suboptimality. In a setting where action executions
are fast and greedy is nearly optimal, one should use the
greedy algorithm. If action executions are slow and greedy
plans are increasingly suboptimal (e.g. in environments with
a large number of objects), one should use the connected-
components algorithm.

6.1 Real robot implementation

We implemented the greedy and connected components algo-
rithms on our robot HERB. We used HERB’s camera and the
MOPED (Martinez et al. 2010) system to detect and locate
objects in the scene. We present an example scene where
HERB successfully found the target object using the greedy
algorithm in Fig. 8. In this scene the target object, a battery
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Fig. 8 Greedy planner. We present the utility of all accessible objects at each step. The pose of the target (unknown to the robot) is marked with
dashed lines in the illustration

Fig. 9 Connected-components
planner. The utilities of all
prefixes from each connected
component are presented at each
step

pack, is hidden behind the large box, which also occludes the
largest volume. Since the large box is inaccessible, the greedy
planner compares the utilities of the other three objects,
and removes the largest utility object at each step. Even
though the large box is hiding a large volume, the greedy
planner removes it last, resulting in a long task completion
time.

In Fig. 9 the scene is the same but HERB uses the
connected components algorithm. There are three con-
nected components in this scene {BlueBox}, {Bottle},
and {LargeBox,SmallBox}. The connected components
algorithm considers the collective utilities of multiple objects
from each connected component, including both U
(SmallBox) and U (SmallBox,LargeBox). The utility
ofSmallBox is very small compared with the other immedi-
ately accessible objects, but combined with the LargeBox,
their utility is large enough that the algorithm removes
SmallBox as the first object. It then removes the large box
and finds the target object. We present the actual footage of
these experiments at http://youtu.be/i06GBj1iDOo.

6.2 Performance in human environments

Objects are not distributed randomly in real human environ-
ments: they display a structure specific to human clutter. We
conducted a simple evaluation of our planner by creating
scenes which are similar in structure to human clutter.

For this evaluation we identified three different places
where a robot might need to search for an object by manip-
ulation: a bookshelf, a cabinet, and a fridge. We captured
images of the natural clutter in these environments in our
lab. We display these images as the leftmost column in
Fig. 10.

Limitations of our robot’s perception system and the dif-
ference between the sizes of a human arm/hand and our
robot’s manipulator prevented us from running our plan-
ner directly on these scenes. Therefore, we constructed new
scenes that are scaled up to the dimensions of HERB’s manip-
ulator and consist of objects that our perception system can
reliably detect. We attempted to faithfully mimic the relative
size and configuration of objects in the original scenes as
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Fig. 10 Example executions on scenes inspired by real human environments. Scenes are inspired from a cluttered human shelf (top), a cabinet
(center), and a fridge (bottom)

Table 1 Planning and execution times

Total time (s) Planning (s) Execution (s)

Shelf 132.7 16.1 116.6

Cabinet 94.6 26.1 68.5

Fridge 242.0 16.7 225.3

much as possible. We hid the target object randomly in the
occluded portion of the table.

We present snapshots from our robot’s search for the target
as the rows of Fig. 10. All plans were automatically generated
by the connected components algorithm and HERB success-
fully found the target in all three scenes. Table 1 shows the
planning time, execution time, and the total time it took the
robot to find the object. Note that execution time is the domi-
nating factor, emphasizing the importance of generating short
plans when searching for objects with a real robot.

7 Planning to place objects

The robot must place an object down before picking up
another one. If the robot is allowed to place the object at
a new pose where it creates new visibility or accessibility
relations, then the object search problem becomes a version
of reconfiguration planning which is known to be NP-Hard
(Wilfong 1988). We avoid this complexity by placing objects
only at poses that do not create new accessibility or visibility
relations.

Our formulation requires us to compute the time it takes
to manipulate an object before we decide the arrange-
ment. We use fixed placement poses on a nearby empty
surface to satisfy this constraint. We found this to be a
reasonable strategy in practice: Even when the robot is
working in a densely crowded cabinet shelf, there is usu-
ally a nearby counter or another shelf to place objects
on.

However, one can also re-use the explored space to place
objects: after an object is picked up and the robot sees the
volume behind that object, the planner can safely use this
volume. In particular, for an arrangement AOseen , object
AOseen (i) can be placed where:

– it avoids penetrating VAOseen (i+1,|Oseen |),
– it avoids occluding VAOseen (i+1,|Oseen |),
– it avoids blocking access to the objects AOseen (i +

1, |Oseen|),
– it avoids colliding the placement poses of the objects

AOseen (1, i − 1).

In Fig. 11 we illustrate each of these constraints and the
remaining feasible placement poses for an object.

Surprisingly, certain scene structures lead to very sim-
ple and fixed placement strategies. For example, in a scene
where there are no accessibility relations and no joint occlu-
sions (where the greedy algorithm is optimal), an object can
be placed where it was picked up: the robot lifts an object,
looks behind it, and places it back. This strategy respects the
constraints listed above.
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Fig. 11 An example illustrating placement contraints. a In this scene
the small box is moved to the left and then the large box is picked up.
Now the planner must place the large box. The large box cannot be
placed where b it will penetrate the volume which is not explored yet;

cit will occlude the volume which is not explored yet; d it will block
access to the objects which are not moved yet; e it will collide with
the new poses of the objects which are already moved. f The combined
placement constraints for the large box

8 Encoding semantic knowledge

All of our examples of the object search by manipulation
problem assume that the target is equally likely to be found
anywhere in the workspace. However, human environments
are not random: semantic knowledge about the environment
provides useful information about where a hidden object may
be found. For example, a can of soda is more likely to be in
the refrigerator than in the dish washer.

There are several existing techniques for learning co-
occurrence probabilities objects (Kollar and Roy 2009; Wong
et al. 2013) in real environments. We can naturally incor-
porate this type of semantic knowledge into the prior dis-
tribution P0(x). The prior distribution changes the volume
revealed by each target and can be directly exploited by same
the greedy, A-Star, and connected components algorithms
described above.

For example, suppose that the robot is searching for a bot-
tle of mustard in the refrigerator. Fig. 12a shows an example
of this scenario where the refrigerator contains a small bottle
of ketchup K and two large food containers A and B. The
mustard M is hidden behind the bottle of ketchup. Assum-
ing that the robot has no prior over the location of the mus-
tard, VA, VB � VK. Assuming TA = TB = TK, the opti-
mal arrangement with no prior distribution is A → B → K
because U ({A,B}) > U(K) and U (B) > U (K).

However, this plan ignores important semantic knowledge
about the scene: mustard is more likely to be found near

(a) (b)

Fig. 12 Example scene where semantic knowledge influences the opti-
mal order of removing objects. The robot is searching for the mustard
(dotted circle) and has a strong prior distribution that it is near the
ketchup (K). a Refrigerator scene. b Prior distribution P0(x)

ketchup than the containers of food. This knowledge causes
P0(x), shown in Fig. 14b, to be peaked around K. This prior
influences the revealed volumes such that VK � VA, VB, the
opposite relationship as above. This prior knowledge changes
the optimal arrangement to K → A → B because U (K) >

U({A,B}) and reveals the mustard more quickly.

9 Replanning for hidden objects

All of the algorithms described above can be easily gener-
alized to handle environments that contain hidden objects in
addition to the target. However, objects must be smaller than
the target object to avoid the danger of the arm colliding with
an hidden object while searching for the target. If this con-
dition holds, then one can simply re-execute the planner on
the remaining objects whenever an hidden object is revealed.
This strategy is optimal given the available information if
there is no a priori information about the type, number, or
location of the hidden objects and the plans are generated
using an optimal algorithm in each updated scene. If there
are k hidden objects, then this replanning strategy multiplies
the total planning time of an optimal algorithm by a factor
of O(k). In the case of the greedy or random algorithm, the
replanning adds O(k) overhead from reevaluating visibility
after each object is revealed.

Fig. 13 shows an example of replanning on a scene con-
taining six objects. Two objects, shown as semi-transparent
in the figure, are initially hidden and are revealed once the
occluding objects are removed. The robot begins by execut-
ing the connected components planner on a scene containing
the four visible objects. After executing the first two actions
in that plan, the robot detects that a new object has been

Fig. 13 Example of replanning on a scene with two hidden objects.
Each replanning stage is shown as a separate frame along with the
corresponding plan. Hidden objects are shown as semi-transparent and
the workspace bounds are indicated by a black line
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revealed and replans for the remaining objects. In this case,
the optimal ordering is unchanged and the newly-revealed
object is simply appended to the existing plan. After execut-
ing another action, the second hidden object is revealed and
the robot must replan a second time. This time, order of the
optimal sequence is changed by the addition of the hidden
object and it would be suboptimal to continue executing the
previous plan.

10 Future work

We are excited about exploring this problem deeper and
relaxing some of the simplifying assumptions in future work.

Integrated motion planning We use a motion planner for
the manipulator that is conceptually decoupled from finding
the optimal arrangement. However, there are aspects of the
object search problem that can be integrated into the motion
planning process. For example, there may be multiple trajec-
tories for grasping an object that require differing numbers
of objects to be moved out of the way. In this respect, we are
excited about studying how a more complex motion planner,
e.g. one returning a minimum-constraint violation trajectory
(Hauser 2012), can be integrated into our system. The object
search formulation can also take into account the motion of
moving from one object to the next one, trying to minimize
the time spent in between. This can make the object search
problem similar to the traveling agent problem (Moizumi and
Cybenko 2001) where the latencies between nodes produced
are produced by a motion planner.

Improved perception model Our framework allows for
any sensor model. We will explore relaxing the conserva-
tive requirement of the entire target being visible to other
perceptual models that address partial visibility.

Integrated sensor planning Aside from reaching to objects,
the robot does not move its base in our current implementa-
tion. Through combining the ability of search by manipula-
tion with sensor planning, the robot can find targets faster.
Sensor planning would include working with multiple cam-
era poses and planning for the base when searching for a
target in a larger environment.

Acknowledgments Special thanks to the members of the Personal
Robotics Lab at Carnegie Mellon University for insightful comments
and discussions. This material is based upon work supported by NSF-
IIS-0916557 and NSF-EEC-0540865.

Appendix

Appendix 1: Formulation as a Markov decision process

In this section, we formulate the object search problem as
a Markov decision process (MDP) and show that the opti-

Fig. 14 Transition graph of the of the object search MDP. States
(rounded rectangles) are sets of visible objects and actions (squares)
correspond to removing an object from the scene. Each action has a
probability of revealing target and transitioning into found

mal policy minimizes the expected time to find the target.
Next, we show that the MDP is deterministic and that each
policy corresponds to an arrangement. This provides insight
into how the A-Star search algorithm can be used to find the
optimal policy for a stochastic problem.

A MDP is the four-tuple (S, A, �, R) where S is the
state space, A is the action space, �(s′|s, a) is the transi-
tion model, and R(s, a) is the reward function (Kaelbling et
al. 1996).

For the object search problem, the state s ∈ 2Oseen ∪
{found} is the set of visible objects remaining in the scene
and an absorbing goal state found that corresponds to the
target being visible. The scene starts with all objects present
s0 = Oseen and the robot sequentially chooses an object
a ∈ s to remove. After removing a, we transition to the
successor state s′ according to

�(s′|s, a) =
⎧
⎨

⎩
1− Va|s

Vs
: s′ = s \ {a}

Va|s
Vs

: s′ = found

and receive reward R(s, a) = −Ta . This process continues
until there is a transition intofound and the MDP terminates
with zero reward. Fig. 14 shows a graphical depiction of the
state transition graph for a scene with three objects {A,B,C}
and no accessibility relations.

A policy π : S → A specifies which action π(s)
to take when in state s. In the case of the object search
problem, π dictates which object to remove from the
scene at each step. We wish to find the optimal policy
π∗ that maximizes the sum of expected future reward
E[∑|Oseen |

t=1 R(st , at )].
Any policy π induces the value function �π : S → R,

where �π(s) is the sum of expected future reward from start-
ing in state s and following π to termination.3 The value func-
tion of the optimal policy π∗ satisfies the Bellman equation

3 We use �π in place of V π to denote the value function to avoid
confusion with revealed volume Vs .
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�π∗(s) = max
a∈A

∑

s′∈S

�(s′|s, a)
[

R(s, a)+�π∗(s′)
]
, (5)

which recursively relates the value of state s with that of its
successors (Kaelbling et al. 1996).

We can take advantage of the structure of the object
search problem to reduce the Bellman equation to a simpler
form. First, the object search problem has a sparse transition
model: �(s′|s, a) = 0 for all s′ �∈ {s \ a,found}. Second,
�π(found) = 0 for the absorbing goal state. Using these
observations, we can simplify Eq. (5) to

�π∗(s) = max
a∈s

[
R(s, a)+ �(s \ {a}|s, a)�π∗(s \ {a})

+�(found|s, a)�π∗(found)
]

= max
a∈s

[
−Ta +

(
1− Va|s

Vs

)
�π∗(s \ {a})

]
,

which, surprisingly, has the same form as the value function
of a deterministic MDP. This agrees with our earlier intuition:
while the outcome the object search problem is stochastic,
the optimal order of removing objects is completely deter-
ministic.

In fact, π is equivalent to an arrangement Aπ
Oseen

that
specifies an open-loop order in which to remove objects.
During execution objects are removed according to Aπ

Oseen
until the target is revealed and the robot halts (i.e. transitions
to found). This equivalence is what enables us to formu-
late the object search problem as a deterministic search in
§4.

Appendix 2: Optimality of connected components

We present a partial proof of optimality for Algorithm 1.
We state a property of the collective utility as a lemma.

Lemma 1 Given an arrangement Ao,

U (Ao(1, |o|)) ≥ U (Ao(1, k))

�⇒ U (Ao(k + 1, |o|)) ≥ U (Ao(1, |o|))
In other words, if the utility of the complete arrangement is
larger than the utility of the first k objects, then the utility of
the last |o| − k objects must be larger than the utility of the
complete arrangement.

Proof We are given that

VAo(1,k) + VAo(k+1,|o|)
TAo(1,k) + TAo(k+1,|o|)

≥ VAo(1,k)

TAo(1,k)

Rearranging yields

VAo(k+1,|o|) · TAo(1,k) ≥ VAo(1,k) · TAo(k+1,|o|)

Adding VAo(k+1,|o|) · TAo(k+1,|o|) to both sides and rearrang-
ing, we get

VAo(k+1,|o|)
TAo(k+1,|o|)

≥ VAo(1,k) + VAo(k+1,|o|)
TAo(1,k) + TAo(k+1,|o|)

��
Theorem 2 Given an optimal arrangement of a scene A∗,
for any two adjacent sequence of objects in the arrangement
A∗(i, j) and A∗( j + 1, k), where i ≤ j < k, if there are
neither accessibility constraints nor joint occlusions between
the objects in the two sequences (i.e. if the sequences are
from different connected components), then the utility of the
former sequence is greater than or equal to the utility of the
latter sequence: U (A∗(i, j)) ≥ U (A∗( j + 1, k)).

Proof The proof proceeds similar to the proof of Theo-
rem 1. We create a new arrangement A that is identical
to A∗ except that the two adjacent sequences are swapped:
A(i, i + k − j) = A∗( j + 1, k) and A(i + k − j + 1, k) =
A∗(i, j). A must be a valid arrangement since we are given
that no object in A∗(i, j) is blocking access to A∗( j + 1, k).
Then we can compute the difference E (A)− E (A∗) to be:

j∑

l=i

(
VA∗(l)
VOseen

· TA∗( j+1,k)

)
−

k∑

l= j+1

(
VA∗(l)
VOseen

· TA∗(i, j)

)

Since A∗ is optimal, E(A)− E(A∗) ≥ 0. After canceling
out the common terms and rearranging, we are left with
∑ j

l=i VA∗(l)
TA∗(i, j)

≥
∑k

l= j+1 VA∗(l)
TA∗( j+1,k)

Simply, U (A∗(i, j)) ≥ U (A∗( j + 1, k)). ��
We state a lemma and leave its proof to future work.

Lemma 2 The relative ordering of objects in the optimal
arrangement of a connected component will be preserved in
the optimal ordering for the complete scene. Formally, if A∗c
is the optimal arrangement for a connected component c, and
A∗o is the optimal arrangement of o, such that c ⊆ o, then

i < j �⇒ A∗−1
o (A∗c(i)) < A∗−1

o (A∗c( j))

where 1 ≤ i, j ≤ |c|, and A∗−1
o returns the index of an object

in the arrangement A∗o.

Finally we can prove that the connected components algo-
rithm is optimal.

Theorem 3 Let’s say we are given m connected components
of a set of objects, o, and we are also given an optimal
arrangement for each connected component Aci for i =
1, . . . , m. Let’s say we computed the utility of all sequences
of objects in the form Aci (1, j) for all i = 1, . . . , m and
j = 1, . . . , |ci |, and found Ac∗(1, j∗) to have the maxi-
mum utility. Then an optimal arrangement for o starts with
Ac∗(1, j∗).
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Proof Assume that the optimal arrangement A∗o does not
start with Ac∗(1, j∗). We will prove that this is not possible.

Given an arrangement of o, we can view it as a series
of partitions, where each partition consists of a contiguous
sequence of objects from the same connected component.
Due to Lemma 2, each such partition in A∗o can be represented
as subsequences of the connected component arrangements
Aci . In particular, we are interested in two partitions of the
optimal arrangement of o:

A∗o =
[Ac′(1, j ′) . . . Ac∗(k, l) . . .

]

where c′ is one of the connected components, and 1 ≤ j ′
≤ |c′|. Ac∗(k, l) is the partition that includes the object
Ac∗( j∗), hence k ≤ j∗ ≤ l. We know that Ac∗(1, j∗) has the
maximum utility of all the sequences in the form Aci (1, j)
where ci is any connected component and j = 1, . . . , |ci |.
Then,

U (Ac∗(1, j∗)) > U (Ac∗(1, k − 1)) (6)

and also

U (Ac∗(1, j∗)) > U (Ac′(1, j ′)) (7)

Using Lemma 1 and Eq. (6), we get

U (Ac∗(k, j∗)) > U (Ac∗(1, j∗))

Then from Eq. (7),

U (Ac∗(k, j∗)) > U (Ac′(1, j ′)) (8)

Considering the utilities of all the partitions in A∗o up to
Ac∗(k, l), we know that they should be ordered in descreasing
order of utility and be larger than Ac∗(k, j∗) (Theorem 2):

U (Ac′(1, j ′)) > . . . > U (Ac∗(k, j∗))

which contradicts Eq. (8). ��
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