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1. Introduction

There are striking differences between the way hu-
mans and current robots manipulate objects. One dif-
ference is in the variety of actions used. The list of
actions that we humans use to push, pull, throw, tum-
ble, and play with the objects around us is nearly end-
less. Robots, however, manipulate objects almost ex-
clusively through pick-and-place actions. As a conse-
quence, robots are also limited in the variety of tasks
that they can perform.

Robots are limited to pick-and-place actions because
they use motion planners which are agnostic to physics.
Pick-and-place actions do not require physics models to
predict how the manipulated object moves: it is rigidly
attached to the hand. However, complex manipulation
skills require complex physics-based models to predict
how the world behaves. For example, to push a heavy
piece of furniture out of the way, a robot needs a physics
model that predicts how the furniture will move.

At the Personal Robotics Lab at Carnegie Mel-
lon University we investigate methods to use realistic
physics models in manipulation planning. We develop
planners that enable robots to physically interact with
the environment in order to perform useful tasks. Some
of these tasks are impossible to perform using only pick-
and-place actions.

In this paper we present our first steps in building a
physics-based manipulation planner. We use a quasi-
static analysis to predict how objects move when they
are pushed. We integrate these predictions into a ma-
nipulation planner which produces pushing actions as
well as pick-and-place actions. We demonstrate the ef-
fectiveness of our approach in three domains:
Reconfiguring clutter In cluttered environments
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robots need to move obstacles out of the way in or-
der to reach other objects. These obstacles may not be
movable by pick-and-place actions if they are large or
heavy. Our planner uses physics-based pushing actions
to move such objects.
Manipulation through clutter When we humans
reach into a cluttered fridge shelf to grasp a milk jug
or into a gym bag to pull a towel out, we frequently
contact multiple objects other than the one we want to
grasp. Robots are the opposite. Motion planners avoid
contacting any object other than the goal at all costs,
since the contacted objects’ motion cannot be predicted.
We show that physics-based manipulation planners are
free of this constraint. Our planner enables a robot to
reach for and grasp the target while simultaneously con-
tacting and moving aside obstacles in order to clear a
desired path.
Manipulation under uncertainty Object pose un-
certainty is a major source of failure during robotic ma-
nipulation. Our planner can use the mechanics of push-
ing to reduce uncertainty, resulting in robust manipu-
lation even under high uncertainty.

Clutter and uncertainty are two main problems for
robotic manipulation in human environments. We are
excited to see that physics-based planning has the po-
tential to improve robot manipulation capabilities in the
face of both issues.

A future goal for us is to develop physics-based plan-
ners which extend beyond pushing and can accommo-
date actions such as rolling, throwing, and toppling. We
need to address two major issues:
Planning time Physics simulations are slow. Ma-
nipulation planners need to consider alternative cases,
running simulations many times, which results in long
planning times. We propose a solution to this prob-
lem based on pre-computing and caching of the physi-
cal interactions between the robot manipulator and an
object.
Robustness Physics simulations are inaccurate.
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Fig. 1 Two reconfiguration plans where the goal is to reach to the red can hid-
den behind a large box that cannot be grasped. (Top) Reconfiguration
planning with pushing actions. (Bottom) Reconfiguration planning with
pick-and-place actions. Image taken from [1]

Plans based on inaccurate predictions run the risk of
failure. We propose two solutions and provide exam-
ples in the pushing domain: (i) conservative planning,
and (ii) using sensor feedback.

Robots can perform remarkable manipulation tasks
in human environments using physics-based planning.
The pushing based approach that we take in this paper
is an important step in this direction.

2. Manipulation with Pushing Actions

We present a framework which produces manipula-
tion actions including pushing, as well as pick-and-
place. In order to verify a plan, the framework predicts
how a certain action will move an object.

2. 1 Predicting object motion
Our planner uses a simulation to predict how objects

move when they are pushed. We developed this sim-
ulation with the theoretical background provided by a
number of studies which analyze the quasi-static inter-
actions between a pusher and a pushed object. Ma-
son [2] presents such an analysis and proposes a method,
the voting theorem, to find the sense of rotation of a
pushed object. Other studies build on this and analyze
the controllability, planning, and uncertainty-reducing
properties of pushing [3]～[7].

Our simulation uses the limit surface [8] to relate
the generalized forces applied on an object to the re-
sulting generalized velocity. We approximate the limit
surface with a three-dimensional ellipsoid. Howe and
Cutkosky [9] present the conditions under which this
approximation can be done. Our planner uses three-
dimensional models of objects and this simulator to pre-

dict object motion.
2. 2 Reconfiguring Clutter
A robot can reconfigure clutter efficiently using push-

ing actions. We illustrate this with an example in
Fig. 1. The robot’s goal is to reach the red can hidden
behind a box which is too large to be grasped. Our plan-
ner pushes the large box to the side and reaches the goal
object (Fig. 1-Top). However, if the robot plans for the
same task using only pick-and-place actions, it needs
to pick up two other objects and avoid the large box
(Fig. 1-Bottom). This results in longer execution and
planning times. One can also construct scenes where an
ungraspable object must be moved to reach the goal, in
which case the pick-and-place reconfiguration approach
will fail completely.

A reconfiguration planner identifies the objects to
move, the order to move them, and where to move
them. The general problem is NP-Hard [10]. Planners
in the literature produce feasible results by perform-
ing a search over the order of objects [11] [12]. Stil-
man et al. [13] [14] perform this search using the back-
projection of robot actions, starting from the final ac-
tion of reaching to the goal. Our planner [1] uses back-
projections of pushing actions as well as pick-and-place
actions.

Our planner searches the space of different pushing
actions by discretizing the different directions to push
an object. Along each direction the hand can also be
offset laterally with respect to the object pose, and dif-
ferent hand preshapes can be used.

2. 3 Manipulation through Clutter
In cluttered spaces, we humans can simultaneously
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contact multiple objects while manipulating a goal ob-
ject. For example, when we reach towards the back of a
fridge shelf our hands may contact to the objects at the
front edge; or, when we reach into a gym bag to pull a
towel out our hands contact many other objects as well
as the towel.

Our physics-based planner can afford such simulta-
neous interactions with cluttering objects [15]. This is
different from the reconfiguration actions, since in this
case the planner does not plan a separate action for
each contacted object. Instead, given a single manip-
ulator trajectory to reach the goal object, the planner
predicts how each contacted object will move (Fig. 2-
Left). Then the planner verifies that these objects’ mo-
tions will not cause any problems, e.g. objects falling off
the edge of the table, or the wrong object being grasped.

We present an example plan in Fig. 2-Right. In this
figure, as the robot is reaching a can, the hand contacts
and simultaneously pushes two other objects blocking
the way. This is possible because the physical predic-
tions verify the motions of the blocking objects.

Our robot can execute many manipulator trajecto-
ries which would be labeled as infeasible by a traditional
motion planner based on collision checking. As a result,
our robot is more successful in planning and executing
manipulation tasks in cluttered environments.

2. 4 Manipulation under Uncertainty
Robotic manipulation systems suffer from uncertainty

Fig. 2 Manipulation of objects through clutter. (Left)
Given a manipulator trajectory our planner predicts
how each contacted object will move, and verifies
that the goal will be reached successfully. (Right)
An example execution, where the robot pushes two
blocking objects out of the way simultaneously as it
is reaching a can. Images taken from [15]

Fig. 3 Push-grasping. (Left) Using pushing to reduce object pose uncertainty.
(Right) Execution of a push-grasp. Images taken from [1] and [16]

in human environments. Consider the task of grasping
an object. In such a task, the robot detects the object
and estimates its pose. If there is significant uncertainty
in the estimated pose of the object, the robot hand can
miss it, or worse, collide with it in an uncontrolled way.

Physics-based manipulation can address this problem
by employing uncertainty reducing actions [17]. Our
planner harnesses the mechanics of pushing to funnel an
object into a stable grasp despite high uncertainty [16].

We present an example in Fig. 3-Left. In the figure,
there is high initial uncertainty about the pose of the
bottle. As the hand pushed forward, the uncertainty
funnels into the hand, and the object can be grasped.
We call this action push-grasping.

We define a push-grasp as a straight motion of the
hand parallel to the pushing surface along a certain di-
rection. The pushing distance, indicating the transla-
tion along the pushing direction, and the aperture, in-
dicating the distance between the symmetrically shaped
fingertips, are important parameters of the push-grasp.
The larger these values, the larger the uncertainty that
the hand can funnel in. However, such push-grasps
may be more difficult to execute in cluttered environ-
ments. Our planner searches over different pushing di-
rections, different hand apertures, and different pushing
distances to find a successful push-grasp.

We present an example push-grasp in Fig. 3-Right.
The robot sweeps a region over the table during which
the box rolls into its hand, before closing the fingers.
The large swept area ensures that the box is grasped
even if its position is estimated with some error.

3. Challenges in Physics-Based Manipulation

As we extend our framework to use a wider variety of
actions, there are challenges that we need to address. In
this section we present two major challenges and discuss
how we addressed them in the context of pushing.

3. 1 Planning Time
The planner must predict the consequences of each

action it considers. One way to do this is running a
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Fig. 4 The capture region. (Left) The capture region of a
box shaped object. The horizontal dimension is the
rotation of the object. The other two dimensions are
the translation of the object. (Center) The capture
region of a circularly symmetric object. (Right) If
the object’s center falls into the capture region, it
will be grasped. The figure shows three such poses.
Images taken from [16]

physics simulation during planning. Physics simulations
are slow, however, and this approach may result in long
planning times.

We address this issue by pre-computing and caching
the physical interactions between the robot manipula-
tor and objects. For example, given a push-grasp, an
object’s geometry, and its physical properties, we can
compute the set of all object poses that result in a sta-
ble push-grasp. We call this set the capture region. We
present two capture regions in Fig. 4-Left and Fig. 4-
Center. We compute capture regions assuming that the
object is located on a planar surface. Hence, the capture
region is a set of points (x, y, θ) ∈ SE(2) (Fig. 4-Left).
If the object is circularly symmetric, we can drop θ and
represent the capture region in two dimensions (Fig. 4-
Center).

During planning, we use the capture region to de-
termine whether a push-grasp will succeed, instead of
running a simulation: If the object is in the capture
region of the push-grasp, then the push-grasp will suc-
ceed (Fig. 4-Right). If there is uncertainty associated
with the object pose, our planner checks to see if all the
uncertainty is included in the capture region. We can
perform this check very fast. As a result our planner
can find a successful push-grasp in a few seconds, even
when there is significant object pose uncertainty and
clutter.

We also pre-compute the actual trajectories objects
follow when they are pushed in a certain way. We then
use these trajectories during planning instead of run-
ning simulations.

This approach also has limitations. It is not possible
to enumerate all possible cluttered scenes. Therefore,
we limit our pre-computations to the interactions be-
tween the robot manipulator and an object. In a given
scene we verify that these pre-computed structures are

Fig. 5 Particle filtering while pushing a can. The actual
location of the can is shown raised

still valid, e.g. no object-object interaction occurs.
3. 2 Robustness
The accuracy of the physics-based predictions deter-

mine the robustness of our manipulation plans: If an
object moves in an unpredicted manner, the execution
may fail. These inaccuracies can be due to two different
reasons:
• Uncertainties in parameters. For example, the pres-

sure distribution of an object affects the way it
moves during pushing. If the robot does not have
a good estimate of this parameter, its predictions
will be inaccurate.

• Inaccuracies in the physics model. For example,
the predictions of our quasi-static model will get
inaccurate if significant dynamic forces arise dur-
ing pushing.

We are investigating different methods to address the
problem of inaccurate predictions. One approach we
take is making conservative plans, i.e. plans that will
work in spite of the uncertainties. We identify the dif-
ferent parameters that affect our pushing predictions.
These include the pressure distribution of the object,
and the coefficient of friction between the manipulator
and the object. We then run our pushing simulations
with a range of values of these parameters, where the
range is determined by our uncertainty about that pa-
rameter. We accept an action if it achieves the goal for
all of these simulations.

While the conservative planning approach addresses
the uncertainties in parameters, it does not address the
second source of inaccuracy, namely, the inaccuracies
in our physics models. Therefore, we are currently in-
vestigating methods of using sensor feedback that can
account for all kinds of inaccuracies.

We are modeling manipulation as a stochastic pro-
cess where the forward models are provided by noisy
physics-based predictions. We then use sensor feedback
to filter the uncertainty induced to the system by the
physics-based actions. We present a simulated example
in Fig. 5 where we use particle filtering [18] to track the
pose of an object as it is pushed. We use a sensor that
can detect a contact, but not the location of the contact,
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between the hand and an object. The filter succeeds in
reducing the uncertainty but ends up with a bimodal
distribution since the sensor can not differentiate be-
tween the contacts on the outer and inner surfaces of
the hand. In our ongoing study we are investigating dif-
ferent probabilistic methods and different sensor models
that can be used during physics-based manipulation.

4. Conclusion

Physics-based planning will enable robots to perform
a wide variety of manipulation tasks in human environ-
ments. We developed a planner which can use physics-
based pushing actions. This planner performs remark-
able tasks in cluttered and uncertain human environ-
ments. Many of these tasks are impossible to perform
with a planner using only pick-and-place actions. We
identify the challenges in building physics-based plan-
ners and present how we tackle these challenges in the
pushing domain.
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