
Manipulation Planning with Goal Sets Using
Constrained Trajectory Optimization

Anca D. Dragan, Nathan D. Ratliff, and Siddhartha S. Srinivasa

Abstract—Goal sets are omnipresent in manipulation: picking
up objects, placing them on counters or in bins, handing them
off — all of these tasks encompass continuous sets of goals.
This paper describes how to design optimal trajectories that
exploit goal sets. We extend CHOMP (Covariant Hamiltonian
Optimization for Motion Planning), a recent trajectory optimizer
that has proven effective on high-dimensional problems, to
handle trajectory-wide constraints, and relate the solution to
the intuition of taking unconstrained steps and subsequently
projecting them onto the constraints. We then show how this
projection simplifies for goal sets (i.e. constraints that affect only
the end-point). Finally, we present experiments on a personal
robotics platform that show the importance of exploiting goal
sets in trajectory optimization for day-to-day manipulation tasks.

I. INTRODUCTION

This paper is the result of two complementary goals. Our
first goal is very practical: to enable personal robots ([1]–
[3]) to perform useful manipulation tasks in close proximity
to humans. Our second goal is very theoretical: to understand
the underpinnings of constrained trajectory optimization, em-
phasizing the need for mathematically sound solutions, and
seeking the right insight from these solutions.

While these goals might sound contrasting, the practice
motivates the theory. Since we want humans to be comfortable
in a robot’s workspace, and to be able to predict its motion,
we want to look beyond planners that produce feasible but
random trajectories ([4], [5]). Natural, legible and predictable
movements require optimization. The trajectory optimization
problem has a very rich history, seeded in the work of Euler,
Lagrange and Hamilton [6] with the principle of least action,
and continuing with the variational calculus view of optimal
control [7]. Zefran [8] was one of the first to use variational
calculus to do iterative functional gradient optimization. Later,
Quinlan [9] and Brock [10] extended this to what they called
Elastic Band trajectory smoothing, which used the concept
of collision bubbles to ensure feasibility. Building on this,
we introduced Covariant Hamiltonian Optimization for Mo-
tion Planning (CHOMP) [11], a functional gradient descent
algorithm that uses a smoothness metric in trajectory space
that propagates local changes to the entire trajectory, moving
it out of collision faster while preserving smoothness.

This work partially supported by Intel Labs Pittsburgh and the National
Science Foundation under Grant No. EEC-0540865. Special thanks to Chris
Atkeson and members of the Personal Robotics project at Intel Labs Pittsburgh
for insightful comments and discussions.

A. Dragan is with The Robotics Institute, Carnegie Mellon
University. adragan@cs.cmu.edu. N. Ratliff and S.
Srinivasa are with Intel Labs Pittsburgh. {nathan.ratliff,
siddhartha.srinivasa}@intel.com.

Fig. 1. Top: The trajectory found by an optimizer that uses a specified
single goal. The optimizer cannot avoid collision with the red box. Bottom:
A feasible trajectory found by an optimizer that can take advantage of an
entire goal set.

CHOMP does well in practice: it converges rapidly for
many high-dimensional motion planning problems. However,
it makes a classic simplifying assumption: CHOMP can only
plan to a single goal configuration. This single goal assumption
constrains the capabilities of the planner for many robotic
applications. For example, choose any object around, from a
laptop to a salt shaker, and think of all the ways your hand
could grasp it — there are usually entire regions of viable
goals. Now for each grasp, think of the different positions your
elbow could take: upwards to avoid the table, downwards to
avoid a wall. With a redundant manipulator, like the human
arm, there are multiple configurations for each grasp. This
multiplicity of goals forms what we refer to as a goal set.
A planner that exploits goal sets has greater chances of
succeeding compared to a single goal planner (Fig.1). Even
when both planners succeed, shifting to an easier goal often
increases the quality of the trajectory. Overall, planners can
produce better solutions if they take advantage of goal sets.

So how can trajectory optimizers like CHOMP exploit goal
sets? One simple approach would be a penalty method [12]:
add a term to the objective function that penalizes deviations
from the goal set. Unfortunately, we have found that such a
term tends to fight with the objective, particularly the obstacle

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-385-8/11/$26.00 ©2011 IEEE 4582

cost, making it difficult to tune for fast (or even sufficient)
convergence. Instead, we propose a constrained optimization
solution. We put the problem in context by solving it for
constraints that affect the entire trajectory, and then show how
the solution simplifies when these constraints are restricted to
the last configuration (goal set constraints). At each iteration,
CHOMP performs functional gradient descent by linearizing
the objective and locally minimizing it within a trust region.
In order to extend CHOMP to trajectory constraints, we
simply subject this linearized objective to the constraints. We
then relate this to the very natural problem of projecting the
unconstrained gradient onto the constraints. Doing so helps us
identify the correct metric for this projection. It also plays a
key role in interpreting the concrete solution, which we derive
by linearizing the constraints: we show that this constrained
update rule implements a two step projection with respect to
CHOMP’s smoothness metric. For the case of goal constraints,
this update rule simplifies to a very intuitive algorithm: project
the unconstrained end-configuration in Euclidean space, and
propagate the change to the rest of the trajectory.

In our experiments with HERB [1], our personal robotics
platform, we empirically demonstrate the improvement tra-
jectory optimization with goal sets achieves over the original
CHOMP algorithm. We use day-to-day manipulation tasks,
like picking up objects, handing them off or recycling them.
The results not only show the importance of goal sets in trajec-
tory optimization, but also reinforce the need for theoretically
sound solutions.

II. FUNCTIONAL GRADIENT TRAJECTORY OPTIMIZATION:
CHOMP

This section outlines CHOMP (Covariant Hamiltonian Op-
timization for Motion Planning): a functional trajectory op-
timization algorithm that minimizes a collision cost while
maintaining certain dynamical properties, usually pertaining
to the notion of trajectory smoothness. While our goal is to
make this recap self-contained, additional details are available
in Ratliff [11], [13].

A. The Objective Functional

CHOMP models the trajectory optimization objective as a
trade-off between a “prior” and an obstacle cost:

U [ξ] = λfprior[ξ] + fobs[ξ], (1)

Both terms are functionals: functions of a function ξ :
[0, 1]→ Q, mapping time to robot configurations q ∈ Q ⊂ Rd.
The first one, fprior, typically measures dynamical quantities
across the trajectory, such as velocities and accelerations, and
relates to the notion of smoothness of the trajectory. In this
work, we choose the integral over squared velocity norms:

fprior[ξ] =
1

2

∫ 1

0

‖ξ′(t)‖2dt (2)

While the first term keeps the trajectory smooth, the second
term, fobs, bends the trajectory away from obstacles by
penalizing parts of the robot that are close to or already in

collision. Let B ⊂ R3 be the set of body points on the robot
and x : Q × B → R3 the forward kinematics mapping from
configuration space to workspace at a particular body point.
Furthermore, let c : R3 → R be a workspace cost function that
penalizes the points inside and around the obstacles. Since we
want to drive the body points away from collision, we can
write the obstacle cost as an integral that collects the cost
encountered by each workspace body point on the robot as it
sweeps along the trajectory:

fobs[ξ] =

∫ 1

0

∫
B
c(x(ξ(t), u))

∥∥∥∥ ddtx(ξ(t), u)

∥∥∥∥ dudt (3)

In the next section, we derive the iterative update that mini-
mizes the linear approximation of the objective within a trust
region. To do so, we need the gradient of this functional:

∇̄fobs[ξ] =

∫
B
JT ‖x′‖

[
(I − x̂′x̂′T)∇c− cκ

]
du, (4)

where x̂′ is the normalized velocity vector, κ = ‖x′‖−2(I −
x̂′x̂′

T
)x′′ is the curvature vector along the workspace trajec-

tory traced by a particular body point, and J is the kinematic
Jacobian at that body point. We also use the functional gradient
of the prior term in (2): ∇̄fprior[ξ](t) = − d2

dt2 ξ(t). In order
to simplify the notation, we suppress dependencies on time t
and body point u in these expressions.

B. The Iterative Update Rule

Although so far we remained unencumbered by a partic-
ular parametrization of the trajectory ξ, performing gradient
descent with the objective in (1) on a real robot mandates a
parametrization choice. In this work, we will use a straight-
forward discretization of the trajectory function over time:
ξ ≈ (qT1 , q

T
2 , . . . , q

T
n)T ∈ Rn×d. Under this parametrization,

we can write the prior term as:

fprior =
1

2
||Kξ + e||2 =

1

2
ξTAξ + ξT b+ c (5)

Here, K is a finite differencing matrix and e is a vector that
accounts for the contributions of the configurations that remain
constant in the trajectory – originally both the start and the
goal configurations. If we are to extend CHOMP to goal sets,
a first requirement is for the end-configuration to be able to
move, which demands a slight change in K and e: they must
treat qn as a variable. Fig.2 shows the impact this change has
on the inverse of the dynamics matrix, A−1 = (KTK)−1,
which plays an important role in the gradient updates: as
the remainder of this section will reveal, A−1 acts as a
“smoothing” operator that propagates the Euclidean gradient
of the objective (1) along the trajectory in the way depicted
by Fig.2. Since the last configuration is no longer constant,
the update rule achieves a smoother trajectory by propagating
the change without any damping.

Given this parametrization, CHOMP is simply a variant on
gradient descent with a metric that naturally fits the problem.
At each iteration, it is minimizing the linear approximation of

4583

Fig. 2. The ith row of A−1 consists of two linear segments joining at entry
i. Superimposed on this image (dotted line) is the corresponding second linear
segment of the original (unique goal) CHOMP algorithm, which descends to
zero as a result of its fixed end-configuration.

U about ξt within an ellipsoid trust region ([12]). The distance
metric that shapes this ellipsoid is defined by A:

ξt+1 = min
ξ∈Ξ

U(ξt) + gTt (ξ − ξt) +
ηt
2
‖ξ − ξt‖2A, (6)

where ‖ξ‖2A = ξTAξ, gt is the discretized functional gradient,
and {ηt}Tt=1 is a problem specific sequence of weights, corre-
lated to the step sizes. Since this objective is quadratic in ξ,
we can solve for the update by setting the gradient to zero:

ξt+1 = ξt −
1

ηt
A−1gt (7)

We changed the A matrix so that this update rule can alter
the trajectory end-point, as in (Fig.2). Providing this ability
is necessary for incorporating goal sets, since the goal is
no longer constant. On the other hand, there is nothing yet
to constrain the end-point. For example, in the absence of
any obstacles, a trajectory from start to a feasible goal will
eventually become a point trajectory at the start, since the
stand-still trajectory is the global minima of the prior cost.
Therefore, the next section will focus on constraining this
update rule to ensure reaching a feasible goal.

III. INCORPORATING GENERAL TRAJECTORY
CONSTRAINTS

In this section, we derive the update rule for the constrained
version of CHOMP, which minimizes U subject to generic
trajectory constraints. These could simply constrain the goal
configuration alone, but they could also affect the whole
trajectory (e.g. “move the objects without tilting it”). We
assume that we can describe a constraint on the space of all
trajectories in the form of a nonlinear differentiable vector
valued function h : Ξ → Rk that is reasonably approximated
linearly, and for which h(ξ) = 0 when the trajectory ξ satisfies
the required constraints.

In order to constrain the updates, we need to optimize
the regularized linear approximation from (6), subject to the
nonlinear constraints h(ξ) = 0:

ξt+1 = arg min
ξ∈Ξ
U(ξt) + gTt (ξ − ξt) +

ηt
2
‖ξ − ξt‖2A (8)

s.t. h(ξ) = 0

This is in fact equivalent to the very natural problem of
taking the unconstrained solution in (7) and projecting it onto
the constraints, where this projection happens with respect to

the smoothness metric given by A. To see this, we can simply
rewrite the objective: minU(ξt)+gTt (ξ−ξt)+ ηt

2 ‖ξ−ξt‖
2
A ⇔

min gTt (ξ−ξt)+ ηt
2 (ξ−ξt)TA(ξ−ξt)⇔ min(ξt− 1

ηt
A−1gt−

ξ)TA(ξt− 1
ηt
A−1gt−ξ). The problem can thus be written as:

ξt+1 = arg min
ξ∈Ξ
‖ξt

unconstr. (7)︷ ︸︸ ︷
− 1

ηt
A−1gt −ξ‖2A (9)

s.t. h(ξ) = 0

This interpretation will become very relevant in the next
section, which uncovers the insight behind the new update
rule we obtain by solving (8).

To derive a concrete update rule for (8), we linearize the h
around ξt: h(ξ) ≈ h(ξt) + ∂

∂ξh(ξt)(ξ − ξt) = C(ξ − ξt) + b

where C = ∂
∂ξh(ξt) is the Jacobian of the constraint function

evaluated at ξt and b = h(ξt). The Lagrangian of the
constrained gradient optimization problem in (8), now with
linearized constraints, is Lg(ξ, λ) = U(ξt) + gTt (ξ − ξt) +
ηt
2 ‖ξ− ξt‖

2
A+λT (C(ξ− ξt) + b), and the corresponding first-

order optimality conditions are:

{
∇ξLg = gt + ηtA(ξ − ξt) + CTλ = 0
∇λLg = C(ξ − ξt) + b = 0

(10)

Since the linearization is convex, the first order conditions
completely describe the solution. We can therefore derive a
new update rule in closed form. If we denote λ

ηt
= γ, from

the first equation we get ξ = ξt− 1
ηt
A−1gt−A−1CT γ. Substi-

tuting in the second equation, we get γ = (CA−1CT)−1(b−
1
ηt
CA−1gt). Using γ in the first equation, we can solve for ξ:

ξ = ξt

unconstr. (7)︷ ︸︸ ︷
− 1

ηt
A−1gt +

zero set projection︷ ︸︸ ︷
1

ηt
A−1CT (CA−1CT)−1CA−1gt

(11)

−A−1CT (CA−1CT)−1b︸ ︷︷ ︸
offset

Our experiments in Section VI explicitly implement this
update. The labels on the terms above hint at the goal of
the next section, which answers the following question: Can
we use this equation to go beyond the explicit analytical
implementation and understand how this result relates to the
projection problem in (9)?

IV. THE UPDATE RULE — GEOMETRICAL INTUITION

Looking back at the constrained update rule in (11), we can
explain its effect by analyzing each of its terms individually.
Gaining this insight not only allows us to understand the
algorithm we are implementing, but it also relates it to intuition
for handling constraints in general. By the end of this section,
we will have mapped the algorithm indicated by (11) to the
projection problem in (9): take an unconstrained step, and then
project it back onto the feasible region.

4584

We can split the update rule in three parts, depicted in Fig.3:
taking the unconstrained step, projecting it onto a hyperplane
through the current trajectory that is parallel to the constraint
surface approximation, and then correcting the offset between
these hyperplanes:

1) The first term computes the unconstrained step: smooth
the unconstrained euclidean gradient gt through A−1 and
scale it, as in (7). Intuitively, the other terms will need
to adjust this step, such that the trajectory obtained at
the end of the iteration, ξt+1 is feasible. Therefore, these
terms must implement the projection with respect to A,
as shown in (9).

2) Linearizing h provides us with an approximation of
the constraint surface, given by C(ξ − ξt) + b = 0.
The current trajectory, ξt, lies on a parallel hyperplane,
C(ξ − ξt) = 0. When ξt is feasible, b = 0 and the
two are identical, intersecting the constraint surface at
ξt. What the second term in the update rule does is to
project the unconstrained increment onto the zero set
of C(ξ−ξt) with respect to our metric A, as depicted in
Fig.3. Formally, the term is the solution to the problem
that minimizes the adjustment to the new unconstrained
trajectory (w.r.t. A) needed to satisfy C(ξ − ξt) = 0:

min
∆ξ

1

2
‖∆ξ‖2A (12)

s.t. C((ξt −
1

ηt
A−1gt + ∆ξ)− ξt) = 0

Therefore, the second term projects the unconstrained
step onto the zero set of C(ξ−ξt). If b 6= 0, the trajectory
is still not on the approximation we have to the constraint
surface, and the third step makes this correction.

3) After the first two steps, we obtain a trajectory on
C(ξ − ξt) = 0, at an offset from the hyperplane that
approximates the feasible region, C(ξ − ξt) + b = 0.
Even if the Euclidean gradient gt is 0 and the previous
two terms had no effect, the trajectory ξt might have
not been feasible, leading to b 6= 0. The third term
subtracts this offset, resulting in a trajectory that lies on
the approximate constraint surface. It is the solution to
the problem that minimizes the adjustment to ξt (again,
w.r.t. our metric) such that the trajectory gets back onto
the target hyperplane:

min
∆ξ

1

2
‖∆ξ‖2A (13)

s.t. C((ξt + ∆ξ)− ξt) + b = 0

As Fig.3 shows, adding the third term to the result of
the previous two steps (ξt when the unconstrained step
is zero, somewhere else along C(ξ− ξt) = 0 otherwise)
brings the trajectory onto the approximate constraint
surface.

Overall, the algorithm can be thought of as first taking
an unconstrained step in the direction dictated solely by
the cost function, and then projecting it onto its guess of
the feasible region in two steps, the last of which aims at

Fig. 3. The constrained update rule takes the unconstrained step and projects
it under A onto the hyperplane through ξt parallel to the approximated
constraint surface (given by the linearization C(ξ − ξt) + b = 0). Finally,
it corrects the offset between the two hyperplanes, bringing ξt+1 close to
h(ξ) = 0.

correcting previous errors. For the special case of goal set
constraints, which the next section addresses, the projection
further simplifies to a purely Euclidean operator, which is then
smoothed through the dynamics matrix.

V. GOAL SETS AS A SPECIAL CASE

Extending CHOMP to handle full goal sets instead of a
single goal can be seen as a two step procedure: First, the
algorithm needs to be able to move the end-configuration, and
we saw in Section II-B that this is a matter of simply re-
deriving the dynamics matrix. Second, the algorithm has to
constrain that movement to a limited set of feasible goals. Such
sets can be described, for example, as simple shapes such as
circles or rectangles, or as more complex Task Space Regions
[14]. This section explains how the terms in the update rule
for general constraints simplify in the special case of goal sets.
The resulting update is intuitive and easy to implement.

Constraints that affect only the goal are a special case of
trajectory constraints, for which h(ξ) = hn(qn) (the constraint
is a function of only the final configuration of the trajectory).
Therefore, a large portion of the update rule will focus on
the last configuration. Since C = [0, . . . , 0, C̃], in this case C
only affects the last block-row of A−1, which we denote by
Bn ∈ Rd×nd. Also note that the last d×d block in A−1, Bnn,
is in fact equal to βId, since there are no cross-coupling terms
between the joints. Therefore, the update rule simplifies to:

ξt+1 = ξt −
1

ηt
A−1gt +

1

ηtβ
BTn C̃

T (C̃C̃T)−1C̃Bngt (14)

+
1

β
BnC̃

T (C̃C̃T)−1b

The goal set CHOMP algorithm, as depicted in Fig.4,
follows the classic “take an unconstrained step and project it”
rule, only this time the projection is much simpler: it happens
in Euclidean configuration space rather than in the A metric
trajectory space. In other words, the same projection from
Fig.3 now happens in Euclidean space and applies only to
the end-configuration of the trajectory. To see this, note that
1
ηt
Bngt gets the unconstrained step for the end configuration

from 1
ηt
A−1gt, and C̃T (C̃C̃T)−1C̃ projects it onto the row

4585

Fig. 4. One iteration of the goal set version of CHOMP: take an unconstrained
step, project the final configuration onto the constraint surface, and propagate
that change to the rest of the trajectory.

space of C̃. This correction is then propagated to the rest of
the trajectory, as illustrated by Fig.4, through 1

βB
T
n . Looking

back at Fig.2, imagine moving i from 2 (shown in the figure)
to n: Bn, on each dimension, looks like a line from 0 to β.
Therefore, 1

βB
T
n linearly interpolates from a zero change at

the start configuration to the correction at the end point. Since
BTn multiplies the last configuration by β, 1

β scales everything
down such that the end-point projection applies exactly.

So far in this section, we showed that the projection onto a
linearized version of the goal set constraints simplifies to a two
step procedure. We first project the final configuration of the
trajectory onto the linearized goal set constraint with respect
to the Euclidean metric in the configuration space, which gives
us a desired perturbation ∆qn of that final configuration. We
then smooth that desired perturbation linearly back across the
trajectory so that each configuration along the trajectory is
perturbed by a fraction ∆qn; in particular for our prior, the
perturbation at configuration i is ∆qi = i/n∆qn. One can
show that the linearization of the constraints is not required
in general. For any goal set, the projection of a trajectory
onto the set may be decomposed as prescribed above.1 This
algorithm works well in practice, although we caution that
despite the procedure’s intuitive appeal, one should be careful
when implementing the procedure to follow the dictums of the
derivation. In particular, while it might seem natural to project
a configuration onto the goal set by minimizing the distance
of the end-effector to the closest goal in task space, doing so
effectively projects with respect to the wrong metric. Below,
we demonstrate experimentally that such ad-hoc modifications
may lead to worse results when coupled with the rest of the
optimization procedure.

VI. GOAL SETS IN PRACTICE: EXPERIMENTS AND
RESULTS

We demonstrate the utility of our method on four different
tasks: grasping in cluttered environments with both an easy
and a difficult starting pose, recycling, and handoffs. We start

1Specifically, one can show that for any single point in the goal set, the
magnitude of the optimal projection is proportional to the Euclidean distance
between the final configurations of the original trajectory and the projected
trajectory. Therefore, the optimal projection is dictated by that Euclidean
distance. Moreover, the optimal projection onto each of those given point
in the goal set is given by the smoothing procedure described above.

off our experiments by motivating the idea of goal sets – we
assess how beneficial it is to think about an entire region of
goals, and why it further makes sense to permit changes at
the goal during the optimization. We then move on to the
main experiments, which show that the goal set algorithm
substantially outperforms the single goal algorithm on day-
to-day manipulation tasks.

We see better performance in most of the scenarios, but
this is not universally true. We address a couple of issues
we encountered, the main one being the possibility that the
goal set method converges to a trajectory that does not satisfy
the goal constraint. A natural follow-up experiment assesses
an algorithm that does a naive “projection” in task space,
but that guarantees remaining on the goal manifold. Our
comparison indicates that this algorithm does not perform well,
indicating that projecting as prescribed by our derivation is
indeed important.

A. Setup

Our experimental platform is a 7DOF BarrettWAM arm
mounted on a Segway mobile base in a kitchen environ-
ment performing common manipulation tasks. Throughout
our experiments, we use the same parameter setup for all
algorithms: we use the deterministic variant presented here,
with a decreasing step size at every iteration. The obstacle
cost is weighted heavily relative to the smoothness cost. We
compute the obstacle cost using body points along the skele-
ton, together with an obstacle padding of ε=0.2m within which
the cost increases quadratically (we use the same workspace
cost function as the one described in Ratliff [11]).

B. A motivating example

To exemplify the importance of goal sets and of allowing
flexibility at the goal during optimization, we ran an exper-
iment on a grasping scenario similar to the ones depicted
in Fig.1 and Fig.5. The task was to obtain a trajectory that
brings the arm to a pre-grasp pose. We defined a goal set to
be comprised of a circle of transforms around a target bottle.

Next, we ran both the single goal and the goal set al-
gorithms, initialized with a straight line trajectory from the
start pose to each of 27 samples from the goal region. We
obtained these initial goals by discretizing the goal set into
40 equidistant samples. We searched for Inverse Kinematics
(IK) solutions for the arm, discarded 13 samples that were
unreachable by the robot, and selected an IK solution for
each of the 27 remaining samples, out of which 7 were in
collision with the clutter. For the goal set variant, we chose
the constraint function as the squared distance to the nearest
feasible goal transform. Fig.6 shows the cost obtained by each
method and how it positively correlates with the starting goal
– dark regions represent infeasible starting goals that are in
collision, while light regions represent feasible starting goals.

As expected, the cost profile in Fig.6 shows that the choice
of a goal heavily influences the quality of the single goal
CHOMP’s solutions. Not only do the collision-free goals
yield the lower cost trajectories, but also the cost tends to

4586

Fig. 5. The average cost increases over the estimated minimum for the scenarios in each of the four tasks: a difficult grasp, an easier grasp with a better
starting configuration, a hand-off, and recycling or “drop” task. Each instance is an average across approx. 25 runs, one for each starting goal sample.

decrease towards the middle of the goals situated in free space.
Therefore, a good goal configuration for one scenario can be
very disadvantageous when the clutter pattern changes.

Fig. 6. Left: The costs (Y axis) that the single goal(black) and goal set(grey)
algorithms obtain on a grasping scenario, when initialized with the straight-
line trajectory to each of a number of goals around the bottle (X axis). The
white regions represent collision-free goals. Right: For each algorithm, and
for every starting goal (X axis), we plot what the final goal is (Y axis). The
area of every bubble is proportional to the cost of the solution for that run.

But do we need to allow the optimizer to change the
goal, as our method does? Or can we simply commit to one
in the beginning of the optimization? Although there might
be heuristics for selecting an initial goal (and future work
addresses learning to select a goal based on the situation),
it is likely that the goal set algorithm will outperform the
single goal one when seeded at that initial goal, as indicated
in Fig.6 by the downward shift in the cost profile. The same
figure (right) shows a plot of the final goals reached, and
illustrates (through the size of each bubble) what the cost of
the solutions is. The goal set algorithm tends to move the
end point away from the clutter, and the decrease in cost
indicates that integrating the goal set into the optimization
process usually increases the quality of the solutions, even
when starting with a promising goal. The main experiments
to follow strengthen this observation, showing both average
cost and best cost improvement on the vast majority of the
scenarios we tested.

C. Main experiments

Our experiments can be grouped into four main tasks,
illustrated in Fig.5: two pre-grasping tasks differing in the
starting position of the robot (an easy vs. a hard starting
configuration), a hand-off task, and a recycling task. Each task

consists of various scenarios that represent different obstacle
configurations and, in the case of the last hand-offs and
recycling, different initial poses of the robot.

For each scenario, we ran the same collection of tests
depicted in Fig.6, resulting in approximately 1300 runs of
each algorithm. We report the average and minimum cost, as
well as the success rate (the fraction of times the solution was
feasible). Fig.5 shows, for each scenario, the amount by which
the algorithms deviated, on average, from the minimum cost
achieved by either the single goal or goal set optimizers (we
treat this as an estimate of the best achievable performance,
thus removing the bias). In 88% of the scenarios, the goal set
algorithm averages a lower cost. Furthermore, the best cost
across all starting goals improves in 94% percent of the tests.
Across the tasks, the success rate improves by 30%. Fig.7
shows an example from the scenario on (**) in Fig.5, on which
the goal set version performed better by a high margin.

Fig. 7. An example from the scenario (**) in Fig.5. From left to right: the
initial pose of the robot, the trajectory obtained by the single goal algorithm,
and the one obtained by the goal set algorithm. The latter is able to take
advantage of the goal set and find a goal that is further away from the human,
yet still at a comfortable distance. Although the bottle offered was excluded
from the trajectory visualization, it was treated as an extension to the robot
for the feasibility check.

A rather surprising observation is that the goal set algorithm
is faster on average (by a small amount) than single goal
CHOMP , even though it needs to do the extra projection
step. This is because CHOMP’s computational bottleneck is
computing Jacobians at the body points across the trajectory,
and this can be avoided for body points that have cost zero,
which means that the more points on the trajectory stay further
from obstacles than a given ε=0.2m, the less time it will
take for an iteration to conclude. For the recycling task, the
improvement was the most apparent, reducing the single goal
5.15s to 4.24s, on a 2.4GHz Intel Core i5.

4587

D. Issues

An issue we noticed in our experiments was that the
CHOMP obstacle cost is less correlated to the feasibility of
a trajectory than expected. A feasible trajectory that stays
close to obstacles will accumulate more cost than an infeasible
trajectory that collides slightly at one point, but on average
stays further away from obstacles. We plan to address this
issue in our future work.

Additionally, there are some scenarios, such as scenario (*)
in Fig.5, that show a higher average cost for the goal set
algorithm. This can in theory be explained by the fact that
both these algorithms are local methods, and the goal set one
could make a locally optimal decision which converges to a
shallower local minima. but at the same time, we do expect
that the average performance improves by allowing goal sets.
A further analysis of these scenarios suggested a different
explanation: although on most cases the goal set version was
better, there were a few runs when it did not converge to a
“goal-feasible” trajectory (and therefore reported a very high
cost of the last feasible trajectory, which was close to the initial
one). We noticed that this is mainly related to the projection
being impeded by joint limits. Formalizing joint limits as
trajectory constraints and projecting onto both constraint sets
at the same time would avoid this problem.

E. The importance of a correct update rule

To overcome the problem of goal-infeasible solutions, a
naive alternative to the algorithm we propose is to use a simple
“projection” that does not linearize and is guaranteed to stay
on the goal manifold at every step: project in task space rather
than configuration space first, and find the closest IK solution
at that point to the desired unconstrained step.

Fig. 8. Top: The goal set algorithm we derived finds a feasible soltution.
Bottom: Doing an incorrect projection finds a trajectory that collides with the
bottle. The graph shows the average cost across the entire scenario – doing
the incorrect projection yields worse performance.

Our experiments with this naive update illustrate the impor-
tance of having a correct projection: Going back to scenario
(*), where the correct projection was impeded by joint limits
and produced goal-infeasible solutions, we found that although
the solutions generated by this naive projection do satisfy the
goal constraint, they still collide with the clutter. Furthermore,
this method also fails in cases where the correct projection
method succeeds, such as the one in Fig.8, and obtains a worse

cost across an entire scenario. Moreover, the search for the
closest IK solution increases the running time to approx. 40s
in our implementation.

VII. CONCLUSION

In this work, we extended a trajectory optimization al-
gorithm to handle constraints and mapped the solution the
intuitive method of projecting unconstrained steps back onto
the feasible region. We showed how this projection simplifies
when analyzing goal sets as a special type of constraint and
demonstrated that the idea works well in practice. We also
stress the importance of correctly interpreting the solution;
intuitively appealing alternatives often perform worse. The
algorithm is by no means perfect – it is by nature local and
cannot find globally optimal solutions. Introducing exploration
is an active area of future work.

We are currently exploring the natural extensions of this
work to other constraints, such as start sets for finding way-
points (for which the algorithm is identical, but the trajectory
start rather than the end is allowed to change) or trajectory-
wide end effector constraints, by developing an over-arching
framework for understanding trajectory optimization, that in-
tegrates obstacle constraints, joint limits, etc. into a single
prescriptive algorithm.

REFERENCES

[1] S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe,
“HERB: a home exploring robotic butler,” Autonomous Robots, vol. 28,
no. 1, pp. 5–20, 2010.

[2] WillowGarage, “The Personal Robot Project,” 2008. [Online]. Available:
http://www.willowgarage.com

[3] H. Nguyen, C. Anderson, A. Trevor, A. Jain, Z. Xu, and C. Kemp,
“El-E: An Assistive Robot that Fetches Objects from Flat Surfaces,” in
IEEE Proceedings of Human Robot Interaction, The Robotics Helpers
Workshop. IEEE, 2008.

[4] J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in IEEE International Conference on
Robotics and Automation, San Francisco, CA, Apr. 2000, pp. 995–1001.

[5] L. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
space,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[6] R. Weinstock, Calculus of variations. Dover publications, 1974.
[7] L. Pontryagin, The mathematical theory of optimal processes. Inter-

science New York, 1962.
[8] M. Zefran and V. Kumar, “A variational calculus framework for motion

planning,” in IEEE Conference on Advanced Robotics, Monterey, CA,
1997, pp. 415–420.

[9] S. Quinlan, “The real-time modification of collision-free paths,” Ph.D.
dissertation, Stanford University, 1994.

[10] O. Brock and O. Khatib, “Elastic strips: A framework for motion gen-
eration in human environments,” The International Journal of Robotics
Research, vol. 21, no. 12, p. 1031, 2002.

[11] N. Ratliff, M. Zucker, J. A. D. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in IEEE
International Conference on Robotics and Automation (ICRA), May
2009.

[12] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2000.
[13] N. Ratliff, “Learning to search: Structured prediction techniques for im-

itation learning,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, May 2009.

[14] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with workspace goal regions,” in Proceedings
of the 2009 IEEE international conference on Robotics and Automation,
ser. ICRA’09. IEEE Press, 2009, pp. 1397–1403.

4588

