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1. INTRODUCTION
How should a human user and a robot collaborate during

teleoperation? The user understands the full semantics of
the task: they know, for example, what the robot should
search for in a cupboard, or that it should be more careful
when moving near a glass of water than near a box of tissues.
Since the robot might not have this knowledge, allowing it
to operate fully autonomously may be risky; its model is
incomplete and its policy might be wrong. On the other
hand, teleoperating the robot through every motion is slow
and tiresome, especially on difficult tasks. Between these
two extremes lies a spectrum, from almost no assistance at
all (very timid) to full autonomy (very aggressive). So what
is the appropriate level of assistance? And how do factors
like task difficulty and policy correctness affect this decision?

We address these question by formalizing assistance as
policy blending, where user input U and robot policy P are
blended via a state-dependent arbitration function α:

Policy Blending
(1-α)U+ αP

User Input
U

Robot Policy
P

Robot Action

Modifying α enables us to manipulate how aggressively
the robot assists. For example, α = 0 everywhere corre-
sponds to no assistance, and α = 1 everywhere corresponds
to full autonomy. The two α functions from Fig. 1(c) rep-
resent a timid and an aggressive mode in between these ex-
tremes. To explore the effects of α, we performed a study
where users teleoperated our robot HERB to grasp objects
from a table, with varying assistance from HERB’s own pol-
icy for grasping the objects. We manipulated three factors:
aggressiveness of assistance, difficulty of task, and correct-
ness of robot policy, and measured the time to success and
user preference. All users favored aggressive assistance on
hard tasks, when the robot’s policy was correct. In con-
trast, they clearly preferred timid assistance on tasks where
the robot’s policy was wrong. Opinions were split on easy
tasks, depending on how much they wanted to remain in
control of the robot. Overall, although aggressive assistance
is more efficient when the policy is right, robots might make
mistakes that are much easier to handle with timid assis-
tance. This emphasizes the importance of correctness, of
trust, and of legibility of motion in order for teleoperation to
efficiently transfer the load from the human onto the robot.
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2. PRIOR WORK
Policy blending provides a unified view of much prior work

in assistive teleoperation, as different behaviors that have
been proposed may be cast as different arbitration functions.
For example, in some methods the robot always has full
control of some local aspect of the motion (α is always 1)
[2]. In others, the robot takes control at a certain trigger
point, depending on proximity to the goal [4], or to a preset
path [5]. There are also instances of more timid assistance,
in which the robot never fully takes control. In [1], the
intensity of assistance increases with the probability of the
predicted user intent, but never past a maximum value.

Studies comparing modes of assistive teleoperation ob-
tained seemingly contradictory results. Although You and
Hauser [6] found aggressive assistance better, Kim et al. [3]
showed that users preferred a manual mode. Our analy-
sis indicates that the variance in task difficulty between the
studies (shown in the timing difference between the timid
and aggressive modes) explains the two findings and makes
the results consistent.

3. EXPERIMENTAL DESIGN
We tasked users with teleoperating HERB to grasp an ob-

ject from a table. We implemented a whole-body interface
that tracks their skeleton (OpenNI, www.openni.org), yield-
ing the user input U (Fig. 1 (a)). The arbitration function
α blends U with a policy P .

3.1 Manipulation of the three factors
We instructed users to reach for the farther of two ob-

jects. We manipulated policy correctness by changing P : in
the right case, P moves directly towards the target object;
in the wrong case, P moves towards the object closest to
the user’s configuration (initially the wrong one). Fig. 1
(b) shows examples of the two cases in green and red, re-
spectively. We manipulated task difficulty by changing the
target object’s location. Fig. 1 (b) shows an example of an
easy (grasp the bottle) vs. a hard task (grasp the box).
These two factors lead to 4 tasks: Easy-Right, Easy-Wrong,
Hard-Right and Hard-Wrong.

We manipulated aggressiveness by modifying the arbitra-
tion function (Fig. 1 (c)). This function depends on a
measure of the robot’s confidence c in the predicted policy.
For simplicity, we chose an intuitive definition of confidence:
c increases as the distance d from the user’s configuration
to the policy’s target decreases, c = max(0, 1 − d

D
). The

timid mode increases the assistance with the confidence and
plateaus at a max. value, never taking control away from
the user. The aggressive mode takes control from the user
as soon as the confidence increases past a min. value.

3.2 Subject allocation
To maximize the number of data points per condition, we

chose a within-subjects design. Each of our 8 participants
(all students, 4 males and 4 females) executed both modes
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Figure 1: a) The user’s arm pose serves as the input H. b) The robot chooses one of the two policies (one to
each possible target) and blends it with the user input. c) The arbitration functions for timid and aggressive
assistance, depending on the confidence in the policy. d) A comparison of the two modes on each task.

on each task. To avoid ordering effects, we used a balanced
Latin square for the task order, and balanced the order of
the modes within each task.

3.3 Dependent variables and covariates
We measured the amount of time (performance) per con-

dition. We expected this to correlate to the user’s pref-
erence. We identified the following confounds: the users’
initial teleoperation skill, their rating of the robot without
assistance, and the learning effect. To control for these,
users went though a training phase, teleoperating the robot
without assistance. This partially eliminated the learning
effect and gave us a baseline for their timing and ratings.
We used these as covariates, together with number of tasks
completed at any point (a measure of in-task practice).

3.4 Hypotheses
1. All factors have a significant effect on task performance.
2. The aggressive mode performs better on Hard-Right

tasks, while the timid mode performs better on Easy-
Wrong tasks.

We leave as open questions what happens with both com-
plications (Hard-Wrong), or with neither (Easy-Right).

4. RESULTS
4.1 Performance Analysis

The average time per task was approximately 28s. We
performed a factorial repeated-measures ANOVA with Bon-
ferroni corrections for multiple comparisons and a signifi-
cance threshold of p = 0.05, which resulted in a good fit of
the data (R2 = 0.66). In line with our first hypothesis, we
found main effects for all three factors: hard tasks took 22.9s
longer than easy ones (F(1,53)=18.45, p<.001), tasks where
the policy was wrong took 30.1s longer than when right
(F(1,53)=31.88, p<.001), and the aggressive mode took over-
all 19.4s longer than the timid (F(1,53)=13.2, p=.001). We
found a significant interaction effect between aggressiveness
and correctness, showing that when wrong, being timid is
significantly better than being aggressive. This is confirmed
in Fig. 1 (d), which compares the means and standard er-
rors on each task: the timid mode is better both on Easy-
Wrong and Hard-Wrong. The same plot also shows that the
timid mode performed about the same on Easy-Right, and,
as expected, worse on Hard-Right (the aggressive is lower
than the timid for every user). Surprisingly, the interac-
tion effect among all factors was only marginally significant
(F(1,53)=2.63, p=.11). We believe that increasing the size
of our user pool will strengthen this effect.

4.2 Preference Analysis
Fig 1 (d) also shows the user’s preferences on each task,

which are in line with the timing results. The two measures
were indeed correlated (Pearson’s r(30)=.66, p<.001). The
outliers were users with stronger preferences than the time
difference would indicate. For example, some users strongly
preferred the timid mode on Hard-Wrong tasks, despite the
time difference not being as high as with other users. The
opposite happened on Hard-Right tasks, on which some users
strongly preferred the aggressive mode despite a small time
difference, commenting that they appreciated the precision
of the autonomy. On Easy-Right tasks, the opinions were
split and some users preferred the timid mode despite a
slightly longer time, motivating that they felt more in con-
trol of the robot. Overall, although performance difference
is a good indicator of the preference, it does not capture a
user’s experience in its entirety.

5. CONCLUSION
We identified aggressiveness as a key aspect of assistance

and showed that task difficulty and policy correctness influ-
ence the mode of assistance. We found that being wrong, yet
aggressive has the largest negative effect, and that user pref-
erences were sometimes more drastic than the performance
difference would indicate. Users also commented that after
seeing the robot be wrong, they did not trust the aggressive
mode, and were unable to tell from its motion whether it
was right. This suggests that even though autonomy makes
teleoperation easier, issues of correctness, trust, and behav-
ior legibility must be addressed for effective assistance.
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