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Abstract—In teleoperation, the user’s input is mapped onto
the robot via a motion retargetting function. This function must
differ between robots because of their different kinematics,
between users because of their different preferences, and even
between tasks that the users perform with the robot. Our
work enables users to customize this retargetting function, and
achieve any of these required differences. In our approach, the
robot starts with an initial function. As the user teleoperates
the robot, he can pause and provide example correspondences,
which instantly update the retargetting function. We select the
algorithm underlying these updates by formulating the problem
as an instance of online function approximation. The problem’s
requirements, as well as the semantics and constraints of motion
retargetting, lead to an extension of Online Learning with
Kernel Machines in which the width of the kernel can vary.
Our central hypothesis is that this method enables users to
train retargetting functions to good outcomes. We validate this
hypothesis in a user study, which also reveals the importance
of providing users with tools to verify their examples: much
like an actor needs a mirror to verify his pose, a user needs to
verify his input before providing an example. We conclude with
a demonstration from an expert user that shows the potential
of the method for achieving more sophisticated customization
that makes particular tasks easier to complete, once users get
expertise with the system.

I. INTRODUCTION

When teleoperating a robot (or an animated character),
we rely on a retargetting function – a function that maps the
user’s input onto the robot. This function must be different
for different robots, because of their variation in kinematics
[1], [2]. Similarly, it must be different for different users,
because of their variation in preferences: not every user will
want the same retargetting function, much like how not every
user likes the same graphical interface [3]–[5]. Finally, the
retargetting function must be different for different tasks,
e.g. pushing the buttons on the microwave panel requires
more finesse than waving an arm in greeting, and even at
different configurations for the same task, e.g. grasping an
object to the far left, near joint limits, is more challenging
than grasping it in the middle of the workspace. In this
work, we explore the idea of enabling users to customize the
retargetting function. Our method can be used to adapt any
prior function to the three factors stated above: the kinematics
of a particular robot, the user’s preferences, or the specific
task at hand.

The customization process, outlined in Fig.2, happens
online. The robot starts with an initial retargetting function,
i.e. it has a prior. As the user teleoperates, he pauses the robot
and provides example correspondences mapping user input
to robot pose. Each example instantly updates the current
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Fig. 1. We propose a method for customizing the retargetting function
which maps the user’s input onto the robot during teleoperaion.

retargetting function, enabling the user to base his future
examples on the outcome of previous ones. In doing so, our
work bridges two paradigms, one stemming from graphics
and animation, and the other from teleoperation interfaces.

In the animation community, motion retargetting is used
to map an actor’s trajectory onto an animated character
(e.g. [1], [2], [6], [7]). Although the traditional way to
do so is via constrained optimization [1], recent work has
proposed to learn a retargetting function offline, based on key
pose correspondences [6], or based on a different, manually
retargetted trajectory [7]. Our approach extends this idea
to an online setting, where users can provide examples by
teleoperating the robot or character using the current version
of the retargetting function.

In the teleoperation community, unlike in animation, mo-
tion retargetting happens in real-time, and across the entire
space rather than along a pre-set trajectory. While there
are many interfaces for teleoperation, especially for robot
manipulators [8]–[10], the retargetting function is usually
designed a-priori and cannot be changed. Some robots,
however, such as the DaVinci from Intuitive Surgical [11],
allow users to change the retargetting function online, albeit
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only by a constant (or global) offset, equal throughout the
input space. The surgeon operating the DaVinci can use a
clutch to stop teleoperation and reset himself to a comfortable
position [11], thus offsetting the origin of the retargetting
function. Our approach extends this idea to variable offsets:
the user can modify different parts of the space in different
ways, and can reach any (smooth) retargetting function.

Our method is an instance of Learning from Demon-
stration [12], where the robot learns a policy based on
examples. A significant amount of work in this area [13]–
[15] has applied function approximation techniques to learn
the policy from examples provided by a human or another
robot.1 We adopt the same principle, and use an extension to
Online Learning with Kernel Machines [16] as the function
approximator.

We test our central hypothesis – that our method enables
novice users to customize prior retargetting functions to
good outcomes – in a user study. The results confirm the
hypothesis, and point the way to future improvements. One
of our users had a particularly hard time providing good
examples: although he did improve a bad prior in one
condition, the examples he gave to a good prior in a different
condition made this prior drastically worse. Our analysis
revealed that a major problem was the lack of visual feedback
on his input: much like an actor needs a mirror to verify his
pose, a user needs to verify his input before providing an
example. Overall, we believe that the ability to customize
retargetting functions online is key to a better teleoperation
experience. We are excited about pursuing this research
further, by developing better ways of giving feedback to the
users, making the effects of examples more intuitive, and
exploring methods for generalizing customized retargetting
functions to new tasks.

II. CUSTOMIZING THE RETARGETTING FUNCTION

Our goal is to enable users to produce a retargetting
function f : x 7→ q that maps their pose x to a configuration
for the robot, q. We assume we are given a smooth prior
fprior(x), and decompose f(x) into this prior and an offset
function: f(x) = fprior(x) + o(x). As the user provides
examples, our method trains the retargetting function to
reflect his preferences by learning o(x) online, via function
approximation.

In this section, we outline the requirements of this training
process and recap an online learning algorithm from the
machine learning literature that meets these requirements.
Finally, we present a novel modification to the algorithm that
incorporates domain knowledge to approximate retargetting
functions with fewer examples.

A. Problem Requirements
1) Online: The user should be able to provide further ex-

amples based on the outcome of the previous examples.

1The motion retargetting problem is also related to the correspondence
problem [12]: that of mapping a demonstration onto a robot. The latter,
however, goes beyond motion, to task-level differences, sensing differences,
and capability differences in general.

Therefore, changes should be incorporated online, and
in real-time.

2) Smooth: The function o(x) needs to be smooth, as
there can be no sudden shifts that cause the robot to
move abruptly while the user is barely changing pose.

3) Propagation decay: Different areas of the input space
require different offsets. Therefore, examples typically
have local support and should decay as we move
away from them in the input space to allow different
alterations in different areas.

B. A Recap of Online Learning with Kernel Machines

The requirements above suggest using an algorithm that
alters the function with every example in a smooth way,
propagating the changes to the rest of the space. For these
reasons, we chose to use Kernel Machines and perform
online least squares in a functional space, an algorithm
first introduced by Kivinen [16]. The algorithm satisfies the
requirements from above: if works well online, smoothness
in ensured by the function representation, and propagation
decay is the result of the gradient of the loss function. We
describe the algorithm here for completeness. Further details
can be found in [16].

1) Function Representation: The premise of the algorithm
is to represent the function to be approximated (in our case
o(x)), as a point in a Reproducing Kernel Hilbert Space
(RKHS) of functions (H, || · ||H):

o(x) =
∑
i

αik(xi, x) (1)

for some input poses xi, and αi ∈ R. k is a reproducing
kernel function, and a common choice for k is a Radial Basis
Function (RBF):

k(xi, x) = exp

(
−1

2
w(xi − x)2

)
(2)

where w ∈ R determines the width of the kernel. The
smoothness of the kernel guarantees the smoothness of the
retargetting function.

2) Online Learning: Given our representation, we want to
find the function that best fits the user examples: a minimiza-
tion of a loss function over the space of representations. We
choose a typical loss function composed of the sum squared
error between the user examples and the prediction, subject
to regularization:

min
o
L = min

o

∑
i

Li = min
o

∑
i

1

2
(qi − o(xi))2 +

1

2
λ||o||2H

(3)
where the pair (xi, qi) represents example i.

To solve this online,2 Kivinen [16] proposed using stochas-
tic gradient descent – minimization by descending the gradi-
ent of the instantaneous loss Li, rather than the cumulative

2For a small number of user examples, it is feasible to run the batch
version for every new example.

920



Fig. 2. The training process (showing the user giving one example to the learner).

Fig. 3. Comparison of kernels with fixed width vs. fixed max curvature.
Fixing the maximum curvature makes larger changes propagate further.

loss L. Therefore, as each example is received, the offset is
updated as:

oi+1 = oi − η∇Li (4)

where
∇Li = −(qi − o(xi))k(xi, ·) + λo (5)

The algorithm proceeds as follows:

RBF-LEAST-SQUARES

1 o← 0
2 for i← 1 to N
3 do αi ← qi − o(xi)
4 o← (1− ηλ)o+ ηαik(xi, ·)

With every new example (xi, qi), the method discounts
previous data and adds an additional term to the function,
which places an offset at xi proportional to the desired
change and propagates to the rest of the space according
to the kernel width corresponding to w. Therefore, the
algorithm satisfies all of the requirements from Section II-A,
and scales linearly with the number of examples.

C. Our Extension to Varying Kernel Widths

RBF-LEAST-SQUARES uses a fixed kernel width w for
all examples. The changes propagate in the same way to the
rest of the space, independently of the nature of the change,
as in Fig.3(left). However, two aspects of our problem make
this undesirable: the semantics of changes to the prior, and
constraints on the maximum acceleration of the robot.

First, large changes have different semantics than small
changes when training the retargetting function. Usually,
large changes need to be propagated wider through the space
(i.e. with a very wide kernel), because they are meant to
change the prior in a fundamental way – the prior is in
some way offset by a considerable amount from the desired
mapping. Small changes, however, should affect the space
only locally (i.e. with a narrow kernel), because they usually
represent local corrections.

Second, safety and hardware constraints suggest a bound
on the acceleration of the robot. This is equivalent to bound-
ing the curvature of the retargetting function.

Therefore, we have two additional requirements: larger
changes must propagate further, and the maximum curvature
has to be bound. We resolve these two requirements by
keeping the curvature c at the center of the kernels constant.
Fig.3 shows that this enables us to enforce the first re-
quirement: larger changes do propagate further. With respect
to the curvature requirement, we assume that examples are
sparse enough that the curvature at the center of the kernel is
negligibly affected by other examples. Then, the maximum
curvature of the offset function o(x) occurs at an example
point xi, and is therefore c. As a result, the maximum
curvature of f(x) will only depend on c, and can be selected
to satisfy the desired bound.

To determine the relation between the width and the max-
imum curvature, we define the constant maximum curvature
constraint as

d2

dx2
α exp

(
−1

2
w(xi − x)2

)∣∣∣∣
xi

= c, ∀α ∈ R (6)

Equivalently, the following equation must hold:

α exp

(
−1

2
w(xi − x)2

)
w2(xi − x)2

+ exp

(
−1

2
w(xi − x)2

)
w

∣∣∣∣
xi

= c (7)
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Fig. 4. An illustration of the fixed width kernels (red) vs. fixed max.
curvature kernels (green) for approximating the function in blue after 2
examples.

Evaluating the Hessian at xi (the center of the kernel), we
get that: αw = c, or equivalently

w =
c

α

Fig.4 illustrates the propagations obtained from two ex-
amples (given at the black dots, from the function shown
in blue) from the two versions of the algorithm: using fixed
kernel widths vs. fixed maximum curvature. The maximum
curvature version propagates the larger changes further, and
conforms to the maximum acceleration bound.

III. EMPIRICAL RESULTS

Our empirical evaluation is focused on the question “Does
our method enable novice users to successfully train prior
retargetting functions?”. We answer this in a study that tests
the methods’s usability, where we ask users familiar with
the robot, but not with the teleoperation interface, to train
a bad prior. We verify that the trained prior’s performance
reaches the level of a good retargetting function, showing
that the training was successful. Aside from improving bad
priors, our method also enables adaptation of good priors to
particular tasks. Testing this particular aspect with novice
users remains a future work goal. However, we show an
example from an expert user on a difficult task, where the
time taken to train the prior and complete the task is much
lower that attempting the task without training.

A. Usability: Users Can Fix Bad Priors

We designed a study to decide whether users would be
able to repair a poor retargetting prior using our system. We
used the HERB platform [17] for our experiments. HERB
comprises of two Barrett WAM arms mounted on top of
a Segway RMP 200 platform. The WAM arm joints are
roughly anthropomorphic, with a total of 7DOFs made up of
a 3DOF shoulder, a 1DOF elbow, and a 3DOF wrist. HERB’s
joint limits, as well as its link lengths and proportion, differ
from those of an average human.

1) Manipulated Variables: We manipulated two factors:
training (whether the user trains the prior or uses it as-is)
and prior quality (which function acts as the prior). We
used two priors in this study. The first one is a natural
prior (which we call NP ), obtained by taking advantage
of HERB’s fairly anthropomorphic kinematics: the function
directly maps the operator’s shoulder and elbow joint angles
(obtained by processing the OpenNI (www.openni.org) skele-
tal tracker output) onto the robot. To manipulate the quality
and create a bad prior, we added a large constant offset to

the shoulder pitch: UP (x) = NP (x) + c. Fig.5 shows a
user’s configuration with its retargetted configuration on the
robot via UP . This leads to four experimental conditions and
four retargetting functions whose performances we compare:
NP , NP −T , UP , and UP −T (where x−T refers to the
function obtained by training the prior x).

2) Subject Allocation: We chose a within-subjects design,
where each of our 6 users (all students at Carnegie Mellon, all
familiar with HERB but not with the teleoperation interface)
was assigned to all four conditions, in order to enable paired
comparisons among the conditions. We first had an introduc-
tory phase, where the users interacted with the natural prior
NP . We then tasked the users with training both priors. We
instructed them to train the functions for general purposes,
thinking about any task they might want to achieve with the
robot, and stop when they are satisfied with the retargetting
function they reached. After training, we moved the robot
in front of a table and tasked the users with testing each of
the four functions (the two untrained and the two trained)
on a simple manipulation task – grasping a bottle on the
table. To avoid ordering effects, we randomized the order of
the conditions. Each user attempted each task three times, in
order to reduce the variance in the data.

3) Dependent Variables: For each condition, we measured
the success rate and the time to completion for the grasping
attempts. Potential failures included knocking over the target
object, colliding with the table, or being unable to complete
the task within 200 seconds.

B. Hypotheses

We first want to show that we manipulated the priors
correctly: H1. Prior quality has a significant positive effect
on the dependent variables.

Our second hypothesis is that training improves overall
performance: H2. Training has a significant positive effect
on the dependent variables.

Finally, we want to demonstrate that the trained unnatural
prior does not perform worse than the natural prior and the
trained natural prior. We define “does not perform worse
than” using the concept of “non-inferiority” [18], [19]: a
distribution is non-inferior to another if their difference is
significantly greater than a negative margin. H3. UP − T is
non-inferior to NP and NP − T .

C. Analysis

We performed a factorial repeated-measures ANOVA on
the success rate with Tukey corrections for multiple compar-
isons and a significance threshold of p = 0.05, which resulted
in a good fit of the data (R2 = 0.845). In line with our first
two hypotheses, we found that both factors had significant
effects. Prior quality improved the success rate by 30.6%
(F (1, 20) = 22.07, p < .001), and training resulted in an av-
erage improvement of 40.1% (F (1, 20) = 37.9, p < 0.001).
The interaction term was also significant (F (1, 20) = 49.02,
p < .001), the post-hoc analysis revealing that indeed, UP
was significantly worse than the other three conditions. The
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Robot Tracks User Motion with Bad Prior User Provides a Training Example Robot Learns New Mapping

Fig. 5. Training with an unnatural prior.
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Fig. 6. Left: The mean success rate on within condition. Center: The mean time to completion within each condition. Right: p-values for non-inferiority
tests with different margins. As the margin increases, we are more and more confident that the difference between UP − T and NP is greater than the
negative margin. The same figure also depicts a typical non-inferiority test, where the lower bound for the 95% confidence interval must be greater than
the negative margin.

Fig. 7. The user’s poor self-perception leads to poor examples. This
is a focus side-effect: focusing on fixing a particular problem sometimes
introduces undesired additional offsets. On the left, the approximate intended
example, and on the right the provided example, which adds a large offset
to the roll.

timing results were analogous, and Fig.6 plots the means for
both success and time over the four conditions. We attribute
the slight mean decrease in success rate of NP −T to noise.

The largest outlier in our ANOVA was a user who per-
formed much worse on the trained natural prior, NP − T ,
than on the untrained prior NP . This user commented
during the study that proprioception was an issue (“It’s really
difficult sometimes because I am not good at perceiving
myself”). Indeed, poor perception of the input causes users
to provide poor examples, especially when focusing on fixing
a particular problem in the prior and introducing undesired
offsets in other dimensions. An example is in Fig.7: the user
was fixing a problem with the elbow angle, but introduces a
large offset in the shoulder roll with his example.

Proprioception was not the only factor contributing to this
user’s poor training performance. Fig.8 shows the difference
between this user and second user, with better training

Fig. 8. The space two users explored while training. The green curves trace
the end effector of the robot. The red points are locations of examples. The
robot is positioned in the last example’s configuration.

performance: the latter explores more parts of the space,
including configurations close to those necessary for the
grasping task that served as a test after training, which puts
him at an advantage. We see this as a side effect of not
having told users what the task was ahead of time, in order
to prevent them from training the priors only for the test
task: a user that missed the task-related areas of the space
performed worse on the task, stressing the importance of
task-specific retargetting functions.

In terms of the number of examples, the users did
provide significantly more examples to UP , as expected
(t(6) = 16.44, p < 0.001): UP received an average of 11
examples, with 4 being the minimum and 20 the maximum.
Interestingly, not all users provided examples to the natural
prior NP , some deeming it suitable as-is. However, there
was no significant (or marginal) correlation between number
of examples and performance: more examples did not mean
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Fig. 9. Adapting a good prior to a specific task.

better/worse performance. The number of examples given
to NP significantly correlated to the one given to UP
(Pearson’s r(3) = 0.94, p = 0.004), suggesting that some
users are generally more lenient than others.

To confirm the last hypothesis, H3, we need to show
that the difference in performance between UP − T and
NP is significantly greater than a negative margin −∆.
Setting ∆ = 10%, a one-tailed paired t-test verified the
hypothesis: 9.5 > −10, t(6) = 2.81, p = 0.019. Therefore,
the trained bad prior is not worse, on average, by more
than 10%. Fig.6(right) provides a graphical explanation of
the test, together with the p-values obtained from various
margins between -10 and 0 (the larger the margin, the more
confident we are that UP −T is not worse by more than that
margin). The result for UP − T vs. NP − T was similar:
t(6) = 4.34, p = 0.004 for the same ∆ = 10%

D. The Method Enables Adaptation of Good Priors

Although NP is a natural retargetting function in general,
the kinematic differences between a human and HERB make
particular tasks (such as grasping an object on the far left
of the robot) particularly difficult. Our method enables the
online adaptation of NP to such tasks: Fig.9 shows that an
expert user can provide an example that makes the task area
easier to reach. Due to propagation decay, the example does
not have undesired effects on other areas of the space (unlike
a global offset technique, see Fig.10): Trained retargetting
functions must be more than global offset versions of their
priors. While an expert user was not able to succeed within
200 seconds with NP , it only took 27 seconds to provide the
example and complete the task. This is in no way reflective
of the performance of a novice user with the system – it
is merely a vote of confidence in what the training method
enables an experienced user to accomplish.

IV. CONCLUSION

We introduced a method for enabling users to customize
the motion retargetting function that maps their input onto
the robot, by providing example correspondences during
teleoperation. We validated its usability in a user study,

Desired pose Propagation decay Global offsets

Fig. 10. Our method adapted the prior in the desired region of space, while
leaving the rest of the space unaltered. If the propagation did not decay, i.e.
the offsets were global, examples could have an undesired effect on the rest
of the space.

which also pointed to a possible danger of the setup: poor
proprioception can result in poor examples. In future work,
we plan to explore the design of an interface that provides
more feedback to the users as they give examples, and
analyze long-term use effects. We are excited about a future
where robots learn to better interface with their users, and
believe that this work gets one step closer to that ideal.
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