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Assistive Teleoperation as Policy Blending
In assistive teleoperation, the robot attempts to predict the
user’s intent and augments his or her input based on this pre-
diction, in order to simplify the task. Our recent work on pol-
icy blending (Dragan and Srinivasa 2012) formalizes assis-
tance as an arbitration of the user’s input and the robot’s pre-
diction. At any instant, the robot combines the input, U , and
the prediction, P , using a state-dependent arbitration func-
tion α ∈ [0, 1] (Fig.1(bottom)). Policy blending can have a
strong corrective effect on the actual input provided by the
user, but burdens the robot to predict accurately and arbi-
trate appropriately.

Prediction. The first step in policy blending is predicting
the user’s intent, given the trajectory of user inputs so far
and any other cues that can assist prediction, such as gaze, or
context. For manipulation tasks, which are often described in
terms of grasping goals and possibly constrained trajectories
to these goals, intent prediction becomes the union of two
problems: identify what goal the user is trying to achieve,
and predict the trajectory the robot should use to move to
that goal.

Prior work addressed these problems by assuming that
the goals and trajectories to them are static, i.e. they are the
same during training and testing. This enables a multi-class
classifier to identify which trajectory matches the current
user’s input best (Demiris and Hayes 2002; Fagg et al. 2004;
Yu et al. 2005; Li and Okamura 2003; Aarno, Ekvall, and
Kragic 2005). However, many real-world problems are in
fact described by goals that change: when we clean up the
dining room table, we find different objects in different lo-
cations today than we did yesterday or the day before.

In this general case of variable goals, the robot must first
identify the user’s intended goal. Given the trajectory of
user inputs so far ξS→U and any other available cues θ, the
robot must predict the user’s intended goal configuration,
G∗, from a set of possible goals {G1, G2, . . . , GN} iden-
tified at run-time. That is, the robot must find the goal that
maximizes the posterior probability:

G∗ = arg max
G∈{G1,G2,...,GN}

P (G|ξS→U , θ) (1)
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Figure 1: (Top) The user provides an input U . The robot
predicts their intent, and assists them in achieving the task.
(Botttom) Policy blending arbitrates user input and robot
prediction of user intent.

Once it has made a goal prediction, the robot must com-
pute the next action P to take in order to achieve this goal.
This next action can come from a policy toG∗ mapping each
state to a corresponding action, or it can come from a trajec-
tory from the robot’s current configuration to G∗.

Arbitration. Given U and P , the robot must decide on
what to do next. Despite the diversity of methods proposed
for assistance, from the robot completing the grasp when
close to the goal (Kofman et al. 2005), to virtual fixtures for
following paths (Aarno, Ekvall, and Kragic 2005), to poten-
tial fields towards the goal (Aigner and McCarragher 1997),
all methods can be seen as arbitrating user input and robot
prediction. The arbitration function α can depend on a num-
ber of inputs, such as the distance to the goal or to the closest
object, or even a binary switch operated by the user. We pro-
pose a simple principle: that arbitration must be moderated
by how good the prediction is. This leads to a spectrum of ar-
bitration functions. On the one hand, the assistance could be
very timid, with α taking small values even when the robot
is confident in its prediction. On the other hand, it could be
very aggressive: α could take large values even when the



Figure 2: A comparison of timid vs. aggressive assistance in
terms of the time users took to complete manipulation tasks
with the robot HERB (Srinivasa et al. 2012), as well as the
users’ preferences for one mode or the other.

robot does not trust the predicted policy.
Where arbitration should lie on this spectrum remains an

open question. Although the dependence on confidence has
not been studied before, previous work has analyzed how
more autonomous vs. more manual assistance modes af-
fect the performance of assistive teleoperation, in terms of
both efficiency and user preferences. The results are surpris-
ingly mixed, with some studies reporting that users favor au-
tonomous assistance due to its improved efficiency (You and
Hauser 2011; Marayong, Okamura, and Bettini 2002), while
others report that users prefer direct teleoperation (Kim et
al. 2011). We found that this could be explained by analyz-
ing the interaction of aggressiveness with other factors, such
as prediction correctness or task difficulty: users prefer ag-
gressive assistance on tasks that are very hard to complete
with direct teleoperation, they prefer timid assistance when
the robot makes the wrong prediction, and their opinions are
mixed on easy tasks – some prefer the slight improvement
in efficiency that an aggressive mode provides, while others
want to remain in control of the robot’s actions. Fig.2 vi-
sualizes this comparison, and more details can be found in
(Dragan and Srinivasa 2012).

Interactive Learning
Prediction comprises of identifying the intended goal and
generating a trajectory to it. Both components are character-
ized by the need to adapt to a particular user, as well as the
opportunity to interact with the user to achieve this adapta-
tion. These characteristics make prediction for assistive tele-
operation an exciting domain for interactive learning.

Goal Identification
The problem of predicting a trajectory’s goal given the tra-
jectory so far was addressed by Ziebart et al. (Ziebart et al.
2009) in the context of predicting a pedestrian’s destination.
The idea is to assume that the pedestrian is optimizing a
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Figure 3: A user’s teleoperated trajectory to the box (G2),
with points along it marked in green vs. red corresponding
to whether the goal identification using the trajectory up to
that time-point was successful or not.

cost function, subject to noise. Given this assumption and
by adopting the principle of maximum entropy (Ziebart et
al. 2008), soft-maximum value iteration can be used to com-
pute the probability of a goal(Ziebart et al. 2009).

Although this method is tractable in two-dimensional
spaces, like the ones in which pedestrians move, value itera-
tion becomes intractable for the high-dimensional spaces in-
duced by manipulation tasks. However, we found that if the
user’s cost function C can be approximated by a quadratic,
prediction reduces to

G∗ = arg max
G

eC(ξ∗S→G)

eC(ξS→U )+C(ξ∗U→G)
P (G) (2)

This instantaneous prediction method implements an intu-
itive principle: if the user appears to be taking (even in the
optimistic case) a trajectory that is a lot costlier than the op-
timal one to that goal, the goal is likely not the intended one.
We have also found that even a simple cost function, such as
the sum of the squared velocities along the trajectory, per-
forms well in practice (an example in Fig.3).

Learning to better identify goals. In our experiments, we
noticed that different users adopt different strategies for tele-
operating the robot. Some would try to take direct paths to
the goal, while others would make progress in one dimen-
sion at a time. Some would go above obstacles, while others
would go around. The existence of these differences implies
that good predictors would have to adjust their model to a
specific user: good goal predictors must learn from the in-
teraction with a user and adapt to that user’s behavior.

Formally, this adaptation is an online update of the cost
function C that the user is assumed to be optimizing. Let
C be a weighted combination of features, C = wT f . As the
user is teleoperating, the robot can compute an online update
onw with each new example trajectory to a goal. This update



is the result of a convex optimization problem, as shown in
(Ratliff, Bagnell, and Zinkevich 2006).

Given the online learner, the challenge is in deciding how
to arbitrate during the learning process. Aggressive arbitra-
tion corrupts the training data if the robot makes the wrong
prediction, because the trajectory to the goal will be tamed
by the user’s negative reaction in controlling the robot. On
the other hand, timid arbitration is insufficient on hard tasks.
Fortunately, the robot does have at its disposal tools that can
help in making this decision: a prior on task difficulty, a mea-
sure of how good previous predictions have been, and the
possibility of disregarding examples by detecting failures in
prediction.

A different kind of interactive learning. Aside from the
user training the robot online through example trajectories,
the robot can also train the user. We hypothesize that given
feedback from the robot (through motion and displays of
its predictions, as in Fig.4), users can learn to provide more
intent-transparent examples. The degree to which a motion
is intent-transparent is actually judged by the robot, by how
accurate (and with what confidence) its predictions are for
that motion. Through the robot’s feedback, users can learn
what types of inputs lead to better predictions.

Figure 4: The robot could train the user to provide more
intent-expressive examples by giving him feedback on what
it is predicting and how confident it is.

Trajectory Generation
At every time-step, the robot makes a goal prediction. This is
not enough for assisting the user: the robot must also com-
pute a predicted next action P that the user would like to
take towards the goal. One way to so in high-dimensional
spaces is to compute a collision-free path to the goal. The
default algorithms for solving this problem are randomized
planners (e.g. RRT (Kuffner and LaValle 2000) followed by
a post-processing trajectory shortcutting stage). The trajec-
tories such planners produce are functional, but they are also
high-variance: running the planner on the same task will pro-
duce a different outcome every time (Fig.5).

Figure 5: The unrepeatability of randomized planners. A
snapshot (at the same time-point) for 20 trajectories that
were obtained with a randomized planner (with path short-
cutting) for the same reaching task.

Although this is not an issue when robots perform tasks
on their own, placing a human in the loop raises a new
requirement on the robot’s motion: repeatability, and even
transparency of intent: the robot’s motion must make its in-
tent clear to a human observer. We heard this directly from
our users, e.g. “Assistance is good if you can tell that it [the
robot] is doing the right thing”: the robot’s motion must con-
vey that it is indeed achieving the intended goal.

A first step towards intent-transparent motion is produc-
ing repeatable, optimal motion. If the robot keeps its motions
efficient and solves similar tasks in similar manners, then
the user can get accustomed to the robot’s ways. We create
optimal motion via trajectory optimization, a technique that
smoothly bends an initial trajectory out of collision (Ratliff
et al. 2009). Although trajectory optimizers are known to
struggle with high-cost local minima in the complex spaces
induced by manipulation tasks, we were able to alleviate this
issue by exploiting flexibility specific to manipulation prob-
lems (Dragan, Ratliff, and Srinivasa 2011) or by learning
to place the optimizer in good basins of attraction from prior
experience (Dragan, Gordon, and Srinivasa 2011). However,
even with improved optimizers, there is still an open ques-
tion of what to optimize in order to actually express intent –
there are a lot of cases in which efficiency is not the correct
metric for making the robot’s goal obvious to a human.

Learning to generate intent-transparent trajectories.
The robot’s predicted trajectory to the goal must be intent-
transparent. The robot’s only manner of learning what this
means is by interacting with the user: good trajectory gen-
erators must adapt to how the user perceives the motion’s
intent.

We envision that the robot will execute trajectories and
ask the user to guess or predict its intent, as in Fig.6. With
every guess, the robot will update its model of how the user
predicts intent, much like how users can update their model
of how the robot predicts their intent. We also find the idea
of actively exploring the space of features that could affect



Figure 6: The robot can learn to produce intent-expressive
motion by asking the user to predict its intent and adapting
its optimizer to enable better predictions.

this prediction very interesting: the robot could vary certain
features of its motion (e.g. its hand orientation or aperture in
a reaching trajectory) in order to test whether the variation
has an effect on the prediction (both in terms of correctness,
as well as in terms of how fast the user is able to make this
prediction as the robot is moving).

Conclusion
Our previous work on assistive teleoperation formalized as-
sistance as the arbitration of the user’s input and the robot’s
prediction of the user’s intent, and analyzed the two chal-
lenges that the robot faces: to predict accurately and to ar-
bitrate appropriately. Here, we gave a short overview of our
findings, and discussed the important role interactive learn-
ing can play in improving assistance. First, the robot can
learn better goal predictors by adapting them online, based
on each user’s way of teleoperating the robot. Second, in a
different interaction paradigm, the robot can be the one do-
ing the training: it can train the user to provide more intent-
expressive input, in order to make predictions easier. Third,
the robot can learn how the user predicts the its intent, in
order to generate more intent-expressive trajectories to the
identified goal. These avenues of future work are not only
exciting in the context of assistive teleoperation: they are
important for the while field of human-robot collaboration,
for which robots must predict their collaborators’ intentions,
as well as make their own intentions clear.
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