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ABSTRACT
We study the e↵ect of familiarization on the predictability
of robot motion. Predictable motion is motion that matches
the observer’s expectation. Because of the di�culty robots
have in learning motion from user demonstrations, we ex-
plore the idea of having users learn from robot demonstra-
tions — how accurate do users get at predicting how the
robot will move? We find that although familiarization sig-
nificantly increases predictability, its utility depends on how
natural the motion is. Overall, familiarization shows great
promise, but needs to be combined with other methods that
generate appropriate motion with which to be familiarized.

1. INTRODUCTION
We are interested in generating robot motion in the pres-

ence of an observer. Imagine a robot like HERB from Fig.1
collaborating with a human on a manipulation task like
cleaning up the dining room table. Our goal is to make
the motion predictable:

Definition 1. Predictable motion is motion that matches
the observer’s expectation of how the robot will move [9].

Predictability is desirable in any interaction, and is espe-
cially important for human-robot collaboration [2, 4], where
it serves two goals: 1) it enables the collaborator to predict
how the robot will move (by its very definition), which en-
ables them to plan their own motion accordingly and move
simultaneously with the robot; and 2) it increases their com-
fort with the robot (we test this in our experiments).

As the definition implies, to generate predictable motion
we must know how an observer expects the robot to move.
The traditional paradigm for solving this problem is Learn-
ing from Demonstration (LfD), where the observer provides
several examples of how they expect the robot to move.
The robot learns from these examples using techniques like
Gaussian Mixture Models [6], Dynamic Movement Primi-
tives [20], or Inverse Reinforcement Learning [28].

These have shown great success for learning particular
skills, or learning general motion in low-dimensional spaces,
but su↵er in two critical ways: they become computationally
intractable in high-dimensional spaces [19], and novice users
find it di�cult to provide good demonstrations [1].

In this paper, we study the opposite teacher-learner rela-
tionship: rather than focusing on the robot learning from
the user’s demonstrations, we explore the idea of the user
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Figure 1: (Top) One of our users getting more comfortable with
working/standing next to the robot after familiarization, as he
can better predict how the robot will move. (Bottom) Users iden-
tify the robot’s actual trajectory (we plot here its end e↵ector
trace only, in green, but show users the robot actually moving
along it) as the one they expect more often after familiarization.

learning from the robot’s demonstrations, via familiariza-
tion:

Definition 2. Familiarization to robot motion is the pro-
cess of exposing the observer to how the robot moves in dif-
ferent situations.

Many times, we take for granted that familiarization works.
Familiarization is often used in studies prior to experimental
conditions [13], under the assumption that it will adapt the
user’s mental model of the robot. Studies on sensemaking
[27] support this assumption [21, 18, 3, 14, 23], as does the
remarkable adaptability of humans: we learn new languages
[17], adapt to new ways of communicating [24], and even
remap existing sensors like our tongues to new senses, like
vision [26].

Here, we study the e↵ects of familiarization to motion.
On the one hand, the breadth of human adaptability sug-
gests that with familiarization, the robot’s motion will be-
come significantly more predictable. On the other hand,
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Figure 2: For the same situation, the trajectories for the more natural motion in Sec. 3 (top, green), and for the less natural motion
in Sec. 4 (bottom, orange).

the same obstacles robots face when learning motion — the
high-dimensionality and complexity of the space — might
induce similar limitations in humans.

We ran a series of three experiments investigating the ef-
fect of familiarization to two di↵erent types of motion, on
both the users’ ability to predict how the robot moves (Goal
1), as well as the users’ comfort with the robot (Goal 2).

Our first experiment (Sec. 3) analyzed familiarization to
motion produced by a state-of-the-art trajectory optimizer.
We evaluated predictability before and after familiarization
by testing whether users identify the actual robot motion
as the one they expect it to execute (from a set of di↵erent
motions, see Fig.1, bottom), as well as asking users to rate
the motion on a subjective predictability scale.

Our results do support the utility of familiarization — the
motion became significantly more predictable. However, we
came across unexpected limitations of familiarization. We
found that despite improving predictability, familiarization
can fail to make the motion fully predictable, and can fail
to generalize to new situations.

Next, we tested familiarization on a di↵erent type of mo-
tion. The initial study indicated that the optimizer-generated
motion was moderately natural:

Definition 3. Natural motion is motion that is predictable
without (or prior to) familiarization.

This finding raised an interesting question: would famil-
iarizations still have an e↵ect when the motion is less nat-
ural? In a second experiment (Sec. 4), we found that
some unnatural motion may never reach a high predict-
ability level, even when exposed to over twice the number
of motions, suggesting that familiarization saturates.

Next, we tested the practical e↵ects of increasing predict-
ability (Sec. 5) — does the user comfort with working or
standing next to the robot also increase? We found a signif-
icant e↵ect of familiarization on comfort. However, a lot of
users over-trusted the robot, moving closer to it than would
be safe. This has a surprising implication: less predictable
motion might actually be safer in some situations, as it might
prevent over-trust.

Overall, familiarization is an essential aspect of human-
robot interactions, and it is important to study it and un-
derstand its limitations — sometimes, we cannot rely solely
on human adaptability. Our data suggests that familiar-
ization to motion helps, but cannot be used exclusively for
generating predictable motion. The robot still has the bur-
den of producing motion that is not too unnatural — mo-

tion with which it is easy to familiarize. However, given
such motion, familiarization shows great promise for signifi-
cantly improving predictability and ultimately enabling bet-
ter human-robot collaboration.

2. GENERATING MOTION
Predictable motion matches what the observer expects.

The theory of action interpretation suggests that humans
apply the principle of rational action when observing other
humans [10], as well as when observing robots [12]: they
expect the most e�cient action to achieve the goal.

In our previous work, we translated the principle of ratio-
nal action to robot motion in the form of cost optimization
[9]: if humans expect e�cient motion, then they expect the
robot to optimize some cost function defining e�ciency.

Thus, generating predictable motion has two requirements:
optimizing cost, and finding the cost to optimize.
Generating Motion by Optimizing Cost. We optimize
cost functions over motion by functional gradient optimiza-
tion [29]. We treat motion trajectories as functions mapping
time to robot configurations, ⇠ : [0, 1] ! Q. Given a cost
functional C defined over the space of trajectories ⌅,

C : ⌅ ! R+ (1)

we iteratively improve an initial trajectory ⇠0.
At every iteration, we minimize a first-order approxima-

tion of C about the current trajectory, subject to a regu-
larization term which penalizes distances with respect to a
metric A on ⌅:

⇠
i+1 = argmin

⇠2⌅
C[⇠

i

] +rCT

⇠i
(⇠ � ⇠

i

) +
⌘
2
||⇠ � ⇠

i

||2
A

(2)

We iterate until convergence. For state of the art optimiz-
ers like CHOMP, this is typically in the order of 1-2 seconds.
The Cost Function. The main challenge in generating
predictable motion is finding the cost functional C that the
human observer expects. In this paper, we test how well
the robot can adapt the observer to its own C, through
familiarization.

We test familiarization with a typical cost functional used
in CHOMP [29]. This functional is composed of two terms:
C

prior

which measures the e�ciency of the motion, and C
obs

which measures how safe the trajectory is in staying away
from obstacles:

C[⇠] = C
prior

[⇠] + �C
obs

(3)
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Figure 3: The overall experimental procedure, consisting of a familiarization phase (b), and a pre- and post-test for predictability (a
and c). The tests involve three types of examples (Levels 1-3), each with two instances to aid robustness. For each example, we show
users three trajectories and ask them to identify which one they expect the robot to perform, as well as rate each on a predictability
scale. The grid in (d) depicts target object placements on the table (shown in Fig.1 and Fig.2) to produce the familiarization examples.
The ones we re-use for testing (Level 1) are highlighted in blue, and the ones we set aside for testing-only (Level 3) are highlighted in
brown. The crosses represent additional example locations we use in Sec. 4.3.

Our implementation of CHOMP uses path length as the
measure of e�ciency:

C
prior

[⇠] =

Z
||⇠(t)0||2dt (4)

We use CHOMP-generated motions in Sec. 3, when we
test how useful familiarization is for state-of-the art gen-
erated motion. Fig.2 (top, green) shows one of the exam-
ple motions. We find that they are moderately natural, i.e.
have good levels of predictability even before familiariza-
tion, and that familiarization increases their predictability
further. This prompts us to test familiarization for less nat-
ural motion in Sec. 4 — would it still work?
A Less Natural Alternative. To test familiarization on
less natural motion, we changed the cost function. Rather
than using CHOMP’s notion of e�ciency from (4), which
uses the same weight on each of the robot’s degrees of free-
dom, we weigh di↵erent degrees of freedom di↵erently:

C
priorW [⇠] =

Z
||⇠0(t)||2

W

dt =

Z
⇠0(t)TW ⇠0(t)dt (5)

By choosing a W with lower values for the shoulder joints
and higher values for the wrist joints, the robot starts pe-
nalizing motion in the wrist, and starts moving it less at the
expense of moving the shoulder more. This is contrary to
what human motion does in reaching tasks [15], which sug-
gests it will also make the robot’s motion less natural. Our
results in Sec. 4) support this.

Fig.2 shows a comparison between the original CHOMP
cost function and this modified version (bottom, orange).

3. DOES FAMILIARIZATION WORK?
We designed a user study to test the utility of familiariza-

tion to robot motion. Does exposing the users to how the
robot moves help them form the right expectations in the
future? And if so, how good do users get at predicting the
robot’s motion?

3.1 Methods
We exposed users to examples of the robot’s motion (Fig.3,

b), and measured improvement in predictability by admin-
istering a pre- (Fig.3, a) and post-test (Fig.3, c), using both
objective and subjective measures. We detail our procedure
below.

3.1.1 Design Decisions
The complexity and high-dimensionality of robot motion

are the key obstacle to the utility of familiarization. We

designed our experiment to alleviate this issue: we focus on
familiarization by training.

We made familiarization a targeted learning experience,
rather than treating it as exposure to the robot“in the wild”.
We chose a narrowly scoped task, structured the examples
users see by parametrizing the task, and presented users
with many examples comprising a good task discretization.
Robot Platform. We use the robot HERB [22] from Fig.1
as a platform, a bi-manual mobile manipulator with a total
of 24 degrees of freedom.

HERB is a good choice for testing familiarization because
it is not too anthropomorphic (antropomorphic robots could
inherit the biases of human motion, hindering the e↵ective-
ness of familiarization), yet it still has a familiar structure,
with a head and two arms. Each arm has 7 DOF, much like
human arms: three in the shoulder, one in the elbow, and
one in the wrist.
Robot Task. Rather than showing users a snippet of a
daily activity, we chose to show them structured examples
that better support learning. To do so, we narrowed the
scope of our study to a single type of task, and extracted
examples by parameterizing the task and discretizing the
parameter space.

Of all possible tasks, we focus on reaching motions. Reach-
ing for an object (and grasping it) is one of the most common
manipulation tasks state-of-the art robots perform (along
with placing): we see it in manufacturing environments [11]
as well as in personal [22, 5] and assistive robotics [16].

We designed a typical reaching task, where HERB uses
its right arm to reach for a target object on the table (see
Fig.2). We parametrize the task by a starting configuration
for the arm, a goal configuration where the robot can grasp
the target object, and obstacles in the environment which
the robot’s motion must not collide with.

We selected these parameters by replicating a scenario
in which HERB drives up to the table and reaches for the
bottle: we selected HERB’s typical driving configuration as
the start, and kept the table in place as the obstacle.
Example Number and Order. We generated examples
by varying the goal parameter. We varied the location of the
target object on the tabletop, as depicted in Fig.3 (d). To
aid familiarization, we discretized this space finely, forming
a 5⇥ 3 grid with 0.15m resolution for where the bottle can
be placed. This creates a space of 15 possible examples, 2
of which we kept aside for our pre- and post- test Level 3

(details in Sec. 3.1.2, “Manipulated Factors”).
We followed human teaching patterns and presented the

examples to the users in the order from most simple to most
complex [25]. Here, we defined simplicity based on how ef-
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ficient each trajectory was relative to the distance between
the starting configuration and the goal.
User Instructions. We decided to specifically instruct the
users to actively try to learn how the robot moves, in line
with our decision of making this a learning task rather than
a passive observation task.

3.1.2 Design Overview
Manipulated Factors. We manipulate two factors: fa-

miliarization and difference level.
We manipulate familiarization by testing the predict-

ability of motion both before and after exposing the users
to the examples. We use recordings of HERB executing the
CHOMP-generated motions.

With difference level, we look at test situations that
relate in di↵erent ways to the examples.

We select two of the 13 possible scenarios the user will
see during training and identify these as Level 1 situations.
Next, we select one of the two and change the start configu-
ration or add another obstacle, and identify these as Level
2 situations. Finally, the user is shown the two scenarios
that will not be shown as part of the training set. These
scenarios are Level 3 situations.

Fig.4 (a-c) shows an example situation for each level. Since
there is no clear ordering in terms of di�culty between lev-
els 2 and 3, we keep this variable as nominal (as opposed to
ordinal) in our analysis below.

We use two situations for each di↵erence level (as opposed
to only one) in order to alleviate the risk of introducing
confounds in the manipulation. This leads to a total of 6 test
situations, which we present to the users in a randomized
order both before and after familiarization.
Dependent Measures. We measured the predictability
of the robot’s motion in the 6 test situations using both an
objective, as well as a subjective metric.
Objective Predictability. For our objective metric, we
measured the accuracy with which users can identify the
robot’s actual motion from a set of di↵erent motions. This
is a way of of objectively measuring whether users expect
the motion that the robot would execute.

For each test situation, we first presented the users with
an image of the robot in the starting configuration, with the
bottle placed in the corresponding location. We asked them
to spend a minute imagining how they expect the robot to
move his arm. To make sure they think the task through,
we asked them to describe the motion.

Next, we showed them video recordings of HERB execut-
ing three motion trajectories (in randomized order). One of
these is the actual trajectory (represented by a green dot
in Fig.3 (a) and (c)) produced according to the procedure
outlined in Sec. 2.

We selected the other two motions (by varying the goal
configuration) such that they are spatially similar either to
the actual trajectory from the same situation, or to the ac-
tual trajectory from one of the example situations.

We imposed a minimum distance requirement on the test
motions: they have to achieve a minimum distance (either
at the end e↵ector or at the elbow) from one another. We
choose a threshold (of 0.2m) to signify “practical di↵erence”:
if the users cannot distinguish among motions that are too
similar, this has no practical side e↵ect — at the limit, dif-
ferences among motions will not even be observable to the
naked eye; on the other had, if users mistake the motions
for one in which the robot’s arm reaches a di↵erent part of
the space, this can have severe practical consequences when
working next to the robot.

These two motions are represented as red dots in Fig.3 (a)
and (c). Fig.1 (bottom) shows the end e↵ector traces for the
three candidate trajectories in one of the test situations.

After seeing the three trajectories, we asked the users a
multiple-choice question: “Which of the trajectories matched
the one you expected?”. The choices were trajectories 1-3.
as well as a“None”option (which, despite the strong wording
in the question of having “matched” the expected trajectory,
was only used in 12% of the cases).
Subjective Predictability. For our subjective metric, we
designed a scale for predictability, comprised of three 1-7
Likert scale statements shown in Table I.

TABLE I: Predictability Scale.

Trajectory ’x’ matched what I expected.
Trajectory ’x’ is predictable.
I would be surprised if the robot executed Trajectory ’x’ in this situation.

We asked users, after seeing all three trajectories, to indi-
cate their level of agreement with each statement, for each
trajectory (in order to not give away which trajectory HERB
would actually execute). In our analysis below, we show that
the scale has internal reliability, and combine the ratings for
HERB’s actual trajectory (with the third statement reverse-
coded) into our subjective metric.

Aside from measuring the motion’s predictability before
and after familiarization, we were also interested in two ad-
ditional measures: whether the users thought that familiar-
ization helped, and what they thought of the robot’s motion.
Perceived Utility. After we showed them the motion ex-
amples, users did Likert self reports on utility (whether see-
ing how HERB moves helps them predict how HERB would
move in a new situation), on improvement (whether they
are better now at predicting how HERB would move than
they were originally), and on confidence (whether they are
confident they can predict how HERB would move).
Motion Attributes. We also asked them about the mo-
tions that they saw. We were interested in whether the
CHOMP motions made sense to them, whether they were
more fluid or more machine-like than they originally ex-
pected, and whether they would be comfortable working
next to the robot if it moved in the way they saw.
Subject Allocation. We opted for a within-subjects de-
sign. We explicitly wanted to measure predictability for
the same user before and after familiarization in order
to avoid additional variance. Furthermore, users never get
to see what the right answer to the test situations are. This
enables us to treat difference level as a within-subjects
factor as well.

We recruited 25 users (11 female and 14 male, with ages
between 19 and 56, M = 34.68, SD = 10.29, and only 5
reporting having a technical background) via Amazon Me-
chanical Turk. They performed the study in an average of
50 minutes. To avoid rushed responses, we prevented users
from advancing in the task without watching all videos and
answering all questions, and we asked control questions at
the end to verify attention.
Hypothesis. Familiarization significantly improves the predict-
ability of motion, as reflected by both the objective accuracy
metric, as well as the subjective user ratings.

3.2 Analysis
Accuracy (objective). Supporting our hypothesis, fa-

miliarization had a significant e↵ect on the users’ accu-
racy in recognizing HERB’s actual motion, as indicated by a
logistic regression using familiarization and difference

level as factors (�2(1, 300) = 8.53, p = .0035). There was
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Figure 4: Overall, familiarization significantly improves the ac-
curacy in recognizing the robot’s motion (left). Di↵erent test
situations, however, show di↵erent improvements (right). Error
bars show standard error.

no main e↵ect for difference level, and no interaction
e↵ect. A factorial repeated-measures ANOVA treating ac-
curacy as a 0-1 continuous variable (F (1, 270), p = .0039)
confirmed the significance of familiarization. This test
has the advantage of allowing a treatment of the user ID
as a random variable, and is considered to be robust to di-
chotomous data[7]. These results are encouraging, indicat-
ing that:

Result 1. Familiarization can make motion more
predictable.

Prior to familiarization, users already had a 62% accu-
racy (significantly higher than the 33% random choice, Pear-
son �2(1, 150) = 55.47, p < .0001), suggesting that the
CHOMP-generated motions were moderately natural.

Familiarization did significantly increase accuracy, but,
surprisingly, only to 77%.

Although familiarization helps make the CHOMP motion
more predictable, our data suggest that it has important lim-
itations: despite the test situations coming from the same
task as the training ones, and despite the fine discretiza-
tion of the task space, users were not able to always identify
the correct trajectory from other (spatially di↵erent) tra-
jectories. For distance Level 1, i.e. testing situations that
were also present in the training examples, the accuracy was
highest, at 84%.

Fig.4 shows the accuracy improvement after familiariza-
tion, both across tasks as well as split by the difference

level: accuracy is highest on testing on situations that were
also used as training examples (Level 1), as well as on situ-
ations with the same target location as a training example,
but di↵erent starting/obstacle locations (Level 2). The test
situations that were at the limits of the task (Level 3) did
not see an improvement with familiarization (Fig.4, right),
suggesting that familiarization can have limited generaliza-
tion.

Result 2. Familiarization does not always make the
motion fully predictable, and can have limited gener-
alization ability.

Predictability Rating (subjective). Our scale for predict-
ability comprised of ratings for expectedness, predictability,
and surprise (reverse-coded) showed internal reliability (Chron-
bach’s ↵ = 0.91), leading to a combined score for predict-
ability based on the three ratings. This score is correlated
with the accuracy (Pearson’s r(288) = .73, p < .0001).

To test the e↵ects of familiarization and difference

level on this score, we ran a factorial repeated-measures
ANOVA. This showed a significant main e↵ect for famil-

iarization (F (1, 270) = 10.17, p = .0016), but not for
difference level (and no interaction e↵ect). These results
are consistent with our findings for accuracy, and strengthen
the utility of familiarization to robot motion.

TABLE II: Utility of Familiarization Ratings.

Utility Type M SD t(24) for M 6= 4 p

example helpfulness for prediction 5.76 1.09 8.06 <.0001
improvement in prediction capability 5.6 1.32 6.04 <.0001
confidence in prediction capability 5.76 0.97 9.07 <.0001

Perceived Utility. Table II shows the responses for the
perceived utility of familiarization. Participants thought
that seeing the videos helps them predict how HERB will
move in a new situation, that they are better at predict-
ing how HERB will move in a new situation than they were
before seeing the videos, and were confident they can make
this prediction accurately. These ratings are significantly
di↵erent from the neutral stance of 4 (1-7 scale), even after
Bonferroni corrections for multiple comparisons.

TABLE III: Motion Ratings.

Motion Attribute M SD t(24) for M 6= 4 p

makes sense 6.56 0.71 17.98 <.0001
more fluid than expected 5.52 1.66 4.57 <.0001
more machine-like than expected 2.32 1.62 -5.17 <.0001

comfort for collaboration 5.8 1.15 7.79 <.0001

Motion Attributes. Table III shows the responses for the
motion attribute questions, together with the results of a
t-test against the neutral mean of 4. Participants strongly
agreed that HERB’s motion made sense. They also agreed
that the motions are more fluent than they originally ex-
pected, and disagreed that the motions were more machine
like. All participants but one reported that they would be
comfortable collaborating with HERB on a close-proximity
task if it moved in the way they saw. The means are signif-
icantly di↵erent from the neutral stance, and remain signif-
icant after Bonferroni corrections.

These findings, together with the initial accuracy on CHOMP
motions, suggest that CHOMP makes a good starting choice
for familiarization. The next section will put familiarization
to a more di�cult test. It will study the e↵ect of familiariza-
tion for less natural motions — does it still work, and how
predictable do these motions become?

4. FAMILIARIZATION TO UNNATURAL
MOTION

Our results showed an improvement with familiarization
when the motions are moderately natural. This led us to
wonder: what if the robot moved in an unnatural way?
Would familiarization still increase predictability?

4.1 Methods
To investigate the e↵ect of familiarization on less natural

motion, we ran the same study, replacing the type of motion
performed by the robot with the less natural version from
Sec. 2, also depicted in Fig.2 (bottom, orange).
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For the testing situations, we were interested in whether
familiarization would change the users’ model and make
them select the actual trajectory against the more natu-
ral CHOMP one. Thus, we selected the original CHOMP
trajectory as one of the alternatives whenever possible, i.e.
whenever it was practically di↵erent (using our definition
from Sec. 3.1.2 of having a di↵erence in the end e↵ector or
elbow locations of above 0.2m).

We recruited 25 new users via Amazon Mechanical Turk,
and eliminated 1 for failing to answer the control questions
correctly, leading to 11 male and 13 female users, with ages
between 19 and 45 (M = 29.16, SD = 7.12).
Hypothesis. Familiarization significantly improves the predict-
ability of the less natural motion. Furthermore, it brings the
less natural motion to the same predictability level as the
more natural motion.

4.2 Analysis
Manipulation Check. The initial accuracy this time was
only 34% (close to the random choice mark of 33%1). This
confirms that the motions were less natural (less predictable
before familiarization) than the CHOMP motions from the
previous section (�2(1, 588) = 47.38, p < .0001). We call
this type of motion moderately unnatural : low accuracy
without going below the random choice threshold.
Accuracy and Rating Fig.5(left) shows the accuracy be-
fore and after familiarization, as compared to the data from
the more natural motions in the previous section. Consis-
tent with our previous findings, and with our hypothesis, fa-
miliarization has a significant positive e↵ect on accuracy,
as evidenced by a logistic regression with our two factors
(�2 = 6.95, p = .0084).
Despite this improvement, the accuracy after familiar-

ization is merely 48% — familiarization fails to bring this
motion to the same predictability level that it brings the
CHOMP motion (i.e. 77% accuracy). This is also supported
by the ratings on our predictability scale: although familiar-
ization has a positive main e↵ect on the score (F (1, 286) =
5.09, p = .0248), the score after familiarization is signifi-
cantly lower than for the CHOMPmotion, as seen in Fig.5(center).
Furthermore, for the test situations where a CHOMP tra-

jectory was one of the options, more users chose the CHOMP
trajectory (48%) than the trajectory generated by the cost
function with which they were familiarized (43% on these
situations).
Given that the initial accuracy on these tests was 29%,

familiarization did change the users’ model of how the robot
moves, but was not enough to make the true model more
likely in their view than the more natural CHOMP model.
Combined Analysis. The di↵erence between the moder-
ately natural and the moderately unnatural motions is also
reflected when looking at the data overall. A logistic regres-
sion with naturalness (low versus high), familiarization,
and difference level as factors shows significant main ef-
fects for all three factors (naturalness �2(1, 588) = 49.71,
p < .0001; familiarization �2(1, 588) = 15.46, p < .0001;
difference level �2(2, 588) = 14.26, p = .0008). It also
shows an interaction e↵ect between di↵erence level and ini-
tial predictability (�2(2, 588) = 10.19, p = .0061).
A factorial repeated-measures ANOVA yielded the same

results, and the Tukey HSD post-hoc analysis on the inter-
action e↵ect revealed that all conditions for the moderately
natural motions had significantly better accuracy than all
moderately unnatural conditions, with the exception of dif-
ference level 2. The tests in this level maintained high accu-

1this is 25% if we take the “none” option into account

racy, possibly due to a similarity in the motion for the test
situations in this di↵erence level).

Overall, we see that lower naturalness of motion results in
lower predictability even after familiarization. This suggests
a second limit:

Result 3. Familiarization can fail to bring less nat-
ural motion to the same predictability levels it brings
more natural motion.

4.3 Follow-Up:
Do we just need more examples?

Upon finding this limitation, we wondered: could we bring
predictability levels as high as for the more natural motion
by simply increasing the number of examples? Is this limi-
tation caused by the amount of familiarization?
Methods. We tested this in a follow-up study. We created
more examples by discretizing the space further, as shown
by the grid crosses in Fig.3. After eliminating the ones close
to the testing situations from Level 3 (shown in gray in the
figure), we obtained 16 new examples (leading to a possible
total of 13+16=29).

We replicated our previous study, manipulating one addi-
tional factor — the number of examples — with 3 levels:
13 (previous study), 21, and 29. We added the additional
examples after the original ones, maintaining their order and
thus avoiding the order of the examples as a confound.

The number of examples factor was between-subjects.
This was necessary in order to manage the di↵erent number
of examples in the familiarization stage. We recruited 25
users per level of examples.
Analysis. Fig.5 (right) shows the accuracy before and after
familiarization for each case.

Result 4. Familiarization can saturate: final predict-
ability does not increase with the number of examples.

Surprisingly, accuracy decreases in the last case, with the
largest number of examples. This decrease is significant in
a logistic regression over all example levels, which shows a
main e↵ect for number of examples (�2(2, 876) = 6.85, p =
.0325), and marginally significant in a factorial repeated-
measures ANOVA (F (2, 70) = 2.80, p = .0675).

The accuracy after familiarization with 29 examples is
consistently smaller than with 13 or 21, in particular for
di↵erence level 1, i.e. tests that appear in the training data.

This could imply that with more examples to learn from,
users are more focused on a general model and less able to
keep in mind particular cases. Rather than over fitting to
the limited number of examples, users might be fitting a
more general but less accurate model. There can also be
something specific to the examples added that adds confu-
sion. Further investigation is needed in order to understand
this drop, and verify it is not produced by chance.

5. FAMILIARIZATION AND COMFORT
In the previous sections, we found that familiarization in-

creases the motion’s predictability. Here, we are taking a
first step towards analyzing the practical consequences of
improved predictability to human-robot collaboration. In
particular, does familiarization improve the users’ comfort
with working next to the robot?

5.1 Methods
We designed an experiment where we evaluated user com-

fort before and after familiarization, using both an indirect,
objective metric, as well as a direct, subjective metric.
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Figure 5: Left and Center: Results for familiarization to a less natural motion, as compared to the more natural CHOMP motion from
Fig.4. The error bars represent standard error on the mean. Familiarization does improve predictability, but not to the level of the
CHOMP motions. Right: This limitation is not due to the number of examples, since more examples fail to improve performance.
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Figure 6: Markers measuring distance to the robot are spaced 5
inches apart. Familiarization brought users 7.35 inches closer to
the robot.

Manipulated Factors. We manipulated two factors: fa-

miliarization and naturalness of the motion. We used
the same familiarization procedure as before, and the two
motions from Sec. 3 and Sec. 4.

We decided against manipulating the difference level

factor in this study, and only used a Level 1 situation. We
could not use Level 3, as familiarization had no e↵ect on
the predictability of motion in situations from this level.
Furthermore, our pilot for this study (with 6 users) showed
no di↵erences between Level 1 and Level 2.
Dependent Measures. We evaluated comfort in two ways:
Objective Comfort. The robot was set in a Level 1 situ-
ation, in the starting configuration. The experimenter told
the users that the robot will move to reach for the target ob-
ject, and asked them to stand side-by-side with the robot,
as close as possible, but far enough away that they felt con-
fident that the arm would not hit them as it moves during
the reach (Fig.1).

We marked the floor with 18 marks, starting right next to
the robot and moving outward, placed every 5 inches (Fig.6).
We measured the distance (marker ID) from the user to the
robot.

Although indirect, this metric is of high practical rele-
vance for collaboration: we want users to be comfortable
enough to get close to the robot as it is working, in oder to
be able to do their own tasks simultaneously.
Subjective Comfort. We also directly asked users to indi-
cate (on a Likert scale from 1 to 7), their level of agreement
with the statement: “I would feel comfortable working side
by side with the robot on a close-proximity task like cleaning

up the dining room table.” (which we augmented with “if it
moved in the way I saw” after familiarization).
Subject Allocation. We used a mixed design. We kept
familiarization within-subjects, measuring improvement
in comfort before and after exposure to the robot’s motion.
However, naturalness was between-subjects, as each user
could only familiarize with one type of motion (to avoid
confusion and ordering e↵ects).

We recruited 16 users from the local community (9 female
and 7 male, with ages between 20 and 64, M = 36.68, SD =
16.6, with 7 reporting having a technical background).
Hypothesis. Familiarization significantly improves com-
fort with working next to the robot, as indicated by both the
objective and subjective metrics.

5.2 Analysis
We were very surprised by how comfortable users were

with the robot to begin with: with no prior knowledge of how
HERB moves, users stood only 33 inches from the robot’s
arm, while the arm could touch them even at 45 inches away.
A particularly trusting user stood only 20 inches away, which
makes it very di�cult for the robot to avoid them even when
it knows exactly where they are. Users also rated their com-
fort with the robot very highly (M = 6.52, SD = 0.61).

A factorial ANOVA showed a significant main e↵ect for
familiarization on our objective metric (F (1, 14) = 12.68,
p = .0031): in line with our hypothesis, users were willing
to stand closer to the robot after familiarization (M = 5.28,
SD = 1.49) than they were initially (M = 6.75, SD = 1.84)
– a di↵erence of 1.47⇥ 5 = 7.35 inches, indicating that:

Result 5. Familiarization can increase comfort with
working side-by-side with the robot.

We found no e↵ect of familiarization on our subjective
metric. The mean improved ever-so-slightly (M = 6.56,
SD = 0.51).

Although there was no significant e↵ect for naturalness,
the means for the objective metric reveal that users did
stand slightly further away in the unnatural condition. The
means very closely matched the actual safe distances (5.06
for the natural case, and 5.5 for the unnatural case) – users
were surprisingly good at estimating the correct spot on
which stand, on average.

However, this has an interesting side-e↵ect: familiariza-
tion made a lot of users over-trust the robot, in that it made
them stand too close to it (5 out of 8 in the natural condition,
and 3 out of 8 in the unnatural condition). Overall, famil-
iarization had a marginally significant e↵ect on whether
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users over-trusted the robot (�2(1, 32) = 3.56, p = .0592),
which could have a startling implication:

Less predictable motion might actually be safer in some
cases, in that it might prevent over-trusting the robot.

This echoes findings in the trust literature: unreliable be-
havior increases trust [8]. However, when the robot needs to
be conservative about safety (e.g., in the case of industrial
arms), this can be a desired e↵ect.

6. DISCUSSION AND LIMITATIONS
In this paper, we explored the e↵ects and limits of famil-

iarizing users to robot motion.
On the one hand, human adaptability would suggests that

users would have no issues adapting to any robot motion, as
long as it is consistent. We did find that motion becomes
more predictable after familiarization, at least when the fa-
miliarization process is presented as a learning task.

On the other hand, motion often lies in a complex, high-
dimensional space — a possible hindrance for the utility of
familiarization. We found that familiarization is not always
enough to enable users to identify the robot’s motion (de-
spite choosing among spatially di↵erent trajectories), and
that less natural motion reaches lower predictability levels.
Our data suggests that this limitation can not (at least not
always) be overcome by increasing the familiarization length:
familiarization can saturate.

Furthermore, our experiments used a pre-test, which could
prompt the users’ learning toward test situations, and inflate
the e↵ect of familiarization. Predictability after familiariza-
tion could be even lower than our measurements indicate.

Our results suggest that users are more comfortable (or
more trusting) with the robot after familiarization. How-
ever, this could be confounded by the users’ ability to make
the translation from the video space to which they familiar-
ize to the physical space in which they are tested.

Of all the factors that could a↵ect the utility of familiar-
ization, our experiments touched upon two: the naturalness
of motion, and the number of examples the robot gives the
users. Many other factors could impact familiarization: the
anthropomorphism of the robot (would users have a harder
time with less anthropomorphic robot?), the dimensionality
of the space (would they have an easier time with robots with
fewer DOF?), the convexity of the cost function the robot
optimizes (does non-convexity a↵ect humans as it does ma-
chines?), the breadth of examples (one task vs. many), as
well as the order or the examples. All of these make very
exciting questions for future research.

Although our studies were controlled and focused, they re-
vealed surprising limitations of familiarization. Given that
we made optimistic choices for the factors we did not manip-
ulate, aiding familiarizations, we expect to see similar limita-
tions when performing familiarization “in-the-wild”: famil-
iarization improves predictability, but the robot still faces
the challenge of producing good motion with which to fa-
miliarize.
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