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Abstract Our goal is to enable robots to produce motion
that is suitable for human–robot collaboration and co-
existence. Most motion in robotics is purely functional, ideal
when the robot is performing a task in isolation. In col-
laboration, however, the robot’s motion has an observer,
watching and interpreting the motion. In this work, we move
beyond functional motion, and introduce the notion of an
observer into motion planning, so that robots can generate
motion that is mindful of how it will be interpreted by a
human collaborator. We formalize predictability and legi-
bility as properties of motion that naturally arise from the
inferences in opposing directions that the observer makes,
drawing on action interpretation theory in psychology. We
propose models for these inferences based on the principle
of rational action, and derive constrained functional trajec-
tory optimization techniques for planning motion that is pre-
dictable or legible. Finally, we present experiments that test
our work on novice users, and discuss the remaining chal-
lenges in enabling robots to generate such motion online in
complex situations.
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1 Introduction

In this paper, we explore the problem where a robot and
a human are collaborating side by side to perform a tightly
coupled physical task together, like clearing a table (a running
example in our paper).

The task amplifies the burden on the robot’s motion. Most
motion in robotics is purely functional: industrial robots
move to package parts, vacuuming robots move to suck dust,
and personal robots move to clean up a dirty table. This type
of motion is ideal when the robot is performing a task in
isolation.

Collaboration, however, does not happen in isolation. In
collaboration, the robot’s motion has an observer, watching
and interpreting the motion.

In this work, we move beyond functional motion, and
introduce the notion of an observer and their inferences into
motion planning, so that robots can generate motion that is
mindful of how it will be interpreted by a human collaborator.

When we collaborate, we make two inferences (Fig. 1,
lower center) about our collaborator (Vesper et al. 2010;
Tomasello et al. 2004; Csibra and Gergely 2007): (1) we infer
their goal based on their ongoing action (action-to-goal), and
(2) if we know their goal, we infer their future action from it
(goal-to-action). Our work formalizes the two properties of
motion that enable these two inferences: predictability and
legibility.

Legibility stems from the first inference, and is about
conveying intent—moving in a manner that makes the
robot’s goal clear to observer. Predictability stems from
the second inference, and is about matching the observer’s
expectation—matching the motion they predict when they
know the robot’s goal.

Predictable and legible motion can be correlated. For
example, in an unambiguous situation, where an actor’s
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Fig. 1 Above A predictable and legible trajectory of a robot’s hand
for the same task of grasping the green object. Center Predictability
and legibility stem from inferences in opposing directions. Below The
legibility optimization process for a reaching task. By exaggerating to
the right, the robot is more clear about its intent to grasp the object on
the right

observed motion matches what is expected for a given intent
(i.e. is predictable), then this intent can be used to explain the
motion. If this is the only intent which explains the motion,
the observer can immediately infer the actor’s intent, mean-
ing that the motion is also legible. This is why we tend to
assume that predictability implies legibility—that if the robot
moves in an expected way, then its intentions will automati-
cally be clear (Beetz et al. 2010; Alami et al. 2006; Kruse et
al. 2012).

The writing domain, however, clearly distinguishes the
two. The word legibility, traditionally an attribute of written
text (Tinker et al. 1963), refers to the quality of being easy
to read. When we write legibly, we try consciously, and with
some effort, to make our writing clear and readable to some-
one else. The word predictability, on the other hand, refers
to the quality of matching expectation. When we write pre-
dictably, we fall back to old habits, and write with minimal
effort.

As a consequence, our legible and predictable writings
are different: our friends do not expect to open our diary
and see our legible writing style. They rightfully assume the
diary will be written for us, and expect our usual, day-to-
day style. In this paper, by formalizing predictability and
legibility as directly stemming from the two inferences in

opposing directions, goal-to-action and action-to-goal, we
show that the two are different in motion as well:

Predictability and legibility are fundamentally different
properties of motion, stemming from observer infer-
ences in opposing directions.

Ambiguous situations, occurring often in daily tasks,
make this opposition clear: more than one possible intent
can be used to explain the motion observed so far, rendering
the predictable motion illegible. Figure 1 (center) exempli-
fies the effect of this contradiction. The robot hand’s motion
on the left is predictable in that it matches expected behavior.
The hand reaches out directly towards the target. But, it is
not legible, failing to make the intent of grasping the green
object clear. In contrast, the trajectory on the right is more
legible, making it clear that the target is the green object by
deliberately bending away from the red object. But it is less
predictable, as it does not match the expected behavior of
reaching directly. We will show in Sects. 4 and 5 how we can
quantify this effect with Bayesian inference, which enables
us to derive the online probabilites of the motion reaching
for either object, illustrated as bar graphs in Fig. 1.

Our work makes the following contributions:

(1) We formalize legibility and predictability in the con-
text of goal-directed motion in Sect. 3 as stemming
from inferences in opposing directions. The formal-
ism emphasizes their difference, and directly relates to
the theory of action interpretation (Csibra and Gergely
2007) and the concepts of “action-to-goal” and “goal-
to-action” inference.

(2) Armed with mathematical definitions of legibility and
predictability, we propose a way in which a robot could
model these inferences in order to evaluate how legi-
ble or predictable a motion is (Sects. 4, 5). The models
are based on cost optimization, resonate with the prin-
ciple of rational action (Gergely et al. 1995; Csibra and
Gergely 1998), and echo earlier works on action under-
standing via inverse planning (Baker et al. 2009).

(3) We derive methods for generating predictable and legi-
ble motion. Although our model enables us to evaluate
how predictable or legible a motion trajectory is, it does
not enable us to generate trajectories that are predictable
or legible. Going from evaluation to generation means
going beyond modeling the observer’s goal inference,
to creating motion that results in the correct goal being
inferred, i.e. going from “I can tell that you believe I
am grasping this.”, to “I know how to make you believe
I am grasping this”. We do so via functional gradient
optimization in the space of motion trajectories, echo-
ing earlier works in motion planning (Quinlan 1994;
Brock and Khatib 2002; Toussaint 2009; Igel et al. 2005;
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Kalakrishnan et al. 2011; Todorov and Li 2005; Ratliff
et al. 2009; Zucker et al. 2013), now with optimization
criteria based on the observer’s inferences.

(4) We propose a method for optimizing for legibility while
still maintaining predictability. The ability to optimize
the legibility criterion leads us to a surprising obser-
vation: that there are cases in which the trajectory
becomes too unpredictable. As our user studies show
(Sect. 10.2), some unpredictability is often necessary to
convey intent—it is unpredictability beyond a thresh-
old (like the outermost trajectory in Fig. 4) that con-
fuses users and lowers their confidence in what the robot
is doing. We address this fundamental limitation by
prohibiting the optimizer to “travel to uncharted terri-
tory”, i.e. go outside of the region in which its assump-
tions have support—we call this a “trust region” of pre-
dictability.

(5) We test our work in two experiments with novice users,
one focused on the models, and the other on motion
generation. We demonstrate legibility and predictability
are contradictory not just in theory, but also in practice,
and follow-up with an analysis of the trade-off between
the two. We experiment with three characters that differ
in their complexity and anthropomorphism: a simulated
point robot, the bi-manual mobile manipulator HERB
(Srinivasa et al. 2012), and a human (Sect. 10).

Understanding and planning motion that is predictable or
legible can greatly enhance human–robot collaboration, but
many challenges remain in generating such motion online in
complex situations, and in deciding how to trade off between
the two properties in each situation. We discuss these in Sect.
11.

2 Relation to prior work

“Predictable” means “expected”, and is usually used to refer
to a desirable property of motion without needing additional
clarification (Beetz et al. 2010; Alami et al. 2006). “Leg-
ible”, on the other hand, is typically reserved for writing,
and appears in the robot motion literature accompanied by
an explanation: being legible means that observers are able
to recognize (Beetz et al. 2010), infer (Lichtenthäler et al.
2011), or understand (Kruse et al. 2012; Alami et al. 2006)
the intentions of the robot, or that robot indicates the goal
it will reach (Kruse et al. 2012)—overall, legibility is about
expressing intent. Building on this, we define predictabil-
ity and legibility as enabling inferences that the collaborator
needs to make, and propose trajectory optimization criteria
for the two.

One exception to using legibility to mean expressing intent
is a definition of legibility as both being intent-expressive
and matching expectation (Lichtenthäler and Kirsch 2013).
Our work, however, shows that matching expectation and
expressing intent are fundamentally different properties that
can at times contradict.

Existing methods for generating legible motion fall
in three categories. (1) increasing legibility indirectly by
increasing predictability (e.g. via learning from demonstra-
tion) (Beetz et al. 2010); (2) increasing legibility indirectly
by increasing visibility to the observer (Jim Mainprice et
al. 2010; Alami et al. 2006); and (3) increasing legibility
directly by encoding animation principles like anticipation
in the motion (Gielniak and Thomaz 2011; Takayama et al.
2011).

In contrast, our work explicitly formalizes intent-expres-
siveness for goal-direct motion in the form of a trajectory
optimization criterion: rather than targeting a related prop-
erty, the robot directly maximizes the probability of the cor-
rect intent being inferred. The resulting motion can be inter-
preted using animation principles, but we do not encode these
explicitly—instead, they emerge out of the mathematics of
legible motion.

3 Formalizing legibility and predictability

In common use, legible motion is intent-expressive, and pre-
dictable motion matches what is expected. Here, we for-
malize these definitions for the context of goal-directed
motion, where a human or robot is executing a trajectory
ξ : [0, 1] → Q, lying in a Hilbert space of trajectories �. ξ

starts at a configuration S and ends at a goal G from a set of
possible goals G, like in Fig. 1. In this context, G is central
to both properties:

Definition 1 Legible motion is motion that enables an
observer to quickly and confidently infer the correct goal
G.

Definition 2 Predictable motion is motion that matches what
an observer would expect, given the goal G.

3.1 Formalism

3.1.1 Legibility

Imagine an observer watching the orange trajectory from
Fig. 1. As the robot’s hand departs the starting configura-
tion and moves along the trajectory, the observer is running
an inference, predicting which of the two goals it is reaching
for. We denote this inference function that maps (snippets of)
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Table 1 Legibility and predictability as enabling inferences from action interpretation in opposing direction

Human inference type Example Analogy in motion Property of motion

action �→ goal . . . pour beans in grinder �→ coffee ξS→Q �→ G legibility

goal �→ action coffee �→ . . . pour beans in grinder . . . G �→ ξS→G predictability

trajectories from all trajectories � to goals as

IL : � → G

The bar graphs next to the hands in Fig. 1 signify the
observer’s predictions of the two likely goals. At the very
beginning, the trajectory is confusing and the observer has
little confidence in the inference—in what follows, we model
this confidence based on the probability that the observer
assigns to the inferred goal. However, the observer becomes
confident very quickly—even from the second configuration
of the hand along the trajectory, it becomes clear that the
green object is the target. This quick and confident inference
is the hallmark of legibility.

We thus formalize legible motion as motion that enables an
observer to confidently infer the correct goal configuration G
after observing only a snippet of the trajectory, ξS→Q , from
the start S to the configuration at a time t , Q = ξ(t):

IL(ξS→Q) = G

The quicker this happens (i.e. the smaller t is), the more
legible the trajectory is.

The definition in terms of IL is an interpretation in the
motion domain for terms like “readable” (Takayama et al.
2011), or “understandable” (Alami et al. 2006), and encour-
ages “anticipatory” motion (Gielniak and Thomaz 2011)
because it brings the relevant information for goal predic-
tion towards the beginning of the trajectory, thus lowering
t . The formalism can also generalize to outcome-directed
motion (e.g. gestures such as pointing at, waving at, etc.)
by replacing the notion of goal with that of an outcome—
here, legible motion becomes motion that enables quick and
confident inference of the desired outcome. Our recent work
illustrated this for pointing gestures (Holladay et al. 2014).

3.1.2 Predictability

Now imagine someone knowing that the hand is reaching
towards the green goal. Even before the robot has moved,
the observer creates an expectation, making an inference on
how the hand will move—for example, that the hand will
start turning towards the green object as it is moving directly
towards it. We denote this inference function mapping goals
to trajectories as

IP : G → �

We formalize predictable motion as motion for which the
trajectory ξS→G matches this inference:

IP (G) = ξS→G

The better the actual trajectory matches the inference, mea-
surable for example using a distance metric between IP (G)

and ξS→G , the more predictable the trajectory is.

3.2 Connection to action interpretation in psychology

A growing amount of research in psychology suggests that
humans interpret observed behaviors as goal-directed actions
(Woodward 1998; Sodian and Thoermer 2004; Hauf and
Prinz 2005; Phillips and Wellman 2005; Csibra and Gergely
2007; Carter et al. 2011; Wiese et al. 2012), a result sup-
ported by studies observing infants and how they show sur-
prise when exposed to inexplicable action–goal pairings. Csi-
bra and Gergeley (2007) summarize two types of inference
stemming from the interpretation of actions as goal directed:
“action-to-goal” and “goal-to-action”.

“Action-to-goal” refers to an observer’s ability to infer
someone’s goal state from their ongoing actions (e.g. because
they are pouring coffee beans into the grinder, the will eventu-
ally hold a cup of coffee). “Action-to-goal” inference answers
the question “What is the function of this action?”.

“Goal-to-action” refers to an observer’s ability to predict
the actions that someone will take based on their goal (e.g.
because they want to make coffee, they will will pour coffee
beans into the grinder). “Goal-to-action” inference answers
the question “What action would achieve this goal?”.

This has a natural connection to our formalism. In goal-
directed motion, actions are trajectories and goals are goal
configurations. Thus the inference occurring in legibility,
from trajectory to goal, ξS→Q �→ G, relates naturally to
“action-to-goal” inference. Likewise, the inference occurring
in predictability, from goal to trajectory, G �→ ξS→G , relates
naturally to “goal-to-action”.

3.3 Summary

Our formalism emphasizes the difference between legibility
and predictability in theory: they stem from inferences in
opposing directions (from trajectories to goals vs. from goals
to trajectories), with strong parallels in the theory of action
interpretation. Table 1 shows a summary.
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(G) = argmin
S G

C[ ] ( S Q ) = argmax
G

P(G | S

(G)
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Fig. 2 Our models for IP and IL : the observer expects the robot’s motion to optimize a cost function C (IP , left), and identifies based on C which
goal is most probable given the robot’s motion so far (IL , right)

In what follows, we introduce one way for a robot to model
these two inferences (summarized in Fig. 2), derive motion
generating algorithms based on this model, and present
experiments that emphasize the difference between the two
properties in practice.

4 Predictable motion

4.1 Modeling the trajectory inference IP

To model IP is to model the observer’s expectation. One way
the robot could do so is by assuming that the human observer
expects it to be a rational agent acting efficiently (Csibra and
Gergely 2007) or justifiably (Csibra and Gergely 1998) to
achieve a goal. This is known as the principle of rational
action (Gergely et al. 1995; Csibra and Gergely 1998), and
it has been shown to apply to non-human agents, including
robots (Kamewari et al. 2005). The robot can model this
notion of “efficiency” via a cost function defining what it
means to be efficient. For example, if the observer expected
the robot’s hand to move directly towards the object it wants
to grasp (as opposed to taking an unnecessarily long path to
it), then “efficiency” would be defined by the cost function
penalizing the trajectory’s length.

Throughout this paper, we will refer to the cost function
modeling the observer’s expectation as C :

C : � → R
+

with lower costs signifying more “efficient” trajectories. The
principle of rational action suggests that the most predictable
trajectory is the most “efficient”, for some definition of effi-
ciency C :

IP (G) = arg min
ξ∈�S→G

C[ξ ] (1)

C represents what the observer expects the robot to
optimize, and therefore encompasses every aspect of the
observer’s expectation, including (when available) body
motion, hand motion, arm motion, and gaze.

4.2 Predictability score

Predictability can be evaluated based on C : the lower the cost,
the more predictable (expected) the trajectory. We propose a
predictability score normalized from 0 to 1, where trajecto-
ries with lower cost are exponentially more predictable (fol-
lowing the principle of maximum entropy, which we detail
in Sect. 5.1):

Predictability(ξ) = exp
(−C[ξ ]) (2)

4.3 Generating predictable motion

Generating predictable motion means maximizing the pre-
dictability score, or equivalently minimizing the cost func-
tion C—as in (1).

One way to do so is via functional gradient descent. We
start from an initial trajectory ξ0 and iteratively improve its
score. At every iteration i , we maximize the regularized first
order Taylor series approximation of C about the current
trajectory ξi :

ξi+1 = arg min
ξ∈�

C[ξi ] + ∇CT
ξi
(ξ − ξi ) + η

2
||ξ − ξi ||2M (3)

with η
2 ||ξ − ξi ||2M a regularizer restricting the norm of the

displacement ξ − ξi w.r.t. an M , as in Ratliff et al. (2009).
By taking the functional gradient of (12) and setting it to

0, we obtain the following update rule for ξi+1:

ξi+1 = ξi − 1

η
M−1∇̄C (4)

Recent work has successfully applied this method to
motion planning, using a C that trades off between an effi-
ciency and an obstacle avoidance component (Zucker et al.
2013). The non-convexity of this type of C makes trajectory
optimization prone to convergence to high-cost local minima,
which can be mediated by learning from experience (Dragan
et al. 2011; Dey et al. 2012).

A key challenge, which we discuss in Sect. 11, is finding
the C that each observer expects the robot to minimize.
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5 Legible motion

5.1 Modeling the goal inference IL

To model IL is to model how the observer infers the goal
from a snippet of the trajectory ξS→Q . One way to do so is
by assuming that the observer compares the possible goals
in the scene in terms of how probable each is given ξS→Q .
This is supported by action interpretation: Csibra and Gerge-
ley (2007) argue, based on the principle of rational action,
that humans assess which end state would be most efficiently
brought about by the observed ongoing action. Taking trajec-
tory length again as an example for the observer’s expecta-
tion, this translates to predicting a goal because ξS→Q moves
directly toward it and away from the other goals, making them
less probable.

One model for IL is to compute the probability for each
goal candidate G and to choose the most likely:

IL(ξS→Q) = arg max
G∈G

P(G|ξS→Q) (5)

To compute this probability, we start with Bayes’ Rule:

P(G|ξS→Q) ∝ P(ξS→Q |G)P(G) (6)

where P(G) is a prior on the goals which can be uniform in
the absence of prior knowledge, and P(ξS→Q |G) is the prob-
ability of seeing ξS→Q when the robot targets goal G. The
is in line with the notion of action understanding as inverse
planning proposed by Baker et al. (2009), here P(ξS→Q |G)

relating to the forward planning problem of finding a trajec-
tory given a goal.

We compute P(ξS→Q |G) as the ratio of all trajectories
from S to G that pass through ξS→Q to all trajectories from
S to G (Fig. 3):

P(ξS→Q |G) =
∫
ξQ→G

P(ξS→Q→G)
∫
ξS→G

P(ξS→G)
(7)

Following Ziebart et al. (2008), we assume trajectories are
separable, i.e. P(ξX→Y→Z ) = P(ξX→Y )P(ξY→Z ), giving
us:

P(ξS→Q |G) =
P(ξS→Q)

∫
ξQ→G

P(ξQ→G)
∫
ξS→G

P(ξS→G)
(8)

At this point, the robot needs a model of how probable a
trajectory ξ is in the eye of an observer. The observer expects
the trajectory of minimum cost under C . It is unlikely, how-
ever, that they would be completely surprised (i.e. assign 0
probability) by all other trajectories, especially by one ever so

Fig. 3 ξS→Q in black, examples of ξQ→G in blue, and further examples
of ξS→G in purple. Trajectories more costly w.r.t. C are less probable
(Color figure online)

slightly different. One way to model this is to make subopti-
mality w.r.t. C still possible, but exponentially less probable,
i.e. P(ξ) ∝ exp

(−C[ξ ]), adopting the principle of maxi-
mum entropy (Ziebart et al. 2008). With this, (8) becomes:

P(ξS→Q |G) ∝
exp

(−C[ξS→Q]) ∫
ξQ→G

exp
(−C[ξQ→G])

∫
ξS→G

exp
(−C[ξS→G])

(9)

Computing the integrals is still challenging. In Dragan
and Srinivasa (2012), we derived a solution by approximat-
ing the probabilities using Laplace’s method (also proposed
independently in Levine and Koltun (2012)). If we approxi-
mate C as a quadratic, its Hessian is constant and according
to Lapace’s method,
∫

ξX→Y

exp
(−C[ξX→Y ]) ≈ kexp

(−C[ξ∗
X→Y ])

(with k a constant and ξ∗
X→Y the optimal trajectory from X

to Y w.r.t. C). Plugging this into (9) and using (6) we get:

P(G|ξS→Q) = 1

Z

exp
(−C[ξS→Q] − VG(Q)

)

exp
(−VG(S)

) P(G R) (10)

with Z a normalizer across G and VG(q) = minξ∈�q→G C[ξ ]
Much like teleological reasoning suggests (Csibra and

Gergely 2007), this evaluates how efficient (w.r.t. C) going
to a goal is through the observed trajectory snippet ξS→Q

relative to the most efficient (optimal) trajectory, ξ∗
S→G . In

ambiguous situations like the one in Fig. 1, a large portion of
ξ∗

S→G is also optimal (or near-optimal) for a different goal,
making both goals almost equally likely along it. This is why
legibility does not also optimize C—rather than matching
expectation, it manipulates it to convey intent.
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Fig. 4 The trajectory optimization process for legibility: the figure
shows the trajectories across iterations for a situation with a start and
two candidate goals

5.2 Legibility score

A legible trajectory is one that enables quick and confident
predictions. A score for legibility therefore tracks the prob-
ability assigned to the actual goal G∗ across the trajectory:
trajectories are more legible if this probability is higher, with
more weight being given to the earlier parts of the trajectory
via a function f (t) (e.g. f(t)=T-t, with T the duration of the
trajectory):

legibility(ξ) =
∫

P(G∗|ξS→ξ(t)) f (t)dt
∫

f (t)dt
(11)

with P(G∗|ξS→ξ(t)) computed using C , as in (10).

5.3 Generating legible motion

In order to maximize the Legibility functional,
we start from an initial trajectory ξ0 and iteratively

improve its score via functional gradient ascent (Fig. 4). This
process is analogous to generating predictable motion, now
with a different optimization criterion:

ξi+1 = arg max
ξ

Legibility[ξi ] + 〈∇̄Legibility, (ξ − ξi )〉

− η

2
||ξ − ξi ||2M (12)

By taking the functional gradient of (12) and setting it to
0, we obtain the following update rule for ξi+1:

ξi+1 = ξi + 1

η
M−1∇̄Legibility (13)

To find ∇̄Legibility, let P(ξ(t), t) = P(G R |ξS→ξ(t)) f (t)
and K = 1∫

f (t)dt
. The legibility score is then

Legibility[ξ ] = K
∫

P(ξ(t), t)dt (14)

and

∇̄Legibility = K

(
∂P
∂ξ

− d

dt

∂P
∂ξ ′

)
(15)

P is not a function of ξ ′, thus d
dt

δP
δξ ′ = 0.

δP
δξ

(ξ(t), t) = g′h − h′g
h2 P(G R) f (t) (16)

with g=exp
(
VG R (S) − VG R (Q)

)
and h = ∑

G exp
(
V

)
G(S)

−VG(Q), which after a few simplifications becomes

∂P
∂ξ

(ξ(t), t)= exp
(
VG R (S)−VG R (ξ(t))

)

(∑
G exp

(
VG(S)−VG(ξ(t))

))2

∑

G

(
exp

(−VG(ξ(t))
)

exp
(−VG(S)

) (V ′
G(ξ(t))−V ′

G R
(ξ(t)))

)

P(G R) f (t)

(17)

Finally,

∇̄Legibility(t) = K
∂P
∂ξ

(ξ(t), t) (18)

with ∂P
∂ξ

(ξ(t), t) from (17).

6 Example

Figure 4 portrays the functional optimization process for leg-
ibility for a point robot moving from a start location to one
of two candidate goals.

6.1 Parameters

We detail our choice of parameters for creating this example
below.

Efficiency cost C In this example, we use sum squared
velocities as the cost functional C capturing the user’s expec-
tation:

C[ξ ] = 1

2

∫
ξ ′(t)2dt (19)

This cost, frequently used to encourage trajectory smooth-
ness (Ratliff et al. 2009), produces trajectories that reach
directly toward the goal—this is the predictable trajectory,
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shown at iteration 0. Our experiments below show that this
trajectory geometry is accurate for 2D robots like in Fig. 4.
This C also allows for an analytical VG and its gradient.

Trajectory initialization We set ξ0 = arg minξ C[ξ ]: we
initialize with the most predictable trajectory, treating C as
a prior.

Trajectory parametrization We parametrize the trajectory
as a vector of waypoint configurations.

Norms w.r.t M . We use the Hessian of C for M . As a
result, the update rule in (4) and (13) propagates local gradi-
ent changes linearly to the rest of the trajectory.

6.2 Interpretation

The predictable trajectory (iteration 0) is efficient for achiev-
ing the goal, but it is not the best at helping an observer
distinguish which goal the robot is targeting from the begin-
ning. By exaggerating the motion to the right, the robot is
increasing the probability of the goal on the right relative to
the one on the left.

Exaggeration is one of the 12 principles of animation
(Thomas et al. 1995). However, nowhere did we inform the
robot of what exaggeration is and how it might be useful for
legibility. The behavior elegantly emerged out of the opti-
mization.

7 The unpredictability of legibility

The example leads to a surprising observation: in some cases,
by optimizing the Legibility functional, one can become
arbitrarily unpredictable.

Proof Our gradient derivation in (17) enables us to construct
cases in which this occurs. In a two-goal case like in Fig. 4,
with our example C from (19), the gradient for each trajec-
tory configuration points in the direction G R − G O and has
positive magnitude everywhere but at ∞, where C[ξ ] = ∞.
Figure 5 (red) plots C across iterations. �

The reason for this peculiarity is that the model for how
observers make inferences in (5) fails to capture how humans
make inferences in highly unpredictable situations. In reality,
observers might get confused by the robot’s behavior and stop
reasoning about the robot’s possible goals the way the model
assumes they would—comparing the sub-optimality of its
actions with respect to each of them. Instead, they might start
believing that the robot is malfunctioning (Short et al. 2010)
or that it is not pursuing any of the goals and doing something
else entirely—this is supported by our user study in Sect.
10.2, which shows that this belief significantly increases at
higher C costs.

This complexity of action interpretation in humans, which
is difficult to capture in a goal prediction model, can signif-
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Fig. 5 The predictable trajectory in gray, and the legible trajectories
for different trust region sizes in orange. On the right, the cost C over the
iterations in the unconstrained case (red) and constrained case (green)
(Color figure online)

icantly affect the legibility of the generated trajectories in
practice. Optimizing the legibility score outside of a certain
threshold for predictability can actually lower the legibility of
the motion as measured with real users (as it does in our study
in Sect. 10.2). Unpredictability above a certain level can also
be detrimental to the collaboration process in general (Alami
et al. 2006; Heinzmann and Zelinsky 1999; Nikolaidis and
Shah 2012).

We propose to address these issues by only allowing opti-
mization of legibility where the model holds, i.e. where pre-
dictability is sufficiently high. We call this a “trust region” of
predictability — a constraint that bounds the domain of tra-
jectories, but that does so w.r.t. the cost functional C , resulting
in C[ξ ] ≤ β:

The legibility model can only be trusted inside this trust
region

The parameter β, as our study will show, is identifiable by
its effect on legibility as measured with users—the point at
which further optimization of the legibility functional makes
the trajectory less legible in practice.

8 Constrained legibility optimization

In order to prevent the legibility optimization from producing
motion that is too unpredictable, we define a trust region
of predictability, constraining the trajectory to stay below a
maximum cost in C during the optimization in (12):

ξi+1 = arg max
ξ

Legibility[ξi ] + ∇̄LegibilityT (ξ − ξi )

− η

2
||ξ − ξi ||2M

s.t. C[ξ ] ≤ β (20)
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To solve this, we linearize the constraint, which now
becomes ∇̄CT (ξ − ξi ) + C[ξi ] ≤ β. The Lagrangian is

L[ξ, λ] = Legibility[ξi ] + ∇̄LegibilityT (ξ − ξi ) (21)

− η
2 ||ξ − ξi ||2M + λ(β − ∇̄CT (ξ − ξi ) − C[ξi ])

with the following KKT conditions:

∇̄Legibility − ηM(ξ − ξi ) − ∇̄Cλ = 0 (22)

λ(β − ∇̄CT (ξ − ξi ) − C[ξi ]) = 0 (23)

λ ≥ 0 (24)

C[ξ ] ≤ β (25)

8.1 Inactive constraint

λ = 0 and

ξi+1 = ξi + 1

η
M−1∇̄Legibility (26)

8.2 Active constraint

The constraint becomes an equality constraint on the trajec-
tory. The derivation for ξi+1 is analogous to Dragan et al.
(2011), using the Legibility functional as opposed to the
classical cost used by the CHOMP motion planer (Ratliff et
al. 2009). From (22)

ξi+1 = ξi + 1

η
M−1 (∇̄Legibility − λ∇̄C)︸ ︷︷ ︸

∇̄(Legibility−λC)

(27)

Note that this is the functional gradient of Legibility with an
additional (linear) regularizer λC penalizing unpredictabil-
ity. Substituting in (23) to get the value for λ and using (22)
again, we obtain a new update rule:

ξi+1 = ξi + 1
η

M−1∇̄Legibility −
1

η
M−1∇̄C(∇̄CT M−1∇̄C)−1∇̄CT M−1∇̄Legibility

︸ ︷︷ ︸
projectionon∇̄CT (ξ−ξi )=0

−

M−1∇̄C(∇̄CT M−1∇̄C)−1(C[ξi ] − β)
︸ ︷︷ ︸

of f set correction to ∇̄CT (ξ−ξi )+C[ξi ]=β

(28)

Figure 5 shows the outcome of the optimization for various
β values. In our second experiment below, we analyze what
effect β has on the legibility of the trajectory in practice, as
measured through users observing the robot’s motion.

9 Understanding legible trajectories

Armed with a legible motion generator, we investigate legi-
bility further, looking at factors that affect the final trajecto-
ries.

9.1 Ambiguity

Certain scenes are more ambiguous than others, in that the
legibility of the predictable trajectory is lower. The more
ambiguous a scene is, the greater the need to depart from
predictability and exaggerate the motion. Figure 6a com-
pares two scenes, the one on the right being more ambigu-
ous by having the candidate goals closer and thus making it
more difficult to distinguish between them. This ambiguity is
reflected in its equivalent legible trajectory (both trajectories
are obtained after 1,000 iterations). The figure uses the same
cost C from Sect. 6.

9.2 Scale

The scale does affect legibility when the value functions
VG are affected by scale, as in our running example. Here,
reaching somewhere closer raises the demand on legibility
(Fig. 6b). Intuitively, the robot could still reach for G O and
suffer little penalty compared to a larger scale, which puts
an extra burden on its motion if it wants to institute the same
confidence in its intent.

9.3 Weighting in time

The weighting function f (11) qualitatively affects the shape
of the trajectory by placing the emphasis (or exaggeration)
earlier or later (Fig. 6c).

9.4 Multiple goals

Although for simplicity, our examples so far were focused
on discriminating between two goals, legibility does apply
in the context of multiple goals (Fig. 8a). Notice that for
the goal in the middle, the most legible trajectory coincides
with the predictable one: any exaggeration would lead an
observer to predict a different goal—legibility is limited by
the complexity in the scene.

9.5 Obstacle avoidance

In the presence of obstacles in the scene, a user would expect
the robot to stay clear of these obstacles, which makes C
more complex. We plot in Fig. 7 an example using the cost
functional from the CHOMP motion planner (Ratliff et al.
2009), which trades off between the sum-squared velocity
cost we have been using thus far, and a cost penalizing the
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Fig. 6 The effects of ambiguity, scale, and the weighting function f on legibility. a Ambiguity, b scale, c f

Fig. 7 Legibility given a C that accounts for obstacle avoidance. The
gray trajectory is the predictable trajectory (minimizing C), and the
orange trajectories are obtained via legibility optimization for 10, 102,

103, 104, and 105 iterations. Legibility purposefully pushes the trajec-
tory closer to the obstacle than expected in order to express the intent
of reaching the goal on the right (Color figure online)

robot from coming too close to obstacles. Legibility in this
case will move the predictable trajectory much closer to the
obstacle in order to disambiguate between the two goals.

9.6 Local optima

There is no guarantee that Legibility is concave. This is
clear for the case of a non-convex C , where we often see
different initializations lead to different local maxima, as in
Fig. 8b.

In fact, even for quadratic VGs, P(G R |ξS→Q) is – aside
from scalar variations–a ratio of sums of Gaussian functions
of the form exp

(−VG(ξ(t))
)
. Convergence to local optima is

thus possible even in this simple case.
As a side-effect, it is also possible that initializing the

optimizer with the most predictable trajectory leads to con-
vergence to a local maxima.

10 From theory to practice

Predictability and legibility are intrinsically properties that
depend on the observer: a real user. Here, we go from the
theory of the two properties to what happens in practice,
when novice users observe motion.

(a) (b)

Fig. 8 a Legible trajectories for multiple goals. b Legibility is depen-
dent on initialization a [multiple goals], b [initialization]

We present two studies. The first tests our models for pre-
dictability and legibility: it tests whether a trajectory that is
more legible but less predictable according to our theoretical
scores is also more legible but less predictable to an observer.

The second study tests the motion generation: it tests the
notion of optimizing for legibility within a trust region of
predictability.

10.1 The contradiction between predictability and legibility

The mathematics of predictability and legibility imply that
being more legible can mean being less predictable and vice-
versa. We set out to verify that this is also true in practice,
when we expose subjects to robot motion. We ran an experi-
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Fig. 9 The trajectories for each character

ment in which we evaluated two trajectories – a theoretically
more predictable one ξP and a theoretically more legible
one ξL – in terms of how predictable and legible they are to
novices.

Hypothesis There exist two trajectories ξL and ξP for the
same task such that ξP is more predictable than ξL and ξL is
more legible than ξP .

10.1.1 Task

We chose a task like the one in Fig. 1: reaching for one of two
objects present in the scene. The objects were close together
in order to make this an ambiguous task, in which we expect
a larger difference between predictable and legible motion.

Fig. 10 The end effector trace for the HERB predictable (gray) and
legible (orange) trajectories (Color figure online)

10.1.2 Manipulated variables

Character We chose to use three characters for this task—
a simulated point robot, a bi-manual mobile manipulator
named HERB (Srinivasa et al. 2012), and a human—because
we wanted to explore the difference between humans and
robots, and between complex and simple characters.

Trajectory We designed (and recorded videos of) tra-
jectories ξP and ξL for each of the characters such that
Predictability(ξP ) > Predictability(ξL) according to
(2), but Legibility(ξP) < Legibility(ξL) according to (11)
(evaluated based on the parameters from Sect. 6.1 (Fig. 9)

We describe below several steps we took to eliminate
potential confounds and ensure that the effects we see are
actually due to the theoretical difference in the score.

With the HERB character, we controlled for effects of
timing, elbow location, hand aperture and finger motion by
fixing them across both trajectories. For the orientation of
the wrist, we chose to rotate the wrist according to a profile
that matches studies on natural human motion (Lacquaniti
and Soechting 1982; Fan et al. 2006), during which the wrist
changes angle more quickly in the beginning than it does
at the end of the trajectory. Figure 10 plots the end effector
trace for the HERB trajectories: the gray one has a larger
predictability score (0.54 > 0.42), while the orange one has
a higher legibility score (0.67 > 0.63).

With the human character, we used a natural reach for the
predictable trajectory, and we used a reach that exaggerates
the hand position to the right for the legible trajectory (much
like with HERB or the point robot). We cropped the human’s
head from the videos to control for gaze effects.

We slowed down the videos to control for timing effects.

10.1.3 Dependent measures

Predictability Predictable trajectories match the observer’s
expectation. To measure how predictable a trajectory is, we
showed subjects the character in the initial configuration and
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asked them to imagine the trajectory they expect the charac-
ter will take to reach the goal. We then showed them the video
of the trajectory and asked them to rate how much it matched
the one they expected, on a 1-7 Likert scale. To ensure that
they take the time to envision a trajectory, we also asked them
to draw what they imagined on a two-dimensional represen-
tation of the scene before they saw the video. We further
asked them to draw the trajectory they saw in the video as an
additional comparison metric.

Legibility Legible trajectories enable quick and confident
goal prediction. To measure how legible a trajectory is, we
showed subjects the video of the trajectory and told them to
stop the video as soon as they knew the goal of the character.
We recorded the time taken and the prediction.

10.1.4 Subject allocation

We split the experiment into two sub-experiments with dif-
ferent subjects: one about measuring predictability, and the
other about measuring legibility.

For the predictability part, the character factor was
between-subjects because seeing or even being asked about
trajectories for one character can bias the expectation for
another. However, the trajectory factor was within-subjects
in order to enable relative comparisons on how much each
trajectory matched expectation. This lead to three subject
groups, one for each character. We counter-balanced the order
of the trajectories within a group to avoid ordering effects.

For the legibility part, both factors were between-subjects
because the goal was the same (further, right) in all condi-
tions. This leads to six subject groups.

We recruited a total of 432 subjects (distributed approxi-
mately evenly between groups) through Amazon’s Mechan-
ical Turk, all from the United States and with approval rates
higher than 95 %. To eliminate users that do not pay attention
to the task and provide random answers, we added a control
question, e.g. “What was the color of the point robot?” and
disregarded the users who gave wrong answers from the data
set.

10.1.5 Analysis

Predictability In line with our hypothesis, a factorial ANOVA
revealed a significant main effect for the trajectory: subjects
rated the predictable trajectory ξP as matching what they
expected better than ξL , F(1, 310) = 21.88, p < .001,
with a difference in the mean rating of 0.8, but small effect
size (η2=.02). The main effect of the character was only
marginally significant, F(2, 310) = 2, 91, p = .056. The
interaction effect was significant however, with F(2, 310) =
10.24, p < .001. The post-hoc analysis using Tukey correc-
tions for multiple comparisons revealed, as Fig. 11a shows,
that our hypothesis holds for the point robot (adjusted p <

.001) and for the human (adjusted p = 0.28), but not for
HERB.

The trajectories the subjects drew confirm this (Fig. 12):
while for the point robot and the human the trajectory they
expected is, much like the predictable one, a straight line, for
HERB the trajectory they expected splits between straight
lines and trajectories looking more like the legible one.

For HERB, ξL was just as (or even more) predictable
than ξP . We conducted an exploratory follow-up study with
novice subjects from a local pool (with no technical back-
ground) to help understand this phenomenon. We asked them
to describe the trajectory they would expect HERB to take
in the same scenario, and asked them to motivate it. Surpris-
ingly, all 5 subjects imagined a different trajectory, motivat-
ing it with a different reason.

Two subjects thought HERB’s hand would reach from the
right side because of the other object: one thought HERB’s
hand is too big and would knock over the other object, and the
other thought the robot would be more careful than a human.
This brings up an interesting possible correlation between
legibility and obstacle avoidance. However, as Fig. 7 shows,
a legible trajectory still exaggerates motion away from the
other candidate objects even in if it means getting closer to
a static obstacle.

Another subject expected HERB to not be flexible enough
to reach straight towards the goal in a natural way, like a
human would, and thought HERB would follow a trajectory
made out of two straight line segments joining on a point on
the right. She expected HERB to move one joint at a time.
We often saw this in the drawn trajectories with the original
set of subjects as well (Fig. 12, HERB, Expected).

The other subjects came up with interesting strategies: one
thought HERB would grasp the bottle from above because
that would work better for HERB’s hand, while the other
thought HERB would use the other object as a prop and push
against it in order to grasp the bottle.

Overall, that ξP was not more predictable than ξL despite
what the theory suggested because the cost function we
assumed did not correlate to the cost function the subjects
actually expected. What is more, every subject expected a
different cost function, indicating that a predictable robot
would have to adapt to the particulars of a human observer.

Legibility We collected from each subject the time at
which they stopped the trajectory and their guess of the goal.
Figure 11b (above) shows the cumulative percent of the total
number of subjects assigned to each condition that made a
correct prediction as a function of time along the trajectory.
With the legible trajectories, more of the subjects tend to
make correct predictions faster.

To compare the trajectories statistically, we unified time
and correctness into a typical score inspired by the Guttman
structure (e.g. Bergersen et al. 2011): guessing wrong gets a
score of 0, and guessing right gets a higher score if it happens
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(a) (b)

Fig. 11 a Ratings (on Likert 1–7) of how much the trajectory matched
the one the subject expected. Error bars represent standard error on
the mean. b Cumulative number of users that responded and were cor-

rect (above) and the approximate probability of being correct (below)
a [predictability rating], b [legibility measures]

Fig. 12 The drawn trajectories for the expected motion, for ξP (pre-
dictable), and for ξL (legible)

earlier. A factorial ANOVA predicting this score revealed, in
line with our hypothesis, a significant effect for trajectory:
the legible trajectory had a higher score than the predictable

one, F(1, 241) = 5.62, p = .019. The means were 6.75 and
5.73, much higher than a random baseline of making a guess
independent of the trajectory at uniformly distributed time,
which would result in a mean of 2.5—the subjects did not
act randomly. The effect size was small, η2 = .02. No other
effect in the model was significant.

Although a standard way to combine timing and correct-
ness information, this score rewards subjects that gave an
incorrect answer 0 reward. This is equivalent to assuming
that the subject would keep making the incorrect prediction.
However, we know this not to be the case. We know that
at the end (time T ), every subject would know the correct
answer. We also know that at time 0, subjects have a prob-
ability of 0.5 of guessing correctly. To account for that, we
computed an approximate probability of guessing correctly
given the trajectory so far as a function of time—see Fig. 11b
(below). Each subject’s contribution propagates (linearly) to
0.5 at time 0 and 1 at time T. The result shows that indeed,
the probability of making a correct inference is higher for the
legible trajectory at all times.

This effect is strong for the point robot and for HERB,
and not as strong for the human character. We believe that
this might be a consequence of the strong bias humans have
about human motion—when a human moves even a little
unpredictably, confidence in goal prediction drops. This is
justified by the fact that subjects did have high accuracy when
they responded, but responded later compared to other condi-
tions. Thus, legible human trajectories would need a stronger
emphasis on optimality w.r.t. C (i.e. smaller trust region para-
meter β in (20)).
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10.1.6 Interpretation

Overall, the results do come in partial support of formalism:
legible trajectories were more legible for all characters, and
predictable trajectories were more predictable for two out
of the three characters (not for HERB). However, the effect
sizes were small, mainly pointing to the challenge of finding
the right cost C for each observer.

10.2 The trust region

So far, we manipulated legibility using two levels. In this
section, we test our legibility motion planner, as well as our
theoretical notion of a trust region, by analyzing the legi-
bility in practice as the trajectory becomes more and more
legible according to our formalism. If our assumptions are
true, then by varying β ∈ [βmin, βmax ], we expect to find that
an intermediate value β∗ produces the most legible result:
much lower than β∗ and the trajectory does not depart pre-
dictability enough to convey intent, much higher and the tra-
jectory becomes too unpredictable, confusing the users and
thus actually having a negative impact on legibility.

Hypothesis
H1 The size of the trust region, β, has a significant effect

on legibility.
H2 Legibility will significantly increase with β at first,

but start decreasing at some large enough β.

10.2.1 Manipulated variables

We manipulated β, selecting values that grow geometrically
(with scalar 2) starting at 10 and ending at 320, a value we
considered high enough to either support or contradict the
expected effect. We also tested β = minξ C[ξ ], which allows
for no additional legibility and thus produces the predictable
trajectory (we denote this as β = 0 for simplicity). We cre-
ated optimal trajectories for each β for the point robot char-
acter.

10.2.2 Dependent measures

We measured the legibility of the seven trajectories in the
same way as before, combining the time and correctness into
a Guttman score as in the Analysis for the previous experi-
ment. We used slow videos (28s) to control for response time
effects.

10.2.3 Subject allocation

We chose a between-subjects design in order to not bias the
users with trajectories from previous conditions. We recruited
320 participants through Amazon’s Mechanical Turk service,
and took several measures to ensure reliability of the results.

All participants were located in the USA to avoid language
barriers, and they all had an approval rate of over 95 %. We
asked all participants a control question that tested their atten-
tion to the task, and eliminated data associated with wrong
answers to this question, as well as incomplete data, resulting
in a total of 297 samples.

10.2.4 Analysis

An ANOVA using β as a factor supported H1, showing that
the factor had a significant effect on legibility (F(6, 290) =
12.57, p < 0.001), with a medium-large effect size, η2 = .2.
Figure 13 (left) shows the means and standard errors for each
condition.

An all-pairs post-hoc analysis with Tukey corrections
for multiple comparisons revealed that all trajectories with
β ≥ 20 were significantly more legible than the predictable
trajectory (β = 0), all with p < 0.001, the maximum being
reached at β = 40. This supports the first part of H2, that
legibility significantly increases with β at first: there is no
practical need to become more unpredictable beyond this
point

The post-hoc analysis also revealed that the trajectories
with β =20, 40, 80, or 320 were significantly more legible
than the trajectory with β = 10 (p = .003, p < .001,
p = .004, and p = .002 respectively).

The maximum mean legibility was the trajectory with β =
40. Beyond this value, the mean legibility stopped increasing.
Contrary to our expectation, it did not significantly decrease.
In fact, the difference in score between β = 40 and β =
320 is in fact significantly less than 2.81 (t (84) = 1.67,
p = 0.05). At a first glance, the robot’s overly unpredictable
behavior seems to not have caused any confusion as to what
its intent was.

Analyzing the score histograms (Fig. 14) for different β

values, we observed that for higher βs, the wide majority
of users stopped the trajectory in the beginning. The conse-
quence is that our legibility measure failed to capture whether
the mid-part of the trajectory becomes illegible: the end of
the trajectory conveys the goal because it reaches it, but what
happens in between the beginning and end? Thus, we ran a
follow-up study to verify that legibility in this region does
decrease at β = 320 as compared to our β∗ = 40, in which
we explicitly measured the legibility in the middle of the
trajectory.

10.2.5 Follow-up

Our follow-up study was designed to investigate legibility
during the middle of the trajectories. The setup was the same,
but rather than allowing the users to set the time at which they
provide an answer, we fixed the time and instead asked them
for a prediction and a rating of their confidence on a Likert
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Fig. 13 Left The legibility score for all seven conditions in our main
experiment: as the trust region grows, the trajectory becomes more leg-
ible. However, beyond a certain trust region size (β = 40), we see
no added benefit of legibility. Right In a follow-up study, we showed

users the entire first half of the trajectories, and asked them to predict
the goal, rate their confidence, as well as their belief that the robot is
heading towards neither goal. The results reinforce the need for a trust
region

Fig. 14 The distribution of scores for three of the conditions. With a
very large trust region, even though the legibility score does not sig-
nificantly decrease, the users either infer the goal very quickly, or they

wait until the end of the trajectory, suggesting a legibility issue with the
middle portion of the trajectory

scale from 1 to 7. We hypothesize that in this case, the users’
confidence (aggregated with success rate such that a wrong
prediction with high confidence is treated negatively) will
align with our H2: it will be higher for β = 40 than for
β = 320.

We conducted this study with 90 users. Figure 13 plots the
confidences and success rates, showing that they are higher
for β = 40 than they are for both of the extremes, 0 and 320.
An ANOVA confirmed that the confidence effect was signif-
icant (F(2, 84) = 3.64, p = 0.03). The post-hoc analysis
confirmed that β = 40 had significantly higher confidence
t (57) = 2.43, p = 0.45.

We also asked the users to what extent they believed that
the robot was going for neither of the goals depicted in the
scene (also Fig. 13). In an analogous analysis, we found that
users in the β = 40 condition believed this significantly less
than users in the β = 320 condition (t (57) = 5.7, p <

0.001).

10.2.6 Interpretation

Overall, the results suggest the existence of a trust region
of expectation within which legibility optimization can make
trajectories significantly more legible to novice users. Out-
side of this trust region, being more legible w.r.t. Legibility
is an impractical quest, because it no longer improves leg-

ibility in practice. Furthermore, the unpredictability of the
trajectory can actually confuse the observer enough that they
can no longer accurately and confidently predict the goal, and
perhaps even doubt that they have the right understanding of
how the robot behaves. They start believing in a “neither
goal” option that is not present in the scene. Indeed, the leg-
ibility formalism can only be trusted within this trust region.

11 Discussion

This paper studied motion planning in the presence of an
observer who is watching the motion and making inferences
about it.

We first formalized predictability and legibility based on
the inferences that the observer makes, which have opposing
directionality. We then proposed mathematical models for
these inferences in order to arrive at predictability and leg-
ibility scores that a robot can evaluate. Finally, we derived
functional gradient optimization methods for generating pre-
dictable or legible motion, as well as a constrained optimiza-
tion method for optimizing for legibility in a trust region of
predictability.

Our studies on novice users provided some support for
our models—trajectories more predictable according to the
model were overall more predictable in practice, and trajec-
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Fig. 15 Legible trajectories on a robot manipulator assuming C , com-
puted by optimizing Legibility in the full dimensional space. The fig-
ure shows trajectories after 0 (gray), 10, 20, and 40 iterations. Below, a
full-arm depiction of the trajectories at 0 and 20 iterations

tories more legible according to the model were overall more
legible in practice while inside a trust region of predictabil-
ity. However, three main challenges remain in planning such
motions for complex cases (i.e. high-dimensional spaces and
non-convex C):

11.1 Challenge I: finding C

If the human observer expects human-like motion, cues from
animation or biomechanics (Lasseter 1987; Witkin and Kass
1988; Flash and Hogan 1985; Gielniak and Thomaz 2011)
can help provide good approximations for C . However, our
studies suggest that efficiency of robot motion has different
meanings for different observers (see follow-up experiment
in Sect. 10.1).

A possibility is to learn from demonstrations provided by
the observer. Here, the robot can learn a C that explains the
demonstrations (Argall et al. 2009), using tools like Inverse
Optimal Control (IOC) (Abbeel and Ng 2004; Ratliff et al.
2006; Ziebart et al. 2008). However, extending these tools to
higher dimensions is an open problem (Ratliff et al. 2006),
and recent work focuses on learning costs that make the
demonstrations locally optimal (Levine and Koltun 2012;
Kalakrishnan et al. 2013), or on restricting the space of tra-
jectories to one in which optimization is tractable (Jain et al.
2013).

Aside from investigating the extension of IOC to high-
dimensional spaces, we also propose a second thread of
research: the idea of familiarizing users to robot behavior.
Can users be taught a particular C over time? Our prelim-
inary results (Dragan et al. 2014) suggest that familiariza-
tion helps for the motion generated by the C from (19), but
that it suffers from severe limitations, especially on less nat-
ural choices of C . One possibility is that motion for non-
anthropomorphic arms is complex enough that we cannot rely
solely on the user to do all the learning, suggesting that the
two threads of research—familiarization and learning from
demonstration—are complementary.

11.2 Challenge II: Computing VG

Given a C , legibility optimization requires access to its value
function for every goal. In simple cases, like the one we
focused on in this paper, V has an analytical form. Legi-
bility optimization happens then in real-time even for high-
dimensional cases, as shown in Fig. 15.

But this is not the case, for instance, for non-convex func-
tions that require obstacle avoidance, when the robot has
many degrees of freedom. In such cases, finding good approx-
imations for V becomes crucial, and many techniques value
function approximation techniques could be applied toward
this goal (Boyan and Moore 1995).

What makes our problem special, however, is that the qual-
ity of the approximation is defined in terms of its impact on
legibility, and not on the original value function itself. There
could be approximations, such as ignoring entire components
of C , or only focusing on some lower-dimensional aspects,
which are very poor approximations of V itself, but might
have little effect on legibility in practice.

11.3 Challenge III: finding β

The final challenge is finding how unpredictable the trajec-
tory can become in a given situation. This too can be learned
based on the user, or set based on the ambiguity level of
the situation (as measured by the legibility score of the pre-
dictable trajectory).

11.4 Other future work directions

Even though this paper was about goal-directed motion, the
formalism for legibility can be applied more generally to
transform an efficiency cost C into a legible one. We are
excited to investigate this formalism with other channels of
communication and other robot morphologies. Recently, we
showed the formalism’s applicability to pointing gestures
Holladay et al. (2014), Tellex et al. (2014) used the same
underlying mathematics to generate legible natural language
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requests, and Szafir et al. (2014) used our results to generate
legible quadrotor flight.

Still for goal-directed motion, we are interested in the
concept of legibility when each goal could be achieved in
multiple different robot configurations, as it happens in most
manipulation tasks (Dragan et al. 2011). In the example from
Fig. 1, the added flexibility of goal sets could enable the robot
to grasp the object from the side when legible, and closer to
the front when predictable.

Another avenue of further research is investigating the
role that perceived capability plays. Our follow-up users in
the first experiment had different expectations about what
HERB is capable of, which shaped their expectations about
the motion. Here, familiarization to the robot can poten-
tially be useful in adjusting the perceived capability to better
match the real capability. Furthermore, the perceived capa-
bility plays a role in what goals the observer might attribute
to the robot, which can be captured in our formalism as the
prior P(G) over the candidate goals.

11.5 Limitations

Our work is limited in many ways. As the previous section
discussed, in generating predictable or legible motion, we
inherit the challenges of learning and optimizing non-convex
functions in high-dimensional spaces. Furthermore, adding
a trust region to the optimization is a way to prevent the algo-
rithm for traveling on “uncharted territory”—from reaching
trajectories where the model’s assumptions stop holding. It
does not, however, fix the model itself.

Despite its limitations and remaining challenges, this work
integrates the idea of an observer and the inferences that he
makes directly into motion planning, paving the road to more
seamless human–robot collaborations.
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