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Abstract Much robotics research explores how robots can
clearly communicate true information. Here, we focus on
the counterpart: communicating false information, or hid-
ing information altogether—in one word, deception. Robot
deception is useful in conveying intentionality, and in mak-
ing games against the robot more engaging. We study robot
deception in goal-directed motion, in which the robot is con-
cealing its actual goal. We present an analysis of deceptive
motion, starting with how humans would deceive, moving to
amathematicalmodel that enables the robot to autonomously
generate deceptive motion, and ending with a studies on the
implications of deceptive motion for human-robot interac-
tions and the effects of iterated deception.

Keywords Deception · Motion planning · Human robot
interaction · Legibility

1 Introduction

Much robotics research explores how robots can communi-
cate effectively, via speech (Deits et al. 2013; Vogel et al.
2013; Goodman and Stuhlmüller 2013), gesture (Sato et al.
2007; Raza Abidi et al. 2013; Yamaguchi et al. 2007;
Breazeal et al. 2005; Holladay et al. 2014), or motion
(Takayama et al. 2011; Beetz et al. 2010; Alami et al.
2006; JimMainprice et al. 2010; Dragan and Srinivasa 2013;
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Gielniak and Thomaz 2011). But effective communication,
which clearly conveys truthful information, has a natural
counterpart: effective deception, which clearly conveys false
information, or hides information altogether.

Robotic deception has obvious applications in the mili-
tary (Dewar 1989), but its uses go far beyond (Castelfranchi
2000; Shim and Arkin 2013, 2014; Nijholt 2010; Adar et al.
2013; Williams et al. 2014). At its core, deception conveys
intentionality (Terada and Ito 2010), and that the robot has a
theory ofmind for the deceived (Biever 2010)which it can use
to manipulate their beliefs. It makes interactions with robots
more engaging, particularly during game scenarios (Vázquez
et al. 2011; Terada and Ito 2010; Short et al. 2010).

Among numerous channels for deception, we focus on
deception viamotion. Deceptive motion is an integral part of
being an opponent in most sports, like squash (Flynn 1996),
soccer (Smeeton andWilliams 2012; Choudhury et al. 2011;
Biswas et al. 2014) or rugby (Jackson et al. 2006). It can also
find uses outside of competitions, such as tricking patients
into exerting more force during physical therapy (Brewer
et al. 2006). Furthermore, a robot that can generate deceptive
motion also has the ability to quantify an accidental leakage
of deception and therefore avoid deceiving accidentally.

We studydeception ingoal-directedmotion,where a robot
is moving towards one of a few candidate goals—we refer to
this one as the robot’s actual goal. Fig. 1 shows an example:
the robot is reaching for one of two bottles on the table. In
this context, we introduce the following definition:

Definition Deceptive motion is motion that tricks the
observer into believing that the robot is not moving towards
its actual goal.

We present an analysis of deceptive goal-directed robot
motion through a series of seven user studies, from how
humans would deceive, to how a robot can plan deceptive

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9458-8&domain=pdf
http://orcid.org/0000-0002-1947-4180


332 Auton Robot (2015) 39:331–345

Fig. 1 Topdeceptivemotions producedby trajectory optimization. The
trajectories on the right correspond to different strategies that humans
adopt.Bottom a user’s reactionwhen she first realizes the robot deceived
her about which bottle it was going to grasp

motion, to what implications this has for human-robot inter-
actions. We make the following contributions:
1. Human deception: We begin by studying what deception
strategies people employ when creating deceptive motion for
a robot (Sect. 2).

We focus on a simple, 2D robot character, whose only
channel of expression is its motion. We collect demonstra-
tions of deceptive motion from novice users, as well as from
a senior animation designer.

We then cluster the demonstrations to reveal common
strategies, and relate the emerging strategies to the theory
of deceptive behavior in humans (Whaley 1982). We find
both strategies meant to “show the false” (e.g., convey a dif-
ferent goal), as well as strategies meant to “hide the truth”
(e.g., keep the goal ambiguous until the end).
2.Mathematical model: Next, we introduce a mathematical
model for autonomously generating deceptive motion (Sect.
3), and show how different parameters lead to the different
user strategies revealed in the study.

Our approach is complementary to existing methods for
autonomous deception, which usually lie at the symbolic
level, and are inspired by either game theory (Wagner and
Arkin 2009, 2011) or biology (Shim and Arkin 2012; Flore-
ano et al. 2007; Arkin 2012).

Figure 1 (top) shows three examples generated by our
model: (1) exaggerating: a trajectory that conveys the wrong
goal (along with its higher-dimensional counterpart on the
left), (2) switching: a trajectory that switches between con-
veying either goal, and (3) ambiguous: a trajectory that keeps
the goal as ambiguous as possible.
3. Evaluation: We test whether novice users are actually
deceived by the robot, when executing the trajectories from

the model, users, and animator (Sect. 5). We find that all
motions are significantly more deceptive than a baseline, and
that the model performs almost equivalently to the animator
trajectory.

We also compare the three strategies to verify that the
strategy that conveys the wrong goal (exaggerating) is indeed
more deceptive than the switching or ambiguous strategies
from Fig. 1 (top), as predicted by the model.
4. Generalization: We show how our model generalizes to
higher-DOF robots—manipulator arms (Sect. 6). We verify
its ability to deceive in a quantitative user study, and we com-
pare the output trajectories qualitatively to the arm motions
produced by humans when asked to deceive.
5. Implications for HRI: Our work investigates decep-
tive motion and proposes a model that enables robots to
autonomously generate it. One of our studies explores the
implications of the robot’s deception through its motion to
human-robot interaction (Sect. 7, and Fig. 1 (bottom)). We
focus on whether users realize that the robot is intention-
ally deceiving them, and, if so, whether that impacts their
perceptions of the robot, be it positively or negatively.
6. Iterated deception: Our final study takes a first step
towards analyzing deception in the long term, where a robot
has to deceive not only once, but repeatedly. Here, we see
that the most effective strategy for a one-time interaction is
no longer effective when the robot has to deceive repeatedly,
in an iterated game context.

Overall, we see that deceptive motion can improve per-
ceptions about the robot, but can also harm trust, especially
when interpreted as intentional. An additional pitfall is that
some users rationalize the robot’s behavior, not believing that
a robot would be capable of intentional deception.

On the one hand, our work echoes concerns raised in
prior work about the effects of deception (Arkin et al. 2012;
Grodzinsky et al. 2015; Hancock et al. 2011; Reynolds and
Ishikawa 2006; Sharkey 2015; Sharkey and Wood 2015).
On the other hand, deception is human nature. So much so
that even the Turing Test is about deception—we only con-
sider computers to have achieved human-like intelligence
once they can deceive us that they are human. We are excited
to contribute to a better understanding of this behavior.

2 Study 1: how do humans deceive?

Humans are experts in deception. Thus, we begin our analy-
sis of deceptive robot motion by looking to humans, and
how they think a robot should deceive through its motion.
We investigated this for the simple case of a 2D robot char-
acter. Without eyes and facial expression, all this character
has available to deceive is its motion. We asked novice
users, as well as an animator—an expert in designing expres-
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(a) Canonical (b) Scale (c) Distance

(d) Ambiguity (e) Symmetry (f) Occlusion 

Fig. 2 Scenarios for study 1

sive motion for non-humans—to provide demonstrations of
deceptive motion in various scenarios.

2.1 Experimental setup

Scenarios:We designed our scenarios by manipulating sev-
eral variables. We start from a canonical scenario: a starting
position and two candidate equidistant goals, placed close to
each other to make the direct motion ambiguous. This is the
scenario from Fig. 2a.

To ensure that the strategies users produce are not biased
by the particularities of this scenario, we test whether and
how the trajectories change when different aspects of the
environment change. From this canonical scenario (number
1), we manipulate:

(1) goal side, by changing which of the goals is the actual
goal (number 2);

(2) scale, by scaling the entire scene (number 3);
(3) distance, by translating both goals vertically (number 4);
(4) ambiguity, by translating both goals horizontally (num-

ber 5);
(5) goal symmetry, by shifting one goal up and one down;

we also tested both goals for this, as they were no longer
symmetric and the results from number 2 would not gen-
eralize (numbers 6 and 7);

(6) occlusion, by lining one goal in front of the other; we
again tested both goals for this because of asymmetry
(numbers 8 and 9);

These were our main scenarios (Fig. 2). Additionally, we
added multiple goals scenarios with three candidate goals
instead of two, like in Fig. 4d,wherewe looked the themiddle
goal and one of the side goals (numbers 10 and 11). Thus,
we had a total of 11 scenarios.

(a) (b) (c) (d) (e)

Fig. 3 User strategies for deception. The typical strategy exaggerates
in the other direction and avoids the obstacle by going over it. A less
common strategy of going under the obstacle closely matches the result
of the model we use in Sect. 3, shown in Fig. 7 (red) (Color figure
online)

Procedure:Wedeveloped a graphical interface for providing
demonstrations by placing waypoints along the trajectory.
For each scenario, we first asked users to demonstrate a
typical (predictable) trajectory to a goal (how they would
normally expect the robot to move), in order to check that
all users are working with the same underlying model of the
robot motion. All users drew a straight line from start to goal
(we use this in our model from Sect. 3).

Next, the users demonstrated the deceptive trajectory and
explained their strategy, including how they would time the
motion.

For each user, we randomized the order of the scenarios
after the canonical one to avoid ordering biases. We kept the
more complex multi-goal scenarios for the end.
Participants: We recruited 6 participants from the local
community (4 male, 2 female, aged 19–67, with various
educational backgrounds), along with a senior animation
designer who we treat as an expert.

2.2 Analysis

Main scenarios: We started from the user comments, and
identified 4 emerging strategies (one with 2 variations),
shown in Fig. 3. We then classified each user trajectory as
employing one of these strategies, or doing something dif-
ferent (e.g. moving “as if the robot is broken”). We tested
agreement between two coders with Cohen’s κ (κ = .8,
p < .0001).

By far, the most common strategy (67 % of the cases) was
to exaggerate the motion towards another candidate goal in
order to convey the intention to reach that goal to the observer.
This type of behavior closely resembles decoying in human
deception theory (Whaley 1982): it is a way of portraying
false information (that the robot has a different goal from its
actual goal) by offering a misleading alternate option.
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(a) (b) (c) (d)

Fig. 4 Animator strategies

Among trajectories that follow this strategy, most (71 %)
avoid the other goal by going over the top, like in Fig. 3a.
Often, the trajectories circle this goal first (a behavior some
of the users described as simulating “hovering”), and then
move on to the actual goal. The rest use the more efficient
(shorter) strategy of avoiding the other goal by moving under
it, as in Fig. 3b.

The other three strategies were drastically less common.
In 14 % of the cases, the users were switching between con-
veying the actual goal and conveying a different one, as in
Fig. 3c. This most closely resembles deception by dazzling
(Whaley 1982), which is hiding the true by being confusing.

Approximately 5 % of trajectories were ambiguous (Fig.
3d), trying to conceal which goal is the actual one for as
long as possible. This “hiding the real” behavior is known
as masking in human deception literature (Whaley 1982),
whereby “all distinctive characteristics” of the motion are
concealed.

Finally, another 7 % of the trajectories simply moved to
the other goal, without exaggerating, and then moved to the
actual goal, as in Fig. 3e—this can be thought of as a variation
on decoying.
Multiple goals:When there are multiple goals in the scene,
our main question was whether users would pick a particular
other goal to convey, orwhether theywill be ambiguous in the
general direction of the other goals. However, some users sur-
prised us with an unexpected strategy: conveying one of the
other goals first, then another, and only then moving towards
the actual goal. Aside from this strategy, we found similar
patterns as in the two goal case, predominantly exaggeration
and switching.
Animator demonstrations: Fig. 4 shows the animator
strategies for a few of the scenarios. For the canonical sce-
nario, the robot firstmoves horizontally to align itselfwith the
other goal in order to clearly indicate its (deceptive) selection,
then goes towards it, and then, when it has almost reached it,
moves towards the actual goal (Fig. 4a).

The animator also proposed an alternative (Fig. 4b), which
is ambiguous for the majority of the trajectory, then switches

to the wrong goal, then optionally oscillates between the two
(conveying that the robot is exploring different options), and
only then moves to the correct one. Although this trajectory
is rich in expression, he deems the first one more deceptive
because the observer will believe in thewrong goal for longer
and with higher confidence.
Changes between scenarios: The users were surprisingly
inconsistent with their strategies between different scenarios,
but their comments reflect that they took the opportunity to
explore “something new”, and not that they thought that these
different situations require different strategies.

With the animator, the strategy stays the same with scale,
distance, goal side and symmetry. With less ambiguous sce-
narios, like in Fig. 4c, the trajectory does not go as far in the
direction of the other goal: the animator considered it enough
to convince the observer that the robot is targeting the other
goal.
Trajectory timing: Some of the participants mentioned tim-
ing considerations when explaining their deceptive strategy.

Most participants thought that the robot should move
quickly at the end of the exaggerating or ambiguous strate-
gies, so that it can “dart to the goal before an observer could
realize what was going on”.

Other participants argued that fast movement conveys
deliberate intent. Conversely, a slow moving robot conveys
ambiguity, since the robot seems less sure of its path. The
analogy referenced was that if one knows where they are
headed, they walk quickly; however, when one is lost they
tend to walk slowly and meander. Therefore, moving slowly
can be used to convey uncertainty about the goal, which is a
form of deception.
Ease of creation:We asked participants to rate, on a 7-point
Likert scale, how easy it was to create the trajectories. A t
test shows a significant effect for style of trajectory, t(22)
= 0.01 , p < 0.0001, with typical (predictable) trajectories
rated as easier to create then deceptive trajectories. This is
expected, since deception requires coming up with a strategy
for communication, whereas typical movement only requires
predicting what the character would normally do. In what
follows, we introduce a mathematical model for deception
that starts with a simpler model of predictable motion and
builds on that to achieve communication.

3 A mathematical model for deception

The previous section analyzed the different strategies that
humans would employ to enable a robot to deceive. Here, we
introduce amathematicalmodel for deceptivemotion that (1)
enables a robot to autonomously generate deceptive motion,
and (2) gives us more insight into the human strategies.
Deceptive motion as trajectory optimization: Our model
for deceptive motion is about enabling the robot to take the
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observer’s perspective, and compute what goal they would
infer from the motion. Then, the robot can choose a motion
that prevents the observer from inferring the correct goal.

Based on prior work (Dragan et al. 2013), we model the
observer as expecting the robot to move optimally, optimiz-
ing some efficiency cost functional C : � → R

+ defined
over the space of trajectories �. We then approximate the
probability of a candidate goal G being inferred from an
ongoing motion ξS→Q , from the start S to the current robot
configuration Q, as in Dragan and Srinivasa (2012):

P(G|ξS→Q) = 1

Z

exp
(−C[ξS→Q] − VG(Q)

)

exp
(−VG(S)

) P(G) (1)

with Z a normalizer across the set of candidate goals G and
VG(q) = minξ∈�q→G C[ξ ]. This computes how costly reach-
ing the goal is through the ongoing trajectory relative to the
optimal way, and matches teleological reasoning in action
interpretation theory (Dragan et al. 2013; Csibra and Gergely
2007).

Given this, the robot can be most deceptive along the tra-
jectory by minimizing the probability that the actual goal,
Gactual , will be inferred:

min
ξ

∫
P(Gactual |ξS→ξ(t))dt (2)

Solution: We solve this trajectory optimization problem
using functional gradient descent, following (Zucker et al.
2013; Dragan and Srinivasa 2013): we iteratively minimize
the first order approximation of the objective plus a regu-
larization term that keeps the trajectory from going to far
from the approximation point. Here, distances between tra-
jectories are measured with respect to a non-Euclidean inner
product in the Hilbert space of trajectories, which propagates
local gradient changes globally to the entire trajectory. This
speeds up optimization andmaintains smoothness. However,
it also can introduce limitations: for instance, quick changes
in velocity and direction could be useful for deception, as
shown in the animator-produced demonstrations from Fig.
4. In future work, we plan to investigate the use of different
inner products and their effects on deception.

We avoid collisions with obstacles by adding a constraint
that penalizes small distances between the robot and the
obstacle. We use the obstacle term from the CHOMP trajec-
tory optimizer (Zucker et al. 2013), and follow the derivation
fromDragan and Srinivasa (2013) for trust region constraints
to keep this term under a desired threshold.

For the cost C , we use a common choice in trajectory
optimization—the integral over squared velocities (Zucker
et al. 2013). This has been shown to match what users expect
for a 2DOF robot (Dragan et al. 2013), and to have a high

(a) (b) (c)

Fig. 5 Strategies replicated by the model: the typical exaggeration
towards another goal, as well as the switching and ambiguous trajecto-
ries. The trajectories in gray show the optimization trace, starting from
the predictable trajectory

degree of predictability for a 7DOF robot armaswell (Dragan
and Srinivasa 2014).

Our implementation parametrizes trajectories as vectors
of a fixed number of configurations equally spaced in time.
Strategies:Using this formalism, we canmodel the different
user strategies from the previous sections.

The typical user strategy is about selecting another goal,
Gdecoy , and conveying that through themotion. In ourmodel,
this translates to maximizing the probability of that goal:

ξexaggerate = argmax
ξ

∫
P(Gdecoy |ξS→ξ(t))dt (3)

When there are only two candidate goals, this is equivalent
to (2).

Solving this optimization problem leads to the trajectory
in Fig. 5a, which qualitatively replicates the strategy in Fig.
3b of exaggerating the motion towards the other goal.

The predictable-to-other-goal strategy in Fig. 3e is simi-
lar, but instead of exaggerating, the robot moves predictably.
However, prior work in conveying goals (Dragan et al. 2013)
has shown exaggeration to be more effective.

The animator’s main demonstration (Fig. 4a) follows an
idea similar to exaggeration, except that conveying the goal
is done through alignment – a strategy outside of the realm
that our model can produce. However, in Sect. 5, we show
that the model and animator trajectories perform similarly in
practice.

The switching user trajectory (Fig. 3c) alternates between
the goals. If σ : [0, 1] → G is a function mapping time to
which goal to convey at that time, then the switching trajec-
tory translates in our model to maximizing the probability of
goal σ(t) at every time point:
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Fig. 6 The probability of the actual goal along each model trajectory

ξswi tching = argmax
ξ

∫
P(σ (t)|ξS→ξ(t))dt (4)

Unlike other strategies, this one depends on the choice of σ .
Optimizing for a default choice of σ ( a piece-wise function
alternating between Gother and Gactual , σ(t) = Gother for
t ∈ [0, .25)∪[.5, .75) and σ(t) = Gactual for t ∈ [.25, .5)∪
[.75, 1]) leads to the trajectory from Fig. 5b, which alternates
between conveying the goal on the right and the one on the
left.

The ambiguous user trajectory (Fig. 3d) keeps both goals
as equally likely as possible along theway,which translates to
minimizing the absolute difference between the probability
of the top two goals:

ξambiguous = argmin
ξ

∫
|P(Gactual |ξS→ξ(t))

− P(Gother |ξS→ξ(t)))|dt (5)

Figure 5c is the outcome of this optimization: it keeps both
goals just as likely until the end, when it commits to one. An
alternate way of reaching such a strategy is to maximize the
entropy of the probability distribution over all goals in the
scene.

Using this model, we see that different strategies can be
thought of as optimizing different objectives, which gives
us insight into why exaggeration was so much more popu-
lar: it is the most effective at reducing the probability of the
actual goal being inferred along the trajectory. Fig. 6 plots
the P(Gactual) along the way for each strategy: the lower
this is, the more deceptive the strategy. While the ambiguous
strategy keeps the probability distribution as close to 50–50
as possible, and the switching strategy conveys the actual goal
for parts of the trajectory, the exaggerate (or decoy) strategy
biases the distribution toward the other goal as much as pos-
sible for the entire trajectory duration: the observer will not
only be wrong, but will be confidently wrong.

4 Study 2: are users really deceived?

In this section, we compare the mathematical model and the
user and animator demonstrations in terms of how deceptive

they actually are (how low the probability assigned to the
actual goal is) as measured with novice users. Of the three
strategies in Fig. 5, we use the exaggeration strategy for our
comparison for two reasons: (1) it is by far the most com-
monly adopted strategy (69 % the user demonstrations, and
the main strategy for the animator); (2) it is the most decep-
tive – both mathematically (see Fig. 6), as well as according
to the expert animator (see Sect. 2.2); we test this experimen-
tally in our next study, which is specifically about comparing
the strategies.

4.1 Experimental setup

Hypotheses

H1 All 3 deceptive trajectories (the users’, the animator’s,
and the model’s) are significantly more deceptive than the
predictable baseline.

H2 All 3 deceptive trajectories are equivalently deceptive.

Manipulated factors:Wemanipulated two factors: the type
of trajectory used (with 4 levels), and the time point at which
the trajectory is evaluated (with 3 levels), leading to a total
of 12 conditions.

We used the typical user trajectory from Fig. 3a, the main
animator trajectory from Fig. 4a, the output of the model
from Fig. 5a, and the predictable (straight line) motion as
a baseline. Because the situation is somewhat ambiguous,
the predictable trajectory does not give away the actual goal
immediately.

We timed the trajectories such that they all take the same
total time to execute, and followed their designers’ instruc-
tions forwhich parts should be faster or slower. For themodel
trajectory, we treated each waypoint as equally spaced in
time.

We selected three critical time points for evaluating the
trajectories that best capture their differences: one close to
the beginning of the trajectory (right after the robot executing
the animator trajectory has finished aligning with the other
goal), one close to the end, after all trajectories have started
moving in the direction of the actual goal, and one in the
mid-part, when the robot executing the user trajectory has
started hovering around the other goal. We mark these points
in Fig. 7 (left), which shows the four trajectories side by side.
Dependent measures:We measured how deceptive the tra-
jectories are by measuring which goal the users believe the
robot is going toward as the trajectory is unfolding: the less
correct the users are, the more deceptive the motion.

For each trajectory and time point, we generated a video of
the robot (i.e. a disc on the screen like the purple disc in Fig.
4) executing the trajectory up to that time point.Wemeasured
incorrectness and confidence.We asked the users towatch the
video, predict which goal the robot is going towards, and rate
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Fig. 7 The four trajectories: model, animator, user, and the predictable baseline, along with the comparison from our second user study (Color
figure online)

their confidence in the prediction on a 7 point Likert scale.
We treat the confidence as negative for correct predictions
(meaning the trajectory failed to deceive).
Participants: We decided on a between-subjects design,
where each participant would only see one trajectory snippet,
in order to avoid biases arising from having seen a different
condition before.

We recruited a total of 240 users (20 per condition) on
Amazon’sMechanical Turk, and eliminated users who failed
to answer a control question correctly, leading to 234 users
(166 male, 68 female, aged 18–60).

4.2 Analysis

AfactorialANOVAon incorrectness [considered to be robust
to dichotomous data (D’Agostino 1971)] revealed significant
main effects for both trajectory (F(3, 222) = 47.78, p <

.0001) and time point (F(2, 222) = 39.87, p < .0001),
as well as a significant interaction effect (F(6, 222) = 5.5,
p < .0001) (Fig. 7).

The post-hoc analysis with Tukey HSD revealed two find-
ings. (1) The predictable trajectory was significantly less
deceptive than all other trajectories for all times. The one
exception was the last time point of the model trajectory,
which revealed the correct goal in 65 % of the cases. (2) The
beginning andmiddle time points for all three strategies were
significantly more deceptive than their last time point (aside
from the last time point of the user trajectory).

Figure 8 echoes these findings: it plots themean incorrect-
ness for all trajectories across the time points. The predictable
trajectory deceives very few users in the beginning, and
makes the actual goal more clear as time progresses. In
line with H1, a Tukey HSD that marginalizes over time
shows that the predictable trajectory is significantly less
deceptive than the rest, with p < .0001 for all three
contrasts.

Comparing the three strategies, we see that all three per-
formverywell in themiddle time point: this is expected, as by
that point the robot would have been making steady progress

Fig. 8 A comparison of the four trajectories in terms of how deceptive
they are across the three time points in study 2 (Color figure online)

towards the other goal. In the beginning of the trajectory,
the model and the user trajectories are just as convinc-
ingly deceiving, but users actually manage to interpret the
animator’s trajectory as going towards the correct goal, jus-
tifying that “it seemed that the robot was veering back to the
right”.

The bigger differences come towards the end. The model
trajectory, being smoother, gives away the actual goal sooner
than the animator. Users recognize in their comments that “at
the last second it turned towards the right”. Surprisingly, the
user “hovering” strategy worked very well, delaying the time
when users catch on to the actual goal, and making it much
more effective than the animator’s strategy. Users actually
used the term “hover” to describe the behavior, much like
the designer of the trajectory himself.

Therefore, w.r.t. H2, the animator and user trajectories
are not equivalent. However, there is a very small difference
between themodel and the animator trajectories, and a TOST
equivalence test deems them as marginally equivalent for a
practical difference threshold of 0.1 (p = .07).

The confidence metric echoes these results as well, and
Fig. 7 plots both. A factorial ANOVA for this measure yields
analogous findings.

Overall, we see that the model (which the robot can
use to autonomously generate trajectories) performs almost
equivalently to the expert demonstration from the anima-
tor, and that creativity paid off for the user’s “hover”
strategy.
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(a) (b) (c)

Fig. 9 A comparison among the three deception strategies in study 3: ambiguous, exaggerated and switching (Color figure online)

5 Study 3: comparing deception strategies

Our next study compares the effectiveness of the three decep-
tion strategies from Fig. 5: exaggerating, switching and
ambiguous. FromFig. 6, we predict that exaggerating ismore
deceptive than the other two:
Hypothesis. The exaggerating deceptive trajectory is more
deceptive then the switching and ambiguous strategies.
Manipulated factors and dependent measures: Similar to
the previous study, we manipulated the deception strategy
used (with the 3 levels outlined above), and the time point at
which the trajectory is evaluated (with 6 time points equally
spaced throughout the trajectory). This yielded a total of 18
conditions. We used the same dependent measures as in the
second study, incorrectness and false prediction confidence.
Participants:We used a between-subjects design again, and
recruited a total of 360 users (20 per condition) on Amazon’s
Mechanical Turk. We eliminated users who failed to answer
a control question correctly, leading to 313 users (191 male,
122 female, aged 18–65).

5.1 Analysis

An ANOVA for incorrectness showed a significant main
effect for deception strategy (F(2, 310) = 77.98, p <

.0001), with the post-hoc revealing that all three strate-
gies were significantly different from each other (all with
p < .0001). An ANOVA for false prediction confidence
yielded analogous findings.

As Fig. 9 shows, the exaggerating strategy was the most
successful at deception, followed by the ambiguous strategy.
This supports our hypothesis and the prediction of ourmodel,
since the exaggerating strategy assigns the lowest probability
to the actual goal along the way (as shown in Fig. 6).

Figure 10 shows the correctness rate over time for the three
strategies. This experimental evaluation has similar results to
the theoretical prediction from Fig. 6: the exaggerating strat-
egy decreases correctness over time, the switching strategy
oscillates, and the ambiguous strategy stays closer to .5.

Fig. 10 The correctness rate for the three strategies as evaluated with
users in study 3

However, we do observe differences from the predicted
values. The exaggerating and ambiguous trajectories were
more deceptive than expected, and the switching was less
deceptive. In particular for switching, this could be an effect
of the time point discretization we selected.

For the ambiguous strategy, many users were under-
standably unsure which object was the goal. However, a
surprisingly large number of users were very confident that
the robot was “clearly”moving towards one goal or the other,
when in fact the motion was straight in the middle.

For the switching strategy, users commented on using one
of two strategies to infer the goal. Some users based their
choice on the robot’s last movement, whether it tended to one
side or the other. Other users noted, based on what section of
the trajectory they saw, that the point robot spent more time
on a certain side and therefore interpreted the point on that
side to be the goal.

6 Generalization to arm motion

The previous section revealed that the mathematical model
from Sect. 3 performs well in practice. But how well does it
generalize beyond a simple 2D robot character?

In this section,we put this to the test by applying themodel
to the 7DOF right arm of a bi-manual mobile manipulator.
Note that this is in general done by defining the cost C over
trajectories through the full configuration space, but C could
also treat the end-effector or elbow trajectories separately.
Investigating how different Cs could be used to obtain dif-
ferent deception strategies remains an area of future work.
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Fig. 11 Top the deceptive trajectory planned by the model. Bottom a comparison between this trajectory and the predictable baseline (Color figure
online)

Figure 11 (top) shows the resulting deceptive trajectory,
along with a comparison between its end effector trace and
that of the predictable trajectory (bottom left).

Both trajectories are planned s.t. they minimize cost and
avoid collisions, as explained in Sect. 3. The difference is in
the cost functional: the predictable trajectory minimizes C
(Sect. 3),while the deceptive oneminimizes the cost from (2).
The planning time for either trajectory is based on CHOMP,
and remains under a second.

Figure 1 shows the optimization trace transforming the
predictable into the deceptive trajectory. After a few itera-
tions, the trajectory shape starts bending to make progress in
the objective, but remains on the constraintmanifold imposed
by the obstacle avoidance term.

6.1 Study 4: robot trajectory evaluation

To evaluate whether this trajectory is really deceptive, we
repeat our evaluation from Sect. 5, now with the physical
robot.
Manipulated factors and dependent measures: We again
manipulate trajectory and time-point, this timewith only two
levels for the trajectory factor: the deceptive and predictable
trajectories from Fig. 11. This results in 6 conditions. We use
the same dependent measures as before.
Participants. For this study, we recruited 120 participants
(20 per condition; 80 male, 40 female, aged 19–60) on Ama-
zon’s Mechanical Turk.
Hypothesis. The model deceptive trajectory is more decep-
tive than the predictable baseline.

Analysis. In line with our hypothesis, a factorial ANOVA for
correctness did reveal a significant main effect for trajectory
(F(1, 117) = 150.81, p < .0001). No other effects were
significant. Fig. 11 plots the results.

The users who were deceived relied on the principle of
rational action (Gergely et al. 1995), commenting that the
robot’s initial motion towards the left “seemed like an ineffi-
cient motion if the robot were reaching for the other bottle”.

When the robot’s trajectory starts moving towards the
other bottle, the users find a way to rationalize it: “I think
that jerking to my left was to adjust it arm to move right.”,
or “It looks as if the robot is going for the bottle on my right
and just trying to get the correct angle and hand opening”.

Several users also perceived the motion to the bottle on
the left as predictable, and thought it would be unpredictable
if the robot were reaching for the bottle on the right, e.g.
“If it were me, that’s the one I would be going for”. These
statements imply that these users expected the robot’s arm to
function like that of a human.

As for the features of the motion that people used to make
their decision, the direction of the motion and the proximity
to the target were by far the most prevalent, though a few
users also quoted hand orientation, gaze and the elbow.

Not all users were deceived, especially at the end. A
few users guessed correctly from the very beginning, mak-
ing (false) arguments about the robot’s kinematics, e.g. “he
moved the arm forward enough so that if he swung it round
he could reach the bottle”.

Overall, our test suggests that the model from Sect. 3 can
generalize to higher-dimensional spaces. Next, we run a fur-
ther user study which indicates that this was no coincidence:
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Fig. 12 A deceptive trajectory for a human arm from one of our participants, qualitatively similar to the robot trajectory from Fig. 11

when we ask humans to produce deceptive motion with their
own arm, their motions are qualitatively similar to that of the
robot.

6.2 Study 5: human deception

To see how humans would do deception in higher-
dimensional spaces, we reproduced the study from Sect. 2,
but in the physicalworld: participants reachedwith their arms
for objects on a table, andwe recorded their trajectories using
a motion capture system. We recruited 6 participants (3 male
and 3 female, aged 18–41).

The strategies were indeed similar to the 2D case: 3 of
the participants exaggerated the motion to the other object,
then changed just before reaching it. Fig. 12 shows one of
the trajectories for the canonical scenario along with the end
effector trace, which is qualitatively similar to the robot tra-
jectory generated by the model: the hand first goes to the left,
beyond the straight line connecting it to the target object, and
then grazes past it to reach for the object on the right.

One of the participants adopted the animator strategy of
aligning (in this case, the hand) with the other object first,
and then moving straight toward it. Another participant used
their torso more than their arm motion to indicate one goal
or the other. A last participant used the strategy of moving
predictably to the other goal (Fig. 3e), bringing up a great
point that in a game setting, exaggerating to convey intent
would make the opponent suspicious that they are trying to
deceive.

Overall, despite the diversity in approaches, the majority
did seem to match the model’s output.

7 Study 6: implications of deception for HRI

Our studies thus far test that the robot can generate deceptive
motion. Our sixth study is about what effect this has on the
perceptions and attitudes of people interactingwith the robot.

Although no priorwork has investigated deceptivemotion,
some studies have looked into deceptive robot behavior dur-
ing games. A common pattern is that unless the behavior

is very obviously deceptive, users tend to perceive being
deceived as unintentional: an error on the side of the robot
(Short et al. 2010; Vázquez et al. 2011; Kahn et al. 2012).
In a taxonomy of robot deception, Shim and Arkin (2013)
associate physical deception with unintentional, and behav-
ioral deception with intentional. Deceptive motion could be
thought of as either of the two, leading to our main question
for this study:

Do people interpret deceptive motion as intentional?

And, if so, what implications does this have on how they
perceive the robot? Literature on the ethics of deception cau-
tions about a drop in trust (Hancock et al. 2011; Arkin 2011),
while work investigating games with cheating robots mea-
sures an increase in engagement (Short et al. 2010; Vázquez
et al. 2011). We use these as part of our dependent measures
in the study.

We also measure perceived intelligence, because decep-
tion is also associated with the agent having a theory of mind
about the deceived (Biever 2010).

7.1 Experimental setup

Procedure: The participants play a game against the robot,
in which they have to anticipate which bottle (of the two in
front of them) the robot will grab, and steal it from the robot,
like in Fig. 13. The faster they do this, the higher their score
in the game.

Before the actual game, in which the robot executes a
deceptive trajectory, they play two practice rounds (one for
each bottle) in which the robot moves predictably. These are
meant to expose them to how the robot can move, and get
them to form a first impression of the robot.

We chose to play two practice rounds instead of one for
two reasons: (1) to avoid changing the participants’ prior
on what bottle is next, and (2) to show participants that the
robot can move directly to either bottle, be it on the right
or left. However, to still leave some suspicion about how the
robot can move, we translate the bottles to a slightly different
position for the deception round.
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Fig. 13 A snapshot of the deception game, along with the adversary and trust ratings: after deception, users rate the robot’s skill as an adversary
higher, and trust in the robot decreases. The difference is larger when they perceive the deception as intentional (Color figure online)

Dependent measures: After the deception round, we first
ask the participants whether the robot’s motion made it seem
(initially) like it was going to grab the other bottle. If they say
yes, thenwe ask themwhether they think thatwas intentional,
and whether they think the robot is reasoning about what
bottle they will think it would pick up (to test attribution of
a theory of mind).

Both before and after the deception round, we ask par-
ticipants to rate, on a 7 point Likert scale, how intelligent,
trustworthy, engaging, and good at being an adversary the
robot is.
Participants: We recruited 12 participants from the local
community (9 male, 3 female, aged 20–44).
Hypothesis: The ratings for intelligence, engagement, and
adversary increase after deception, but trust drops.

7.2 Analysis

The users’ interpretation was surprisingly mixed, indicating
that deception in motion can be subtle enough to be inter-
preted as accidental.

Out of 12 users, 7 thought the robot was intentionally
deceiving them, while 5 thought it was unintentional. Among
those 5, 2 thought that the deceptive motion was hand-
generated by a programmer, and not autonomously generated
by the robot by reasoning about their inference. The other 3
attributed the way the motion looked to a necessity, ratio-
nalizing it based on how they thought the kinematics of the
arm worked, e.g. “it went in that direction because it had to
stretch its arm out”.

Analyzing the data across all 12 users (Fig. 13), the rating
of the robot as an adversary increased significantly (paired
t-test, t (11) = 4.60, p < .001), and so did the rating on
how engaging the robot is (t (11) = 2.45, p = .032), while
the robot’s trustworthiness dropped (t (11) = −3.42, p <

.01). The intelligence rating had a positive trend (increased
by .75 on the scale), but it was not significant (p = .11).
With Bonferroni corrections for multiple comparisons, only
adversary and trust remain significant, possibly because of
our small sample size. Further studies with larger sample

sizes would be needed to investigate the full extent of the
effect of deceptive motion on the interaction.

We also analyzed the data split by whether deception was
perceived as intentional – this leads to even smaller sample
sizes,meaning these findings are very preliminary and should
be interpreted as such. We see larger differences in all met-
rics in the intentional case compared to the unintentional.
This is somewhat expected: if deception is attributed to an
accident, it is not a reflection on the robot’s qualities. The
exception is the rating of the robot as an adversary: both rat-
ings increase significantly (Fig. 13), perhaps because even
when the deception was accidental, it was still effective at
winning the game.

There was one user whose trust did not drop, despite
finding deception intentional. He argued that the robot did
nothing against the rules. Other users, however, commented
that even though the robot played by the rules, they nowknow
that it is capable of tricking them and thus trust it less.

8 Study 7: longer term effects

Thus far, our analysis of deception focuses on a single inter-
action with the user. In such a situation, we have seen that the
exaggerated strategy is the most effective. Our final study is
about deception in iterated (or repeated) interactions.

When the robot attempts to deceive repeatedly,we hypoth-
esize that this decoy-like strategy will no longer be the
most effective, because of user adaptation. Users will likely
realize that the robot is always “lying” about its goal. Espe-
cially in two-goal situations, the actual goal will become
clear: if the robot is always conveying the decoy goal,
the actual goal must be the other one. Therefore, in such
situations, an ambiguous strategy that holds off any infor-
mation until the end might be more effective in the long
term.

This study compares the exaggerated and ambiguous
strategies in a context where the robot tries to deceive repeat-
edly. We leave out the switching strategy strictly for ease of
evaluation, since the effectiveness of the switching strategy
highly depends on the time point along the trajectory atwhich
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we evaluate the inferred goal. Since this strategy is not overall
more effective than the ambiguous, we focus on a different
third strategy that explicitly accounts for the long term inter-
action.

We introduce a third, long-term strategy stemming from a
game-theoretic argument. We formulate a game for iterated
deception. At every interaction, the robot can choose to “lie”
by conveying a decoy (the exaggerated deceptive strategy),
or “be truthful” by conveying the actual goal (being legible
Dragan and Srinivasa (2013), which in the two goal case
optimizes the negative of the exaggerated utility function).
Similarly, the human can choose to “trust” what the robot
is conveying and infer that goal, or “distrust” and infer the
other goal. In this game, the human gets utility 1 they infer
the actual goal (and the robot −1), and the −1 otherwise
(with the robot getting 1).

This is then a zero-sum game, with utility matrix:

(R) be truthful (R) lie

(R) trust (H 1, R −1) (H −1, R 1)
(R) distrust (H −1, R 1) (H 1, R −1)

The optimal column player (robot, R) strategy is themixed
strategy which assigns “lie” probability .5, and “be truthful”
probability .5. Therefore, our third strategy uses the exagger-
ated deception in the first interaction, when the user does not
expect deception, and employs thismixed strategy afterwards
(Fig. 14).

8.1 Experimental design

Manipulated variables:Wemanipulate the deception strat-
egy with 3 levels: exaggerated, ambiguous, and optimal.
Procedure:Wegenerated trajectories for the point robot for 6
different scenarios, following each strategy. Fig. 14 shows the
scenarios and the resulting trajectories. Each user therefore
has 6 interactions with the robot where the robot attempts to
deceive them. We choose the midpoint of the trajectory for
evaluation, ask users for their goal inference, but then show
them the remainder of the trajectory so that they can see what
the actual goal was.
Dependent measures:We use the same measures as before:
incorrectness and false prediction confidence.
Hypotheses.

H1 The exaggerated and optimal strategies are more decep-
tive than the ambiguous for the first interaction.

This is based on the results from Study 3.

(a) (b) (c)

(d) (e) (f)

Fig. 14 The 6 scenarios for Study 7. The dark and light red and the
exaggerated and ambiguous strategies, respectively.Thepurple trajecto-
ries stem from the optimal strategy, which is the same as the exaggerated
one for the first interaction, and then follows the uniformmixed strategy
which mixes deceiving and being legible (Color figure online)

H2 The ambiguous and optimal strategies are more decep-
tive than the exaggerated strategy for the last interaction.

If users adapt, theywill no longer be deceived by the exagger-
ated strategy, whereas the ambiguous and optimal strategies
will still deceive approximately 50 % of the users.

H3 Overall, the optimal strategy is better than both the exag-
gerated and ambiguous strategies.

We expect this because the optimal strategy should deceive
in the beginning, and at some point converge to have a 50 %
chance at deception. We would anticipate, however, that for
very long interactions, the difference between optimal and
ambiguous would become negligible.
Subject allocation:We used a between-subjects design, and
recruited a total of 60 users (20 per condition) on Amazon’s
Mechanical Turk. We eliminated users who failed to answer
a control question correctly, leading to 51 users (27 male, 24
female, aged 18–65).
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Fig. 15 Our deception measures for each interaction in the two plots
on the left, and aggregated over all interactions in the two on the right.
The exaggerated strategy does better than the ambiguous in the begin-

ning, but degrades in the long term, making the ambiguous and optimal
strategies more preferable for iterated deception (Color figure online)

8.2 Analysis

A repeated-measures ANOVA for incorrectness using the
number of interactions as a covariate did show a signifi-
cant effect for deception strategy (F(2, 295) = 11.92, p <

.0001). Supporting H3, the post-hoc Tukey HSD revealed
that the optimal strategy led to significantly more incorrect
answers than both other strategies (p < .0001 for exagger-
ated and p < .001 for ambiguous). A repeated-measures
ANOVA for false prediction confidence yielded analogous
results.

Figure 15 plots the results. As expected (third plot), the
ambiguous strategy aggregated an overall success rate of
approximately 50 %, with the exaggerated strategy being
worse and then optimal strategy being better.

As predicted by H1, the exaggerated and optimal strate-
gies are more deceptive than the ambiguous strategy in the
very beginning, for the first interaction. Users were unani-
mously deceived by the first two, and only deceived about
40 % of the time with the ambiguous strategy.

In line with H2, the ambiguous and optimal strategy tend
to be more deceptive once the user and the robot have inter-
acted repeatedly. For the final interaction, the ambiguous
strategy was indeed significantly better than the exagger-
ated one, as indicated by a planned contrast based on H2
(F(1, 39) = 7.74, p < .01). Across all interactions, how-
ever, there is not a significant difference between ambiguous
and exaggerated. We believe this might be due to the limited
number of users and the relatively small number of inter-
actions, and not due to an inherent lack of ability of users
to adapt to the exaggerated strategy and start making cor-
rect predictions. This is supported by decreasing trend of the
exaggerated strategy across iterations.

With the optimal strategy, which is sometimes deceptive
and sometimes legible, we see that users tend to be more
deceived in interactions that use the deception (number 1, 2,
4, and 6), and less in interactions that use legibility (num-
bers 3 and 5). Unlike the exaggerated condition however, for

which the effectiveness severely drops by the 6th interaction
(suggesting that users start “distrusting” the robot), users in
the optimal condition still predict the goal conveyed by the
robot, i.e. “trust” the robot. We expect that as the number
of interaction increases, the percentage of users that would
choose to “trust” the robot would become 50 %.

Overall, we see that in the long term the ambiguous strat-
egy might be preferable to the exaggerated one, as it does not
convey either goal. The same goes for randomly selecting
between deceiving using the exaggerated strategy and being
legible. For such a strategy, users keep trusting the robot’s
indication (as they see it sometimes be legible) for the fist few
interactions, making it more effective even than the ambigu-
ous one. We would however expect that over a much larger
number of interactions, the two would be indistinguishable.

9 Discussion

In this work, we analyzed human strategies for deceptive
motion, introduced a mathematical model that enables the
robot to autonomously generate such motions, and tested
users’ reactions to being deceived.
Findings: We found that the model performs on par with
the expert demonstration, and that a creative novice user’s
demonstration performs surprisingly well. We also showed
that the model can generalize to manipulator arms, and that
the output for a somewhat anthropomorphic arm is similar to
human deceptive arm motion.

With respect to reactions, we found that users are mixed
in perceiving the deceptive motion as intentional vs. unin-
tentional. Almost half the users thought that the robot was
not purposefully deceiving them, and a quarter of the users
essentially came up with excuses for why the robot had to
move the way it did.

Across all user reactions, we found that deception sig-
nificantly increases ratings of engagement, intelligence, and
adversarial standing, but can negatively impact trust: even
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though the robot plays by the rules, the users become aware
of its capability to deceive. These effects seem to be larger
when users perceive the deception as intentional, but this last
statement is a hypothesis that requires more testing in future
work, with larger sample sizes.

We also saw that in the long term, the exaggerated strategy
is no longer the most effective, as users start better antic-
ipating that the robot will deceive. Instead, the ambiguous
strategy, or a strategy that mixes conveying a decoy goal
with conveying the true goal, are more useful.
Future directions: Deception has a counterpart in clear,
intent-expressive communication, but comes with additional
burdens, like the need to change strategies. For two goals,
they have a symmetry: the easier it is to be legible, the more
extra energy it takes to be deceptive. At the same time, decep-
tion has additional flexibility: the choice of which goal to
convey. Depending on the scenario, some goals will allow
for more convincing trajectories, and quickly finding the best
such decoy remains a challenge.

Our model showed that it can express different strate-
gies, and our studies showed that the geometry of the path
is important for deception. Although important, geometry is
not everything. An area for further exploration is modeling
more creative strategies, such as circling an object to express
“hovering”, or explicitly using timing (e.g. pausing to express
doubt).

Finally, goals are not the only type of intent that robots
need to convey or deceive about. Properties of the motion, or
higher level behaviors, would also be useful.

Overall, we are excited to have brought about a better
understanding of deception through the motion channel, and
look forward to exploring these remaining challenges in our
future work.
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