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Abstract Google’s Project Tango has made integrated
depth sensing and onboard visual-intertial odometry avail-
able to mobile devices such as phones and tablets. In this
work, we explore the problem of large-scale, real-time 3D
reconstruction on a mobile devices of this type. Solving this
problem is a necessary prerequisite for many indoor applica-
tions, including navigation, augmented reality and building
scanning. The main challenges include dealing with noisy
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and low-frequency depth data and managing limited compu-
tational and memory resources. State of the art approaches
in large-scale dense reconstruction require large amounts of
memory and high-performanceGPUcomputing.Other exist-
ing 3D reconstruction approaches on mobile devices either
only build a sparse reconstruction, offload their computation
to other devices, or require long post-processing to extract the
geometric mesh. In contrast, we can reconstruct and render a
global mesh on the fly, using only the mobile device’s CPU,
in very large (300m2) scenes, at a resolutions of 2–3cm. To
achieve this, we divide the scene into spatial volumes indexed
by a hash map. Each volume contains the truncated signed
distance function for that area of space, as well as the mesh
segment derived from the distance function. This approach
allows us to focus computational andmemory resources only
in areas of the scene which are currently observed, as well
as leverage parallelization techniques for multi-core process-
ing. Furthermore, we describe an on-device post-processing
method for fusing datasets frommultiple, independent trials,
in order to improve the quality and coverage of the recon-
struction. We discuss how the particularities of the devices
impact our algorithm and implementation decisions. Finally,
we provide both qualitative and quantitative results on pub-
licly available RGB-D datasets, and on datasets collected in
real-time from two devices.

Keywords 3D reconstruction ·Mobile technology · SLAM ·
Computer vision · Mapping · Pose estimation

1 Introduction

Recently, mobile phone manufacturers have started adding
embedded depth and inertial sensors to mobile phones and
tablets (Fig. 1). In particular, the devices we use in this work,
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Fig. 1 a Our system reconstructing a map of an office building floor on a mobile device in real-time. b Visualization of the geometric model
consististing of mesh segments corresponding to spatial volumes. c Textured reconstruction of an apartment, at a resolution of 2cm

Fig. 2 Google’s Project Tango developer devices: mobile phone (left)
and tablet (right)

Google’s Project Tango (2014) phone and tablet (Fig. 2)
have very small active infrared projection depth sensors com-
bined with high-performance IMUs and wide field of view
cameras. Other devices, such as the Occipital Inc. Structure
Sensor (2014) have similar capabilities. These devices offer
an onboard, fully-integrated sensing platform for 3D map-
ping and localization, with applications ranging frommobile
robots to handheld, wireless augmented reality (AR).

Real-time 3D reconstruction is a well-known problem in
computer vision and robotics, and is a subset of Simulta-
neous Localization and Mapping (SLAM). The task is to
extract the true 3D geometry of a real scene from a sequence
of noisy sensor readings online, while simultaneously esti-
mating the pose of the camera. Solutions to this problem are
useful for robotic and human-assistive navigation, mapping,
object scanning, and more. The problem can be broken down
into two components: localization (i.e. estimating the sen-
sor’s pose and trajectory), and mapping (i.e. reconstructing
the scene geometry and texture).

Consider house-scale (300m2) real-time 3Dmapping and
localization on a Tango device. A user moves around a
building, scanning the scene. At house-scale, we are only
concerned with features with a resolution of about 2–3cm
(walls, floors, furniture, appliances, etc.). We impose the fol-
lowing requirements on the system:

– To facilitate scanning, real-time feedback must be given
to the user on the device’s screen.

– The entire 3D reconstruction must fit inside the device’s
limited (2–4GB) memory. Furthermore, the entire mesh
model, and not just the current viewport, must be avail-
able at any point. This is in part to aid the feedback
requirement by visualizing the mesh from different per-
spectives. More importantly, this enables applications
like AR or gaming to take advantage of the scene geome-
try for tasks such as collision detection, occlusion-aware
rendering, and model interactions.

– The system must be implemented without using GPU
resources. The motivating factors for this restriction is
that GPU resources might not be available on the specific
hardware. Even if they are, there are many algorithms
already competing for the GPU cycles: in the case of
the Tango tablet, feature tracking for pose estimation and
structured light pattern-matching for depth image extrac-
tion are already using the GPU.We want to leave the rest
of the GPU cycles free for user applications built on top
of the 3D reconstruction system.

3D mapping algorithms involving occupancy grids Elfes
(1989), keypoint mapping (Klein and Murray 2007) or point
clouds (Rusinkiewicz et al. 2002; Tanskanen et al. 2013;
Weise et al. 2008) already exist for mobile phones at small
scale—but at the scales we are interested in, their reconstruc-
tion quality is limited. Occupancy grids suffer from aliasing
and are memory-dense, while point-based methods cannot
reproduce surface or volumetric features of the scene with-
out intensive post-processing.

Furthermore, many of the 3D mapping algorithms that
use RGB-D data are designed to work with sensors like the
MicrosoftKinect (2015),which produce higher-qualityVGA
depth images at 30Hz. The density of the depth data allows
for high-resolution reconstructions at smaller scales; its high
update frequency allows it to serve as the backbone for cam-
era tracking.

In comparison, the depth data from the Project Tango
devices is much more limited. For both devices, the data is
available at a rate between 3 and 5Hz. This makes real-time
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Fig. 3 Overview of te scene reconstruction system. Components con-
tributed by our work are highlighted in blue (Color figure online)

pose tracking fromdepth data amuchmore challenging prob-
lem. Fortunately, Project Tango provides an out-of-the-box
solution for trajectory estimation based on a visual-inertial
odometry system using the device’s wide-angle monocular
camera.Weuse depth data only tomake small optional refine-
ments to that trajectory. This allows us to focus mainly on
the mapping problem.

We present an overview of our entire system in Fig. 3.
We discuss each section component in detail, beginning with
Sect. 3, which describes the platform’s hardware, sensors,
and built-in motion tracking capabilities. We also present the
depth measurement model we use throughout the paper. Our
main contributions here is an analysis of the sensor model
and error of our particular hardware. We propose a novel
calibration procedure for removing bias in the depth data.

In Sect. 4, we discuss the theory of 3D reconstruction
using a truncated signed distance field (TSDF), introduces
by Curless and Levoy (1996), and used by manystate-of-the-
art real-time 3D reconstruction algorithms (Newcombe et al.
2011; Whelan et al. 2013; Whelan and Kaess 2013; Bylow
et al. 2013; Nießner et al. 2013). The TSDF stores a dis-
cretized estimate of the distance to the nearest surface in the
scene. While allowing for very high-quality reconstructions,
the TSDF is very memory-intensive. The size of the TSDF
needed to reconstruct a large scene may be on the order of
several to tens of gigabytes, which is beyond the capabilities
of current mobile devices. We make use of a two-level data
structure based on the work of Nießner et al. (2013). The
structure consists of coarse 3D volumes that are dynamically
allocated and stored in a hash table; each volume contains
a finer, fixed-size voxel grid which stores the TSDF values.
We minimize the memory footprint of the data by using inte-
gers instead of real numbers to do the TSDF filtering. Our
main contributions here begin by how we adapt the TSDF
fusion algorithms, including dynamic truncation distances
and space carving techniques, in order to improve recon-
struction quality from the noisy data. We further describe
how to use the sensor model in order to switch to the integer

representation with the lowest possible data loss from dis-
cretization. We discuss how this data discretization impacts
the behavior and convergence of the TSDF filter. Finally, we
present a dense alignment algorithm which uses the gradient
information stored in the TSDF grid to correct for drift in the
built-in pose estimation.

In Sect. 5, we present two methods for updating the data
structure from incoming depth data: voxel traversal and voxel
projection. While each of the algorithms has been described
before, we analyze their applicability to the different data
formats that we have (mobile phone vs. tablet). Furthermore,
we discuss howwe can leverage the two-tier data structure to
efficiently parallelize the update algorithms in order to take
advantage of multi-core CPU processing.

In Sect. 6, we discuss how we extract and visualize the
mesh. We use an incremental version of Marching Cubes
(Lorensen and Cline 1987), adapted to operate only on rele-
vant areas of the volumetric data structure. Marching Cubes
is a well-studied algorithm; similar to before, our key con-
tribution lies in describing how to use the data structure for
parallelizing the extraction problem, and techniques formini-
mizing the amount of recalculations needed. We also discuss
efficient mesh rendering. Some of our bigger mesh recon-
structions (Fig. 13) reach close to 1 million vertices and 2
million faces, and we found that attempting to directly render
meshes of this size quickly overwhelms the mobile device,
leading to overheating and staggered performance.

In Sect. 7, we describe offline post-processing which can
be carried out on-device to improve the quality of the recon-
struction for very large environments where the our system
is unable to handle all the accumulated pose drift. Further-
more, we present ourwork on extending scene reconstruction
beyond a single dataset collection trial. A reconstruction cre-
ated from a single trial is limited by the device’s battery life.
The operator might not be able to get coverage of the entire
scene in a single trial, requiring to revisit parts later. Thus, we
present a method for fusing multiple datasets in order to cre-
ate a single reconstruction as an on-device post-processing
step. The datasets can be collected independently from dif-
ferent starting locations.

In Sect. 8, we present qualitative and quantitative results
onpublicly availableRGB-Ddatasets (Sturmet al. 2012), and
on datasets collected in real-time from two devices. We com-
pare different approaches for creating and storing the TSDF
in terms of memory efficiency, speed, and reconstruction
quality. Finally, we conclude with Sect. 9, which discusses
possible areas for further work.

2 Related work

Mapping paradigms generally fall into one of two categories:
landmark-based (or sparse) mapping, and high-resolution
dense mapping. While sparse mapping generates a metri-
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cally consistent map of landmarks based on key features in
the environment, dense mapping globally registers all sensor
data into a high-resolution data structure. In this work, we are
concerned primarily with dense mapping, which is essential
for high quality 3D reconstruction.

Because mobile phones typically do not have depth
sensors, previous works (Tanskanen et al. 2013; New-
combe et al. 2011; Engel et al. 2014) on dense recon-
struction for mobile phones have gone to great lengths to
extract depth from a series of registered monocular cam-
era images. Our work is limited to new mobile devices
with integrated depth sensors [such as the Google Tango
devices (2014) and Occiptal Structure (2014) devices].
This allows us to save our memory and CPU budget for
the 3D reconstruction itself, but limits the kinds of hard-
ware we consider. Recent work by Schöps et al. (2015)
integrates the system described in this paper with monoc-
ular depth estimation from motion, extending our map-
ping method to domains where a depth sensor is unavail-
able.

One of the simplest means of dense 3Dmapping is storing
multiple registered point clouds. These point-based meth-
ods (Rusinkiewicz et al. 2002; Tanskanen et al. 2013; Weise
et al. 2008; Engel et al. 2014) naturally convert depth data
into projected 3D points. While simple, point clouds fail
to capture local scene structure, are noisy, and fail to cap-
ture negative (non-surface) information about the scene. This
information is crucial to scene reconstruction under high lev-
els of noise (Klingensmith et al. 2014). To deal with these
problems, other recent works have added surface normal and
patch size information to the point cloud (called surfels),
which are filtered to remove noise. Surfels have been used
in other large-scale 3D mapping systems, such as Whelan
et al. (2015) Elastic Fusion. However in this work, we are
interested in volumetric, rather than point-based approaches
to surface reconstruction.

Elfes (1989) introduced Occupancy GridMapping, which
divides the world into a voxel grid containing occupancy
probabilities. Occupancy grids preserve local structure, and
gracefully handle redundant and missing data. While more
robust than point clouds, occupancy grids suffer from alias-
ing, and lack information about surface normals and the
interior/exterior of obstacles.

Attempts to extend occupancy grid maps to 3D have
sometimes relied on octrees. Rather than storing a fixed-
resolution grid, octrees store occupancy data in a spatially
organized tree. In typical scenes, octrees reduce the required
memory over occupancy grids by orders of magnitude.
Octomap (Wurm et al. 2010) is a popular example of the
octree paradigm. However, octrees containing only occu-
pancy probability suffer from many of the same problems as
occupancy grids: they lack information about the interior and
exterior of objects, and suffer from aliasing. Further, octrees

suffer from logarithmic reading, writing, and iteration times,
and have very poor memory locality characteristics.

Curless and Levoy (1996) created an alternative to occu-
pancy grids called the Truncated Signed Distance Field
(TSDF), which stores a voxelization of the signed distance
field of the scene. The TSDF is negative inside obstacles, and
positive outside obstacles. The surface is given implicitly as
the zero isocontour of the TSDF. While using more memory
than occupancy grids, the TSDF creates much higher-quality
surface reconstructions by preserving local structure.

Newcombe et al. (2011) uses a TSDF to simultaneously
extract the pose of a moving depth camera and scene geom-
etry in real-time. Making heavy use of the GPU for scan
fusion and rendering,Fusion is capable of creating extremely
high-quality, high-resolution surface reconstructions within
a small area. However, like occupancy grid mapping, the
algorithm relies on a single fixed-size 3D voxel grid, and
thus is not suitable for reconstructing very large scenes due
to memory constraints. This limitation has generated interest
in extending TSDF fusion to larger scenes. Moving window
approaches, such as Kintinuous Whelan et al. (2013) extend
Kinect Fusion to larger scenes by storing amoving voxel grid
in the GPU. As the camera moves outside of the grid, areas
which are no longer visible are turned into a surface repre-
sentation. Hence, distance field data is prematurely thrown
away to save memory. As we want to save distance field data
so it can be used later for post-processing, motion planning,
and other applications, a moving window approach is not
suitable.

Recent works have focused on extending TSDF fusion
to larger scenes by compressing the distance field to avoid
storing and iterating over empty space. Many have used hier-
archal data structures such as octrees or KD-trees to store the
TSDF (Zeng et al. 2013; Chen et al. 2013). However, these
structures suffer from high complexity and complications
with parallelism.

An approach by Nießner et al. (2013) uses a two-layer
hierarchal data structure that uses spatial hashing (Teschner
et al. 2003) to store the TSDF data. This approach avoids
the needless complexity of other hierarchical data structures,
boastingO(1) queries, and avoids storing or updating empty
space far away from surfaces.

Our system adapts the spatially-hashed data structure of
Nießner et al. (2013) to Tango devices. By carefully consid-
ering what parts of the space should be turned into distance
fields at each timestep, we avoid needless computation and
memory allocation in areas far away from the sensor. Unlike
Nießner et al. (2013), we do not make use of any general pur-
pose GPU computing. All TSDF fusion is performed on the
mobile processor, and the volumetric data structure is stored
on the CPU. Instead of rendering the scene via raycasting,
we generate and maintain a polygonal mesh representation,
and render the relevant segments of it. Since the depth sen-
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Fig. 4 Comparison of depth output from the Project Tango mobile
phone (a) and tablet (b), as well as a reference color image (c). The
phone produces a depth image similar in density and quality to a Kinect

camera. The tablet produces a point cloud with much fewer readings
than on the mobile phone. Creating a depth image using the tablet’s
infra-red camera intrinsic parameters results in significant image gaps

sor found on the Tango device is significantly noisier than
other commercial depth sensors, we reintroduce space carv-
ing (Elfes 1989) from occupancy grid mapping (Sect. 4.3)
and dynamic truncation (Nguyen et al. 2012) (Sect. 4.2) into
the TSDF fusion algorithm to improve reconstruction quality
under conditions of high noise. The space carving and trun-
cation algorithms are informed by a parametric noise model
trained for the sensor using the method of Nguyen et al.
(2012).

A preliminary version of this work was recently published
(Klingensmith et al. 2015). Since then, we have released an
open-source implementation of the mapping system1 that
has been used by other works to produce large-scale 3D
reconstructions, most notably by Schöps et al. (2015). Other
mapping systems targetingmobile devices have convergedon
similar solutions. Notably, Kähler et al. (2015) use a voxel
hashing TSDF approach on a similar tablet device.

3 Platform

3.1 Hardware

We designed our system to work with two different
platforms—the Project Tango cell phone and tablet (Fig. 2).
The cell phone has a Qualcomm Snapdragon CPU and 2GB
of RAM. The tablet has an NVIDIA Tegra K1 CPU with
4GB of RAM.

The two devices have a very similar set of integrated sen-
sors. The sensors are listed in Fig. 3 (left). The devices have a
low-cost inertial measurement unit (IMU), consisting of a tri-
axis accelerometer and tri-axis gyroscope, producing inertial
data at 120Hz. Next, the devices have a a wide-angle (close
to 180◦), monochrome, global-shutter camera. The camera’s
wide field of view make it suitable for robust feature track-
ing. The IMU and wide-angle camera form the basis of the
built-in motion tracking and localization capabilities of the

1 http://www.github.com/personalrobotics/OpenChisel.

Tango devices. We do not use the IMU data or this camera’s
images directly in our system.

Next, the devices have a high-resolution color camera,
capable of producing images at 30Hz. This camera is not
used for motion tracking or localization, and we employ it in
our system for adding color to the reconstructions.

Finally, both devices have a built-in depth sensor, based
on structured infrared light. Both depth sensors on the two
devices operate at a frequency of 5Hz, but produce data
with different characteristics. The cell phone produces depth
images similar in density and coverage to those from aKinect
(albeit at a lower, QVGA resolution). On the other hand, the
tablet produces data which is much sparser, as well as with
poorer coverage on IR-absorbing surfaces (see Fig. 4). The
data on the tablet arrives directly in the form of a point cloud.
Point observations are calculated by using an IR camera and
detecting features from an IR illumination pattern at sub-
pixel accuracy. Converting to a depth image can be done by
using the focal length of the tablet’s IR camera as a refer-
ence. However, this produces a depth image with significant
gaps (Fig. 4b). Creating a depth image with fewer and larger
pixels eliminates the gaps, at the cost of the loss of angular
resolution for each returned 3D point. Any algorithm we use
must be aware of the data peculiarity.

3.2 Integrated motion estimation

Project Tango devices come with a built-in 30Hz visual-
inertial odometry (VIO) system, which we use as the main
source of our pose estimation. The system is based on the
work of Hesch et al. (2014). It fuses information from the
IMU with observations of point features in the wide-angle
camera images using a multi-state constraint Kalman filter
(Mourikis and Roumeliotis 2007). The VIO system provides
the pose of the device base frame B with respect to a global
frame G at time t :GBT t . We are also provided the (constant)
poses of the depth camera D and the color camera C with
respect to the device base, B

DT and B
CT respectively.

The first issue worth noting is that the VIO pose informa-
tion, depth data, and color images all arrive asynchronously.
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To resolve this, when a depth or color data arrives with a
timestamp t ′, we buffer it and wait until we receive at least
one VIO pose G

BT t such that t ≥ t ′, and at least one pose
such that t ≤ t ′. Then, we linearly interpolate for the pose
between the two VIO readings.

The second issue is that like any open-loop odometry sys-
tem, Project Tango’s VIO pose is subject to drift. This can
result in model inaccuracies as the user revisits previously-
scanned parts of the scene.

4 Theory

4.1 The signed distance function

We model the world based on a volumetric Signed Distance
Function (SDF), denoted byD : R3 → R (Curless andLevoy
1996). For any point in the world x, D(x) is the distance to
the nearest surface, signed positive if the point is outside
of objects and negative otherwise. Thus, the zero isocontour
(D = 0) encodes the surfaces of the scene. The Truncated
Signed Distance Function (TSDF), denoted byΦ : R3 → R,
is an approximation of the SDF which stores distances to
the surface within a small truncation distance τ around the
surface (Curless and Levoy 1996):

Φ(x) =

⎧
⎪⎨

⎪⎩

D(x) if |D(x)| ≤ τ

τ if D(x) > τ

−τ if D(x) < τ

(1)

Consider an ideal depth sensor observing a point p on the
surface of an object, which is a distance r away from the
sensor origin.

r ≡ ‖p‖ (2)

Let x be a point which lies along the observation ray. The
pointsp andx are expressedwith respect to the sensor’s frame
of reference. We define the auxiliary parameters d (distance
from sensor to x) and u (distance from x to p):

d ≡ ‖x‖ (3a)

u ≡ r − ‖x‖ (3b)

Thus, u is positive when x lies between the camera and the
observation, and negative otherwise (see Fig. 5).

Let φ(x,p) be the observed TSDF for a point x, given
an observation p. Near the surface of the object, where |u|
is small (within ±τ ), the signed distance function can be
approximated by the distance along the ray to the endpoint
of the ray. This is because we know that there is at least one
point of the surface, namely the endpoint of the ray.

d
x p

u

Object surfaceDepth sensor

Fig. 5 Observation ray geometry. The depth sensor is observing a point
p on the surface of an object. A point x, which lies on the observation
ray, is a distance d from the sensor origin, and a distance u from the
observation p

φ(x,p) ≈ u (4)

Note that this approximation is better whenever the ray is
approximately perpendicular to the surface, and worst when-
ever the ray is parallel to the surface. Because of this, some
works (Bylow et al. 2013) instead approximate φ by fitting
a plane around p, and using the distance to that plane as a
local approximation:

φ(x,p) ≈ −u(p · np) (5)

where np is the local surface normal at p. In general, the
planar approximation (5) is much better than the point-wise
approximation (4), especiallywhen surfaces are nearly paral-
lel to the sensor but computing surface normals is not always
computationally feasible. Both approximations of φ are
defined only in the truncation region of d ∈ [r − τ, r + τ ].

We are interested in estimating the value of the TSDF from
subsequent depth observations at discrete time instances.
Curless and Levoy (1996) show that by taking a weighted
running average of the distance measurements over time, the
resulting zero-isosurface of the TSDF minimizes the sum-
squared distances to all the ray endpoints. Following their
work, we introduce a weighting function W : R

3 → R
+.

Similarly to the TSDF, the weighting function is defined only
in the truncation range.We draw the weighting function from
the uncertaintymodel of the depth sensor. The filter is defined
by the following transition equations:

Φk+1(x) = Φk(x)Wk(x) + φk(x,p)wk(x,p)

Wk(x) + wk(x,p)
(6a)

Wk+1(x) = Wk(x) + wk(x,p) (6b)

where for any point x within the truncation region, Φ(x)
and W(x) are the state TSDF and weight, and φ and w are
the corresponding observed TSDF and observation weight
according to the depth observation p. The filter is initialized
with

Φ0(x) = undefined (7a)

W0(x) = 0 (7b)

for all points x.
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Ideally, the distance-weighting functionw(x,p) should be
determined by the probability distribution of the sensor, and
should represent the probability that φ(x,p) = 0. It is possi-
ble (Nguyen et al. 2012) to directly compute the weight from
the probability distribution of the sensor, and hence com-
pute the actual expected signed distance function. In favor of
better performance, linear, exponential, and constant approx-
imations of w can be used (Bylow et al. 2013; Curless and
Levoy 1996; Newcombe et al. 2011; Whelan et al. 2013).

In our work, we use a constant approximation. The
function is only defined in the truncation region d ∈
[r − τ, r + τ ], and normalizes to 1:

∫ r+τ

r−τ

w(x,p) dd = 1 (8)

4.2 Dynamic truncation distance

Following the approach of Nguyen et al. (2012), we use a
dynamic truncation distance based on the noise model of the
sensor rather than a fixed truncation distance. In this way, we
have a truncation function:

τ(zuv) = βσ(r) (9)

where σ(r) is the standard deviation for an observation with
a range r , and β is a scaling parameter which represents
the number of standard deviations of the noise we want to
integrate over. For the sake of simplicity, we approximate the
range-based deviation using the sensor model for the depth-
depth based deviation σ(zuv), which we derived previously
(34b).

σ(r) ≈ σ(z) (10)

Using the dynamic truncation distance has the effect that fur-
ther away from the sensor, where depth measurements are
less certain and sparser, measurements are smoothed over a
larger area of the distance field. Nearer to the sensor, where
measurements are more certain and closer together, the trun-
cation distance is smaller.

The constant weighting function thus becomes

w(x,p) = 1

2 τ(r)
= 1

2 β σ(z)
(11)

where z is the z-component of p.

4.3 Space carving

When depth data is highly noisy and sparse, the relative
importance of negative data (that is, information about what
parts of the space do not contain an obstacle) increases over
positive data (Elfes 1989; Klingensmith et al. 2014). This is
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Fig. 6 The probability model for a given depth observation p. The
model consist of a hit probability P(d = r) and pass probability P(d <

r), plotted against the distance d along the ray.Wedefine two integration
regions: a space carving region [rmin, r − τ) and the truncation region
[r − τ, r + τ ], where rmin is the minimum depth camera range, and τ

is the truncation distance

because rays passing through empty space constrain possible
values of the signed distance field to be positive at all points
along the ray, whereas rays hitting objects only inform us
about the presence of a surface very near the endpoint of the
ray. In this way, rays carry additional information about the
value of SDF.

So far, we have defined the TSDF observation func-
tion φ only within the truncation region, defined by d ∈
[r − τ, r + τ ]. We found that it’s highly beneficial to aug-
ment the region in which the filter operates by [rmin, r − τ),
where rmin is the minimum observation range of the camera
(typically around 40cm). We refer to this new region as the
space carving region. The entire operating region for filter
updates thus becomes the union of the space carving and
truncation regions: [rmin, r + τ ] (Fig. 6).

One way to incorporate space-carving observations into
the filter is to treat them as an absolute constraint on the
values of the TSDF, and “reset” the filter.

Φk+1(x) = τ(r) (12a)

Wk+1(x) = 0 (12b)

However, since it only takes one noisy depth measurement to
incorrectly clear a voxel in this way (even when many previ-
ous observations indicate that a voxel is occupied),we instead
choose to incorporate space-carving observations into the
TSDF filter by treating them as regular observations. To do
so, we must assign a TSDF value φ and weight w to points
within the space-carving region (φ and w have so far been
defined only within the truncation region). We choose the
following values:

w(x,p) = τ if d ∈ [rmin, r − τ) (13a)

w(x,p) = wsc if d ∈ [rmin, r − τ) (13b)

where wsc is a fixed space-carving weight.
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Space carving gives us two advantages: first, it dramat-
ically improves the surface reconstruction in areas of very
high noise, especially around the edges of objects (see
Fig. 18). Further, it removes some inconsistencies caused
by moving objects and localization errors. If space carving is
not used, moving objects appear in the TSDF as permanent
blurs, and localization errors result in multiple overlapping
isosurfaces appearing. With space carving, old inconsistent
data is removed over time.

4.4 Colorization

As in Bylow et al. (2013) and Whelan et al. (2013), we cre-
ate textured surface reconstructions by directly storing color
as volumetric data. We augment our model of the scene to
include a color function � : R

3 → RGB, with a corre-
sponding weight G : R3 → R

∗. We assume that each depth
observation ray also carries a color observation, taken from
a corresponding RGB image. As in Bylow et al. (2013), we
have chosenRGBcolor space for the sake of simplicity, at the
expense of color consistency with changes in illumination.

Color is updated in exactly the same manner as the TSDF.
The update equation for the color function is

�k+1(x) = �k(x)Gk(x) + ψk(p)gk(x,p)

Gk(x) + gk(x,p)
(14a)

Gk+1(x) = Gk(x) + gk(x,p) (14b)

where for any point x within the truncation region, �(x) and
G(x) are the state color and color weight, andψ and g are the
corresponding observed color and color observation weight.

In both Bylow et al. (2013) and Whelan et al. (2013), the
color weighting function is proportional to the dot product of
the ray’s direction and an estimate of the surface normal. But
since surface normal estimation is computationally expen-
sive, we instead use the same observation weight for both
the TSDF and color filter updates:

g(x,p) = w(x,p) (15)

Wemust also dealwith the fact that color images and depth
data are asynchronous. In our case, depth data is oftendelayed
behind color data by as much as 30ms. So, for each depth
scan, we project the endpoints of the rays onto the nearest
color image in time to the depth image, accounting for the
different camera poses due to movement of the device. Then,
we use bilinear interpolation on the color image to determine
the color of each ray.

4.5 Discretized data layout

We use a discrete approximation of the TSDF which divides
the world into a uniform 3D grid of voxels. Each voxel con-

16-bit
NTSDF

16-bit
NTSDF weight

24-bit
color

8-bit
color weight

32-bit NTSDF voxel 32-bit color voxel

Fig. 7 Memory layout for a single voxel

tains an estimate of the TSDF and an associatedweight.More
precisely, we define the Normalized Truncated Signed Dis-
tance Function (NTSDF), denoted by Φ : Z

3 → Z. For

discrete voxel coordinate v = [
vi , v j , vk

]T, the NTSDF
Φ(v) is the discretized approximation of the TSFD, scaled by
a normalization constant λ. We similarly define a discretized
weight, denoted by W : Z3 → Z

+, which is the weight W
scaled by a constant γ .

Φ(v) = �λΦ(x)
 (16a)

W(v) = �γW(x)
 (16b)

v =
⌊
1

sv
x
⌉

(16c)

where sv is the voxel size in meters, and � 
 is the round-to-
nearest-integer operator.

In our implementation, the NTSDF and weight are packed
into a single 32-bit structure. The first 16bits are a signed
integer distance value, and the last 16bits are an unsigned
integer weighting value. Color is similarly stored as a 32bit
integer, with 8bits per color channel, and an 8bit weight
(Fig. 7). A similar method is used in Bylow et al. (2013),
Handa et al. (2015) and Lorensen and Cline (1987) to store
the TSDF.

We choose λ in a way to maximize the resolution in the
16-bit range

[−215, 215
)
. By definition, the maximum TSDF

value occurs at the maximum truncation distance. The trun-
cation distance is a function of the reading range (9). The
maximum reading range rmax is a fixed parameter of the
depth camera usually chosen at around 3.5–4m. Thus, we
can define λ as:

λ = 215τ(rmax) (17)

This formulation guaranteesΦ utilizes the entire
[−215, 215

)

range.
We similarly choose γ to maximize the weight resolution.

By the definition of our sensor model, the lowest possible
weight Wmin occurs at the maximum truncation distance
τ(rmax). We define that weight to be 1, and scale the rest
of the range accordingly:
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γ = 1

Wmin
(18)

This formulation guarantees W ≥ 1.

4.6 Discretized data updates

We define the weighted running average filter (WRAF) as
a discrete-time filter for an arbitrary state quantity X and
weightW with observation x and observation weight w with
the following transition equations:

Xk+1 = XkWk + xkwk

Wk + wk
X, x ∈ R (19a)

Wk+1 = Wk + wk W, w ∈ R
+ (19b)

In Sect. 4, we applied this filter to both the TSDF and color
updates. However, since we store the data using integers,
we need to define a discrete weighted running average filter
(DWRAF) as a variation of the ideal WRAF where the state,
observation, and weights are integers:

X̃k = XkWk + xkwk

Wk + wk
X, x ∈ Z, X̃ ∈ R (20a)

Xk+1 = ⌊
X̃k

⌉
(20b)

Wk+1 = Wk + wk w ∈ Z
∗, w ∈ Z

+ (20c)

The observation weight is a strictly positive integer, while
the the state weight is a non-negative-integer (allowing the
filter to be initialized with zero weight, corresponding to an
unknown state).

We further define the the observation delta between the
observation and the current state as:

Δxk ≡ xk − Xk (21)

where Δx ∈ R.
It can be shown that due to the rounding step in (20b),

when the state weight is greater than or equal to twice the
observation delta, then the state transition delta will be zero
(the state remains the same).

wk ≥ 2|Δxk | �⇒ Xk+1 = Xk (22)

This means that for any given state weight, there exists a
minimum observation delta, and observations which are too
close to the state will effectively be ignored. Since the state
weight is monotonically increasing with each filter update,
the minimum observation delta grows over time, causing the
filter to ignore a wider range of observations.

Consider the examplewhen thefilter state X ∈ [−215, 215
]

represents TSDF in the range [−0.10, 0.10]m. When the
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Fig. 8 Convergence behavior of the ideal weighted running average
filter (WRAF), discreteWRAF, andmodified discreteWRAF. The filter
starts with a state weight of 5, and receives a series of updates with a
constant observation weight w of 1 and a constant observation x of 100

filter has received 100 observations, each with an obser-
vation weight of 1, the minimum observation delta will be
approximately 0.15mm. At 10,000 observations, the mini-
mum observation delta is 1.5 cm, etc. If observations with
higher weights go in, the minimum observation delta will
grow even quicker.

The problem is much more significant with smaller dis-
crete spaces, such as colors discretized in the X ∈ [0, 255]
range.Afilterwith a stateweight of 100will require an obser-
vation delta of 50, or approximately 20% color difference,
in order to change its state. Once the state weight reaches
510, the filter will enter a steady state, and no subsequent
observations will ever perturb it.

One way to deal with this issue is to impose an artifi-
cial upper maximum on the state weight, and prevent it from
growing beyond that with new updates. This guarantees that
the minimum observation delta is bound. This is a straight-
forward solution which might work for the distance filter, but
not for the color filter, where the maximum weight would
have to be set very low. We propose a different solution,
which modifies the state transition equation (20b) to guaran-
tee a response even at high state weights:

Xk+1 =

⎧
⎪⎨

⎪⎩

Xk + 1 X̃k − Xk ∈ (0, 0.5)

Xk − 1 X̃k − Xk ∈ (−0.5, 0)
⌊
X̃k

⌉
, otherwise

(23)

This preserves the behavior of the DWRAF, except in the
cases when the the rounding would force the new state to be
the same as the old one. In those cases, we enforce a state
transition delta of 1 (or −1).

The three different filter behaviors (idealWRAF,DWRAF,
and modified DWRAF) are illustrated in Fig. 8. We simulate
a filter update scenario where the filter starts with a state
weight of 5, and receives a series of updates with a constant
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observation weight w of 1 and a constant observation x of
100. The ideal WRAF exhibits an exponential convergence
towards 100. The DWRAF approximates the convergence
curve using piecewise-linear segments; once it reaches the
saturation weight, it becomes clamped at 85. The modified
DWRAF behaves like the DWRAF, except in the last seg-
ment, where it forces a linear convergence with a rate of 1.

In our implementation, we use themodifiedDWRAFfilter
implementation for the NTSDF and color updates.

4.7 Dynamic spatially-hashed volume grid

Unfortunately, a flat volumetric representation of the world
using voxels is incredibly memory intensive. The amount of
memory storage required grows as O(N 3) , where N is the
number of voxels per side of the 3D voxel array. For example,
at a resolution of 3cm, a 30m TSDF cube with color would
occupy 8GB of memory. Worse, most of that memory would
be uselessly storing unseen free space. Further, if we plan
on exploring larger and larger distances using the mobile
sensor, the size of the TSDF array must grow if we do not
plan on allocating enough memory for the entire space to be
explored.

For a large-scale real-time surface reconstruction applica-
tion, a less memory-intensive and more dynamic approach
is needed. Confronted with this problem, some works have
either used octrees (Wurm et al. 2010; Zeng et al. 2013; Chen
et al. 2013), or use a moving volume (Whelan et al. 2013).
Neither of these approaches is desirable for our application.
Octrees, while maximally memory efficient, have significant
drawbacks when it comes to accessing and iterating over the
volumetric data (Nießner et al. 2013). Every time an octree
is queried, a logarithmic O(M) cost is incurred, where M is
the depth of the Octree. In contrast, queries in a flat array are
O(1). An octree stores pointers to child octants in each parent
octant. The octants themselvesmay be dynamically allocated
on the heap. Each traversal through the tree requires O(M)

heap pointer dereferences in the worst case. Even worse,
adjacent voxels may not be adjacent in memory, resulting in
very poor caching performance (Chilimbi et al. 2000). Like
Nießner et al. (2013), we found that using an octree to store
the TSDF data to reduce iteration performance by an order
of magnitude when compared to a fixed grid.

Instead of using an Octree, moving volume, or a fixed
grid, we use a hybrid data structure introduced by Nießner
et al. (2013). The data structure makes use of two levels
of resolution: volumes and voxels. Volumes are spatially-
hashed (Chilimbi et al. 2000) into a dynamic hash map. Each
volume consists of a fixed grid of Nv

3 voxels, which are
stored in a monolithic memory block. Volumes are allocated
dynamically from a growing pool of heap memory as data is
added, and are indexed in a spatial 3D hash map (Chilimbi
et al. 2000) by their spatial coordinates. As in Chilimbi et al.

1, 4, 0

0, 0, 0

0, 1, 0 1, 1, 0

2, 2, 0

2, 3, 0

2, 4, 0

1, 3, 0

1, 2, 0

0

1

2

4

…

Hash mapVolume grid TSDF voxel grid

Mesh segment

Fig. 9 Thedynamic spatially-hashedvolumegrid data structure. Space
is subdivided into coarse volumes (left). Volumes are indexed in a hash
table (center). Each volume contains a bounded voxel grid and a mesh
segment, corresponding to the isosurface in that volume (right)

(2000) and Nießner et al. (2013) we use the hash function:
hash(x, y, z) = p1x ⊕ p2y ⊕ p3z mod n, where x, y, z
are the 3D integer coordinates of the chunk, p1, p2, p3 are
arbitrary large primes, ⊕ is the xor operator, and n is the
maximum size of the hash map.

Since volumes are a fixed size, querying data from the
hybrid data structure involves rounding (or bit-shifting, if Nv

is a power of two) a world coordinate to a chunk and voxel
coordinate, and then doing a hash-map lookup followed by an
array lookup. Hence, querying isO(1) (Nießner et al. 2013).
Further, since voxels within chunks are stored adjacent to one
another in memory, cache performance is improved while
iterating through them. By carefully pre-selecting the size of
volumes so that they corresponding to τmax, we only allocate
volumetric data near the zero isosurface, and do not waste as
much memory on empty or unknown voxels.

Additionally, each volume also contains a mesh segment,
represented by a list of vertices and face index triplets. The
mesh may also optionally contain per-vertex color. Each
mesh segment corresponds to the isosurface of the NTSDF
data stored in the volume. The layout of the data structure is
shown in Fig. 9.

4.8 Gradient-based dense alignment

To account compensate for VIO drift, we calculate a cor-
rection to the VIO pose by aligning the depth data to the
isosurface (Φ = 0) of the TSDF field. We denote this cor-
rection by G

GT t , corresponding to the pose of the the global
frameG with respect to the corrected global frameG, at time
t . This correction is initialized to identity, and is recalculated
with each new depth scan which arrives, as described in the
following subsection.
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When a new point cloud P = {pi } is available, we calcu-
late the predicted position of all the points, using the previous
correction G

GT t−1 and the current VIO pose G
BT t :

Gpi = G
GT t−1

G
BT t

B
DT t

Dpi (24)

Let there be some error function e(P)which describes the
deviation of the point cloud from the model isosurface, and
a corresponding transformation ΔT , which, when applied to
the point cloud, minimizes the error.

arg min
ΔT

e(P) (25)

OnceweobtainΔT , we can apply it to the previous corrective
transform in order to estimate the new correction:

G
GT t = ΔT G

GT t−1 (26)

It remains to be shown how to formulate the error function
and the minimization calculation. We do this by modifying
the classic iterative closest point (ICP) problem (Chen and
Medioni 1991), using the gradient informaiton from the voxel
grid. For each point pi in the point cloud P , there exists some
point mi , which is the closest point to pi on the isosurface.
We can therefore define the per-point error e(pi ) and total
weighted error e(P) as:

e(pi ) = ‖mi − ΔT Gpi‖2 (27a)

e(P) =
∑

i

(
wi e(pi )

)
(27b)

Next, we must find an appropriate value for mi . The ICP
algorithm accomplishes this by doing a nearest-neighbor
search into a set of model points. Instead, we will use the
TSDF gradient. By the TSDF definition, the distance from
any point pi to the closest surface is given by the TSDF value.
The direction towards the closest point is directly opposite
the TSDF gradient. Thus,

m ≈ − ∇Φ(p)

‖∇Φ(p)‖Φ(p) (28)

We can look up the gradient information in O(1) time per
point. Therefore, this algorithm performs faster than the
classical ICP formulation, which requires nearest-neighbor
computations.

We approximate the gradient∇Φ by taking the difference
between the corresponding TSDF for that voxel and and its
three positive neighbors along the x , y, and z dimensions.
Note that the approximations only holds when the TSDF
has a valid value, which only occurs at distances up to the

Fig. 10 Trajectories calculated online using Project Tango’s visual-
inertial odometry (VIO), as well as the proposed dense alignment
correction (VIO+DA)

truncation distance τ away from the surface. This limits the
convergence basin for the minimization to areas in space
where Φ(pi) < τ . However, as long as each new VIO pose
has a linear drift magnitude less then τ from the last cal-
culated aligned pose, we are generally able to converge to
the right corrected position. In practice, the approximation
in (28) becomes better the closer we are to the surface. Thus,
we perform the minimization iteratively, recalculating the
corresponding points at each iteration.

Since we are aligning against a persistent global model,
this effectively turns the open-loop VIO pose estimation into
a closed-loop pose estimation. We found that in practice, the
VIO pose is sufficiently accurate for reconstructing small
(room-sized) scenes, if areas are not revisited. Using the pro-
posed dense alignment method, we are able to correct for
drift and “close” loops in mid-sized environments such as an
apartment with several rooms. Figure 10 shows a compar-
ison between the visual-inertial odometry (VIO) trajectory,
as well as the corrected trajectory calculated using the dense
alignment (DA). Figure 11 shows different views of the scene
from the same experiment. Enabling dense alignment results
in superior reconstruction quality.

5 Scan fusion

Updating the data structure requires associating voxels with
the observations that affect them. We discuss two algorithms
which can be used to accomplish this: voxel traversal and
voxel projection, and compare their advantages and draw-
backs.
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Fig. 11 Comparisonof reconstructions using the trajectories inFig. 10.
Usingdense alignment results in superior reconstructionquality.aWith-
out dense alignment. bWith dense alignment

5.1 Voxel traversal

The voxel traversal algorithm is based on raytracing (Ama-
natides and Woo 1987), and is described by Algorithm 1.
For each each depth measurement, we begin by performing
a raytracing step on the coarse volume grid to determine the
affected volumes and make sure all of them are allocated.
Next, we raytrace along the voxel grid of each affected vol-
ume, and update each visited voxel’s NTSDF (if they lie in
the voxel carving region), or NTSDF and color (if they lie in
the truncation region). We can choose the raytracing range
for each observation to either [rmin, r + τ ] or [r − τ, r + τ ],
depending on whether we want to perform voxel carving
or not. The latter range will only allocate volumes and tra-
verse voxels inside the truncation region, gaining speed and
memory at the cost of reconstruction quality. For each voxel
visited by the traversal algorithm, we calculate the effective
voxel range d, which is average of the entry range din and
exit range dout, corresponding to the distances at which the
ray enters and exits the voxel.

Let ρv be the linear voxel density, equal to the inverse
of the voxel size sv . the computational complexity of the
voxel traversal algorithm becomes O(|P| ρv), where |P| is
the number of observations in the point cloud P (or, if using a
depth image, the number of pixelswith a valid depth reading).

This formulation of voxel traversal makes the approxima-
tion that each depth observation can be treated as a ray. As a

Algorithm 1 Voxel traversal fusion
1: � For each point observation:
2: for p ∈ P do
3: � Find all volumes intersected by observation.
4: V ← RaytraceVolumes()
5: � Ensure all volumes are allocated
6: AllocateVolumes(V)

7: � Find all voxels intersected by observation.
8: X ← RaytraceVoxels()
9: � For each intersected voxel:
10: for v ∈ X do
11: din ← ‖vin − o‖ � Voxel entry range
12: dout ← ‖vout − o‖ � Voxel exit range
13: d ← 0.5(dout − din) � Effective voxel range
14: r ← ‖p‖ � Measured range
15: τ ← τ(r) � Truncation distance
16: if d ∈ [τmin, r − τ) then
17: � Inside space carving region:
18: UpdateNTSDF(τ, wSC)

19: else if d ∈ [r − τ, r + τ ] then
20: � Inside truncation region:
21: w ← 1

2τ � Observation weight
22: c ← Color({u, v}) � Observation color
23: UpdateNTSDF(u, w)

24: UpdateColor(c, w)

result, as the depth rays diverge further away from the sensor,
some voxels might not be visited. A more correct approxi-
mation would be to treat each depth observation as a narrow
pyramid frustum, and calculate the voxels which the frustum
intersects. However, this comes with a significantly greater
computational cost.

5.2 Voxel projection

The voxel projection algorithm, described by Algorithm 2,
works by projecting points from the voxel grid onto a 2D
image. As such, it requires that the depth data is in the form
of a depth image, with a corresponding projection matrix.
Voxel projection has been used by Bylow et al. (2013), Klin-
gensmith et al. (2014) and Nguyen et al. (2012) for 3D
reconstruction. The algorithm is analogous to shadow map-
ping (Scherzer et al. 2011) from computer graphics, where
raycast shadows are approximated by projecting onto a depth
map from the perspective of the light source, except in our
case, shadows are regions occluded from the depth sensor.

In order to perform voxel projection, we must iterate over
all the voxels in the scene. This is, of course, both computa-
tionally expensive and inefficient. Themajority of the iterated
voxels will not project on the current depth image.Moreover,
due to the nature of the two-tier data structure, some voxels
of interest might not have been allocated at all. Thus, as a pre-
liminary step, we determine the set of all potentially affected
volumes V in the current view. We do this by calculating the
intersection between the current depth camera frustum and
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Algorithm 2 Voxel projection fusion
1: � Find all volumes in current frustum.
2: V ← FrustumIntersection()

3: � Ensure all volumes are allocated.
4: AllocateVolumes(V)

5: � For each intersected volume:
6: for V ∈ V do
7: � For each voxel centroid in volume:
8: for vc ∈ V do
9: d ← ‖vc − o‖ � Effective voxel range
10: {u, v} ← Project(vc) � Measurement pixel
11: p ← InvProject(u, v, zuv) � Measurement 3D point
12: r ← ‖p‖ � Measured range
13: τ ← τ(r) � Truncation distance
14: if d ∈ [τmin, r − τ) then
15: � Inside space carving region:
16: UpdateNTSDF(τ, wSC)

17: else if d ∈ [r − τ, r + τ ] then
18: � Inside truncation region:
19: w ← 1

2τ � Observation weight
20: c ← Color({u, v}) � Observation color
21: UpdateNTSDF(u, w)

22: UpdateColor(c, w)

23: � Clean up volumes that did not receive updates.
24: GarbageCollection(V)

the volume grid. The far plane of the frustum is at a distance
of rmax+τ(rmax), where rmax is the maximum camera range.

Next, we iterate over the voxels of all potentially affected
volumes. We approximate the effective voxel range d as the
distance from the voxel’s centroid to the camera origin. By
projecting the voxel onto the depth image, we can obtain a
pixel coordinate and corresponding depth zuv , from which
we can calculate the observed range r . The rest of the algo-
rithm proceeds analogous to voxel traversal: we check the
region that this voxel belongs to, and conditionally update its
NTSDF and color.

Finally, we perform a garbage collection step, which iter-
ates over all the potentially affected volumes V and discards
volumes that did not receive any updates to any of their vox-
els.

The computational complexity of the algorithm is
O(|V| ρ3

v ), where |V| is the number of volume candidates,
and ρ3

v is the number of voxels in a unit of 3D space.
This formulation of voxel projection approximates each

voxel as its centroid point. Thus, the estimation of the effec-
tive voxel range can have an error of up to

√
3/2 sv (half the

voxel’s diagonal). Furthermore, each voxel will only project
onto a single depth pixel, receiving a single update. Com-
pare that to voxel traversal, where a single voxel might be
updated by multiple depth rays passing through it, thus aver-
aging the observations from all of them. At the resolution
that were interested in (around 3cm) these approximations
lead to worse reconstruction quality than the approximations
used in voxel traversal fusion.

Table 1 Comparison of fusion algorithms

Algorithm Voxel traversal Voxel projection

Complexity O(|P| ρv) O(|V| ρ3
v )

Approximations Depth observations
approximated as
rays

Voxel range approximated
by the voxel centroid;
Each voxel projects to a
single depth observation

Approximation
effects

Integration gaps far
from the camera

Aliasing effects with larger
voxels

Observations

Volumes

Fig. 12 Bipartite graph showing an example relationship between a
set of point observations and the volumes which they affect

We summarize the properties of the two algorithms in
Table 1.

5.3 Parallelization

Wepresent amethod to parallelize the scan fusion algorithms,
so that scan fusion can take advantage of multi-threading and
the multi-core architecture of the mobile devices.

Voxel projection fusion is straight-forward to implement
in a parallel way. The frustum intersection and volume allo-
cation are carried out serially. The outer loop in Algorithm 2
is parallelized so that each volume receives its own job. Vol-
umes are independent of one another—thus, each job owns
its own data, and no synchronization or locking is required.
The only data shared between the jobs is the depth image that
the volumes project onto and the camera extrinsic and intrin-
sic parameters. All of these are constant during any given
voxel projection execution.

Voxel traversal fusion is more challenging to parallelize.
We describe the parallelization problem in terms of a graph
problem. Consider the bipartite graph in Fig. 12, split
between the observation set P and the volume set V . The
serial version of the voxel traversal algorithm we have pre-
sented in Algorithm 1 iterates over all the points in P and
finds their corresponding affected volumes from V . Thus,
we can think of the algorithm as building a directed bipartite
graph, where the direction is from observation to volume.

A naive way to parallelize the traversal problem is to fol-
low with this direction of the bipartite graph and instantiate
a single job for each observation. This has the drawback that
each job needs write access to multiple volumes, and thus,
a locking mechanism is required in order to implement con-
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currency. Instead, we reorganize the problem by inverting the
direction of the bipartite graph so that each volume points
to all the observations which affect it. We perform this re-
indexing step serially. Next, we instantiate a job for each
affected volume, and fuse the data from all the observations
which it points to. Thus, we have restructured the problem so
that, similarly to parallelized voxel projection, we have the
volume as the unit of job separation. Choosing volumes over
observations as the job unit has another advantage: in the
datasets we used, there were anywhere between one and two
orders of magnitude more observations than corresponding
affected volumes. Having fewer jobs that run for longer is
preferable over having a greater number of shorter jobs, as
there is an overhead incurred by creating a job thread, as well
as frequent context switching.

It remains to be shown how the graph re-indexing step
affects the computational complexity of the voxel traversal
algorithm, which we have so far established to beO(|P| ρv).
The added complexity of this step is equal to the number of
edges in the graph. Since calculating an edge requires a ray-
tracing operation over the coarse volume grid for a given
observation, this gives us a total complexity of O(|P| ρvol),
where ρvol is the linear volume density. By definition, each
volume is bigger than the voxels it contains, and therefore
ρvol < ρv . Thus, the total computational complexity remains
the same. In practice, raytracing over the coarse grid is much
faster than raytracing over the voxel grids; therefore, the com-
putational overhead added by the re-indexing step isminimal,
and outweighed by the gain in parallelizing the fusion.

6 Mesh extraction and rendering

6.1 Online mesh extraction

We generate a mesh of the isosurface using the Marching
Cubes algorithm (Lorensen andCline 1987).Themeshvertex
location inside the voxel is determined by linearly interpolat-
ing the TSDF of its neighbors. Similarly, as in Bylow et al.
(2013) and Whelan et al. (2013), colors are computed for
each vertex by trilinear interpolation of the color field. We
can optionally also extract the per-face normals, which are
utilized in rendering.

We maintain a separate mesh for each segment for
each instantiated volume (Fig. 9). Meshing a given volume
requires iterating over all its voxels, as well as the border
voxels of its 7 positive neighbors (volumes with at least
one greater index along the x , y, or z dimension, and no
smaller indices). The faces which span the border across to
positive neighbors are stored with the mesh of the center
volume. Therefore, the top-most, right-most, and forward-
most bounding vertices of each mesh segment are duplicates
of the starting vertices of the meshes stored in its positive

neighbors. This is done to ensure that there are no gaps
between the mesh segments, and that when rendered, the
mesh appears seamless. Vertex duplication isn’t strictly nec-
essary, as we could accomplish this by indexing directly into
the neighboringmesh. However, direct indexingwould intro-
duce co-dependencies between parallel jobs.

We perform mesh extraction every time a new depth scan
is fused. As we have shown in Algorithms 1 and 2, the voxel
fusion algorithms estimate a set of volumes V , potentially
affected by the depth data.Mesh extraction is performed only
for those volumes. Thus, the computational complexity of
the meshing algorithm becomes O(|V| ρ3

v ). We parallelize
meshing similarly to how we parallelize fusion, by instan-
tiating a single marching cubes job per volume, and letting
jobs run concurrently. Since each job owns the data that it
is modifying (the triangle mesh), there are no concurrency
issues.

Parallelized meshing of only the affected volumes allows
us to maintain an up-to-date representation of the entire iso-
surface in real time. Still, we observed that a lot of time
is spent re-meshing volumes which are completely empty.
These volumes occur mostly between the sensor and the sur-
face, especially when we have voxel carving available. To
further decrease the time spent for meshing, we propose a
lazy extraction scheme which prunes a large portion of the
volumes. To do so, we augment the fusion algorithms to keep
track of a per-volume flag signifying whether the isosurface
has jumped across voxels since the last scan fusion. The flag
is set to true when at least one voxel in the current volume
receives an NTSDF update which changes its NTSDF sign.
The flag is cleared after each re-meshing.

The effect of the lazy extraction flag is that volumes with
no iso-surface, or where the isosurface did not move during
the last scan fusion, will not be considered for meshing. This
decreases the time spent extracting meshes, at the cost that
wemight not have themost up-to-date mesh available. As we
mentioned earlier, the position of the vertex inside a voxel is a
calculated using a linear interpolation with the NTSDF of its
neighbors. Thus, even if the isosurface doesn’t jump between
voxels, a depth scan fusion might move the vertices within
each voxel. Enabling lazy extraction means that at worst,
each vertex can be up to

√
3/2 sv (half a voxel diagonal)

away from its optimal position. Further, lazy extraction does
not consider updates to color, so color changes that do not
come with occupancy changes will not trigger re-meshing.

In practice, we found that the sub-optimality conditions
described above are triggered very rarely, and that lazily-
extracted meshes were indistinguishable from the optimal
meshes during real-time experiments.

At the end of each dataset collection trial, the user may
want to save a copy of the entire mesh. In those cases, we run
a single marching cubes pass across all the volumes in the
hashmap to produce a single, non-segmentedmesh. Thus the
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Fig. 13 Comparison of reconstruction performed online versus with offline bundle adjustment. The trajectory length is approximately 200m. The
corridor loop length is approximately 175m. a Online reconstruction, b after offline bundle-adjustment, c after offline bundle-adjustment (side
view)

final output mesh does not incur any of the approximations
we made for real-time meshing (duplicate vertices and lazy
extraction). After the final mesh is extracted, we perform
(optional) mesh simplification via the quadric error ver-
tex collapse algorithm (Garland and Heckbert 1997), which
reduces the number of mesh faces by a user-controllable
amount. Finally, we remove any isolated vertices which have
few neighbors within some small threshold radius. These
vertices typically occur when the sensor has a false depth
readings, occasionally resulting in “speckle” artifacts float-
ing around the scene.

6.2 Rendering

We render the mesh reconstruction using only simple fixed-
function pipeline calls on the devices graphics hardware. To
speed up rendering, we only consider mesh segments which
are inside the current viewport’s frustum. This is done using
frustum culling, analogous to how we use it in the voxel
projection algorithm (Algorithm 2). Further, we utilize a
simple level-of-detail (LOD) rendering scheme. Mesh seg-
ments which are sufficiently far away from the camera are
rendered as a single box, whose size and color are speci-
fied by the mesh segment’s bounding box and average vertex
color, respectively. “Sufficiently far away” is determined by
checking whether the projection of the corresponding mesh
volume exceeds a certain number of pixels on the screen.

7 Offline processing

7.1 Offline pose estimation

In larger scenes where the odometry can drift more, the
approach described in Sect. 4.8 will not be able to account
for drift errors. In situations like this, we perform an offline
post-processing step on device. The post processing requires
that we record the inertial, visual, and depth data to disk.
Given that the Project Tango devices have sufficient persis-
tent memory available (60 and 120GB for the cell phone

and tablet, respectively), this is not an issue. Once the data
collection is finalized, we replay the data and perform visual-
inertial bundle-adjustment on the trajectory (Nerurkar et al.
2014). The bundle adjustment solves a nonlinear weighted
least-squares minimization over the visual-inertial data to
jointly estimate the device pose and the 3D position of the
visual features. Correspondences between non-consecutive
keyframes (loop-closure) are established through visual fea-
ture matching (Lynen et al. 2014). Once the bundle-adjusted
trajectory is calculated,we rebuild the entireTSDFmapusing
the recorded depth data, and extract the final surface once.

We present the results of this process in Fig. 13. We
recorded a single, large dataset (approximately 200m tra-
jectory length). Figure 13a shows a top-down view of
the reconstruction performed online. Figure 13b shows the
reconstruction after performing the offline bundle adjust-
ment. We overlaid it on the building schematic for reference.
Finally, Fig. 13c shows a side view of the offline reconstruc-
tion. The surface area of the entire reconstructed mesh is
approximately 740m2.

7.2 Mutli-dataset reconstruction

Given an accurate trajectory and bias-free measurement
model, we found that the biggest limiting factor for the qual-
ity of the reconstruction is the number of depth images taken.
Eachnewdepth image either adds information about anunob-
served space, fills in small gaps in the existing reconstruction,
or refines the estimation of the reconstruction’s isosurface.As
we noted before, depth cameras such as the Kinect provide
data with a rate and density much higher than the Project
Tango mobile devices. We estimated that the Yellowstone
tablet, for example, might receive two orders of magnitudes
less depth observations for a comparable dataset collection
trial. On the other hand, recording very long datasets is lim-
ited by battery life and is cumbersome for the operator, who
has to walk slowly and spend a long time scanning.

The reconstructions shown so far, both in our paper, and
in the works we have referenced, are created using a single
dataset collection trial. We extend our workflow by allowing
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Fig. 14 Results from a multi-dataset reconstruction from 4
independently-collected datasets. (a) through (d) the resulting mesh,
as reconstructed from a single dataset, as well as the device trajectory

and starting point. Each individual reconstruction has gaps in different
areas. (e) the final, combined reconstruction. a Dataset A, b datasets
B, c datasets C, d datasets D, e datsets A + B + C + D

Fig. 15 Closeup of room during the multi-dataset reconstruction from
Fig. 14. (a) through (d) the incremental resulting mesh at the different
stages of the reconstruction, as each new dataset is fused into the previ-
ous stage. The final reconstruction is shown in (d). e an overlay of the

stages, highlighting the areas which each new stage filled in. a Dataset
A, b datasets A+B, c datasets A+B+C, d datasets A+B+C+D,
e overlay

for automated fusing multiple datasets into a single recon-
struction. Each dataset can be recorded from a different
starting location and cover different areas of the scene, as
long as their is sufficient visual overlap so that they can be co-
registered together.We repeat the offline procedure described
in Sect. 7.1 for each dataset. Then, we query keyframes from
each dataset against keyframes from the other ones, until we
have sufficient information to calculate the offset between
each individual trajectory, bringing them into a single global
frame. Finally, we insert the depth data from each dataset
into a unified TSDF reconstruction.

The resutls of this process are shown inFigs. 14 and15.We
asked two different operators to create two full reconstruc-
tions of an apartment scene. This resulted in four individual
reconstructions, each with varying degrees of missing data.
Figure 14 shows each individual reconstruction (labeled “A”
through “D”), as well as the final combined reconstruction.
The final mesh has significantly fewer gaps. Figure 15 shows
the incremental resulting mesh at the different stages of the
reconstruction, as each new dataset is fused into the previous
stage. Each new stage fills in more mesh holes and refines
the estimate of the isosurface.

8 Experiments

8.1 Reconstruction quality experiments

We tested the qualitative performance of the system on a
variety of data sets. So far, we’ve shown reconstructions from

Fig. 16 Comparison of model built with raw cell phone depth data
(left) versus compensated depth data (right). Using compensated data
results in cleaner walls and object. a Raw depth, b compensated, c raw
depth, d compensated detail

the mobile phone data in Fig. 1a. In this section, we further
present a reconstruction in Fig. 16, which demonstrates the
effectiveness of our depth compensation model (discussed in
Sect. 9).

We have also shown several reconstructions from tablet
data: the “Apartment” scene (Figs. 1b, c, 11, 14, 15) and
“Corridor scene” (Fig. 13). In this section, we further present
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Fig. 17 Outdoors reconstruction using tablet data, performed during
an overcast day. Top-down view (b) also shows the device trajectory, in
white. a Side view, b top-down view

results from an outdoor reconstruction with tablet data
(Fig. 17). Since the depth sensor is based on infrared light,
outdoor reconstructions work better in scenes without direct
sunlight.

We investigated the effects of the different scan fusion
algorithms on the reconstruction quality using tablet data.
We examined four combinations in total: voxel traversal ver-
sus voxel projection, with voxel carving enabled or disabled
(Fig. 18). We found that voxel traversal gives overall bet-
ter quality at the resolution we are working with. Enabling
voxel carving (for both traversal and projection algorithms)
removes some random artifacts, and significantly improves
reconstruction quality around the edges of objects).

To assess the reconstruction quality of the different scan
fusion algorithms,we reconstructed a scene using a simulated
dataset from SceneNet (Handa et al. 2015). Quadratically
attenuated Gaussian noise (see Sect. 9) was added to the
depth images produced by the simulator, using the noise
model learned from the Tango tablet. Additionally, 25% of
the pixels were thrown out at random to simulate further
data loss/sparsity in the depth image. Perfect pose estimation
is assumed. Figure 19 shows 3 cm resolution reconstructed

Fig. 18 Comparison of reconstruction quality using the different inser-
tion algorithms (voxel traversal vs. voxel projection) with and without
voxel carving applied. The reconstructions was performed with tablet
data. a Traversal, carving, b traversal, no carving, c projection, carving,
d projection, no carving

meshes using each of the scan fusion algorithms colored by
their nearest distance to the ground truthmesh. Table 2 shows
the mean and 95% confidence interval of the reconstruction
error. The raw noisy data are shown as a baseline. Over-
all, voxel projection with carving had the least reconstruc-
tion error, and voxel traversal without carving had the most
error. Figure 19 demonstrates the charachteristic errors of
each reconstruction method. Where the data are sparser and
noisier, voxel projection seems to do a better job at filling
in smooth surfaces. This is because each voxel is updated in
voxel projection regardless of whether a depth ray passes
through it. Voxel projection also characteristically suffers
from reconstruction errors along the edges of objects where
voxels are partially oc- cluded by surfaces, and voxel alias-
ing is clearly present. Voxel traversal does not suffer from
these issues, but in general the reconstruction is noisier and
sparser. Voxel carving improves both scan fusion algorithms
by eras- ing random oating structures (visible as faint yellow
dots in Fig. 19).

Finally, we wanted to verify the applicability of the pre-
sented method with a third, non-Project Tango data source.
We chose the “Freiburg” datasets, recorded with a high-
quality RGB-D camera and ground-truth trajectories from a
motion-capture system (Sturm et al. 2012). The reconstruc-
tion results are presented in Fig. 20.

8.2 Performance experiments

We performed several quantitative experiments to analyze
the performance of the different algorithms we use. In the
first experiment, we compare the number of grid volumes
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Fig. 19 Reconstruction error in a simulated dataset from SceneNet
(Handa et al. 2015), with simulated depth noise. An overview, closeup,
and top-down view are shown (columns), comparing the ground truth,

raw point cloud, voxel projection and voxel traversal reconstruction
error (rows). Lower error (blue) is better than higher error (red/green).
The voxel resolution is 3cm (Color figure online)
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Table 2 Reconstruction quality
comparison (simulated
SceneNet dataset Fig. 19)

Algorithm Error (cm)

Raw point cloud

– 7.46 ± 6.0

Voxel traversal

Carving 1.46 ± 2.3

No carving 1.67 ± 2.0

Voxel projection

Carving 0.45 ± 1.0

No carving 0.47 ± 1.1

95% confidence interval shown

Fig. 20 Reconstruction using the Freiburg desk public dataset Sturm
et al. (2012), based on the motion-capture ground-truth trajectory. The
maxiumum depth used is 2m. Performed on a desktop machine

which are affected by each depth scan. As we discussed in
Sect. 5, this number is important because we would like to
keep our computations focused on a small number of local
volumes. The results are shown in Fig. 21. Voxel projec-
tion uses frustum culling to select volume candidates, which
is a conservative approximation - thus, it ends up consider-
ingmore candidates overall than voxel traversal.When using
voxel traversal, the number of volume candidates depends on
whether voxel carving is enabled. Regardless of the choice
of algorithm, fusion is performed on each candidate vol-
ume.However, aswe discussed before,meshing is performed
lazily, and might prune some candidate volumes.We demon-
strate this in Fig. 21 (bottom). We overlaid the number of
meshed volumes over the number of total fused volumes over
time. As can be seen, voxel projection benefits the most from
the lazy meshing scheme.

We also analyzed the exact run-time of voxel projection
and voxel traversal, with and without carving enabled. We
carried out the experiments with two sets of data (cell phone
dataset and tablet dataset), since depth data affects algorithm
performance. We further carried out the experiment on both
a mobile device and on a desktop machine, to determine
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Fig. 21 Top analysis of the number of affected volumes per depth scan.
We compare the voxel traversal versus voxel projection algorithms. The
results for voxel traversal depend on whether voxel carving has been
enabled. Bottom comparison of the number of meshed volumes versus
all the affected volumes. The difference between the two is due to the
lazy meshing scheme

Table 3 Scan fusion time [ms] (tablet dataset)

Algorithm Mobile Desktop

Voxel projection

Carving 83.7 ± 13.0 18.0 ± 2.4

No carving 72.1 ± 10.8 16.0 ± 2.2

Voxel traversal

Carving 121.9 ± 21.1 23.4 ± 5.8

No carving 85.6 ± 12.6 13.3 ± 3.2

Table 4 Scan fusion time (ms) (cell phone dataset)

Algorithm Mobile Desktop

Voxel projection

Carving 80.2 ± 8.0 18.5 ± 2.8

No carving 67.5 ± 6.9 16.9 ± 2.0

Voxel traversal

Carving 211.1 ± 67.9 49.5 ± 14.1

No carving 113.4 ± 31.6 24.3 ± 7.6

the effect of the mobile constraint. The results are shown
in Table 3 (tablet dataset) and Table 4 (cell phone dataset).
The tables show the average and standard deviation of the
total processing time for each depth scan, in milliseconds,
including: depth scan compensation, dense alignment, scan
fusion, and mesh extraction. The fusion and extraction steps
are performed using the parallelized algorithms described in
Sect. 5.3. We used a voxel size of 3cm, and 16 × 16 × 16
voxels per volume.

The timing experiments reveal that when tablet data is
used, all of our insertion algorithms perform in real time
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Fig. 22 Comparison of memory consumption between our spatially-
hashed volume data structure (SH) versus a fixed-resolution grid
approach (FG). We compare two datasets: from a Tango cell phone
device (a) and from a Kinect camera (b). In the case of the Kinect cam-
era, we tested both a short-range insertion (observations up to 2m) and
a long-range one (observations up to 5m). Note the logarithmic scale
on the right graph

at 5Hz or higher. Thus, we can choose the algorithm which
gives us the best quality (voxel traversal with carving).When
using a the cell phone dataset, voxel projection takes around
the same time, but voxel traversal is significantlymore expen-
sive. This is because the number of observations in a the cell
phone depth scan is much higher (Fig. 4). At this resolution,
we cannot run the best-quality algorithm, sowe choose either
projection with carving or traversal without carving, depend-
ing the type of quality approximation we want to achieve.

Finally, we profiled the memory performance of our
system on two datasets, from a Project Tango device
(Fig. 22a) and a “Freiburg” RGB-D dataset (Sturm et al.
2012) (Fig. 22b). For the Freiburg dataset, we tested two dif-
ferentmaximumcamera ranges (2 and 5m). Thefigures show
the total memory consumption using the spatially hashed
volume grid data structure described in Sect. 4.7. We used
a voxel size of 3cm, and 16 × 16 × 16 voxels per volume.
For reference, we also include the memory for a static, 3 cm
fixed-grid approach.

9 Conclusions and future work

We have demonstrated a fully-integrated system capable
of creating and rendering large-scale 3D reconstructions of
scenes in real-time using only the limited computational
resources of a Tango device. We accomplish this without any
GPU computing, and use only the fixed function pipeline to
render the scene. We do this out of necessity to meet the
computing requirements of a mobile device. We discuss our
contributions in terms of sensor calibration, discrete filtering,
trajectory correction, data structure layout, and parallelized
TSDF fusion and meshing algorithms algorithms. Our work
is heavily influenced by the characteristics of the depth data

we receive (high noise and bias, lower frequency, variable
observation density) We have successfully applied it to two
different mobile devices, as well as datasets from other RGB-
D sensors, to efficiently produce accurate geometric models.

Where appropriate, we augment our system with post-
processing tools to overcome limitations in the sensors and
the device. Notably, we employ place recognition and sparse
feature-based bundle adjustment to correct very large tra-
jectories, as well as merge multiple datasets, in order to
get the best possible model and coverage. This can be seen
as one of the major potential ares of improvement. Further
research into this area should allow for the depth measure-
ments, and dense alignment information they provide, to be
closely integrated with the sparse features for a more robust
SLAMsolution. This can includemethods for real-timemesh
deformation for long trajectories, eliminating the need for
post-processing.

As more and more consumer and research devices come
with embedded depth sensors, we expect our work to be of
interest to developers and researchers working on human or
robotic navigation, augmented reality, gaming.

Appendix: Calibration

Depth measurement model

We begin by considering the data from the device’s depth
sensor. It may be available in the form of a depth image ID
or a point cloud P . In the first case, the depth image con-
sists of a set of pixels q where q(u, v) = zuv is the depth
measured at pixel coordinates u, v. In this context, the depth
zuv is defined as the distance from the camera to the obser-
vation, along the camera’s optical axis. When dealing with
point clouds, we define the cloud P as a set of points pi ,
where pi = [x, y, z]T, and x, y, z are the coordinates of the
point in the depth camera’s frame of reference. We make a
distinction between the depth and the range, the latter being
the Euclidean distance ‖p‖ to an observation p.

Given the depth camera’s intrinsic parameters, we can
switch between the two interpretations freely using the ideal
pinhole camera model:

x = zuv

fx
(u − cx ) (29a)

y = zuv

fy
(v − cy) (29b)

As we mentioned earlier (Fig. 4b), converting from point
cloud to depth image representation offers a tradeoff: the
resulting depth imagemayhave significant gaps between pix-
els, or will have dense pixel coverage, but lose some angular
accuracy of the observations.
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Eachdepth reading zuv maybe corrupted by randomnoise,
systematic biases, or missing data. We treat the depth as a
random variable Z . We define Z to have the following form:

Z = f (zuv) + ε(zuv) (30)

The functions f and ε model the systematic bias and random
noise, respectively, and we discuss them in the following
passages.

Systematic bias model and calibration

We found that the depth data returned by Tango devices
exhibits a strong systematic bias. The bias varies in different
areas of the image, and is generally worse closer to the edge.
Formodeling the systematic bias, we choose a second-degree
polynomial:

z̃uv = f (zuv) = auv + buvzuv + cuvz
2
uv (31)

Themodel dependson theper-pixel coefficientsauv, buv, cuv .
This allows us to apply different corrections to each pixel.
Given the model coefficients, we can calculate the compen-
sated, or bias-free measurement z̃uv .

For performing the depth calibration, we use a large
checkerboard printed on a flat surface. We record RGB and
depth image pairs of the checkerboard at various distances
to the camera and locations in the image. Since there is a
limit on how large we can print the checkerboard on a flat
surface, when we move the checkerboard further away from
the camera it does not cover the entire field of view of the
depth image. Therefore, we must take multiple images with
the checkerboard covering different areas in the image view.
Alternatively, if a significantly large, flat wall is available,
one could attach the checkerboard to the wall and observe it
from various distances.

To mitigate the effects of the random noise in the depth
readings, the depth image used is the result of averaging
1000 consecutive depth images of the same static scene.
From each RGB image, we detect the checkerboard corners
and calculate the reference depth of the checkerboard using
the projective-n-points (PNP) algorithm (Lepetit et al. 2009).
Figure 23 shows two pairs of training images, with the ref-
erence checkerboard in different positions.

We performed the calibration by taking multiple training
pairs at different ranges and different locations in the camera
view. Once all K training images are collected, we create
a set of training points for each checkerboard pixel in each
image. We denote the measured distance at a pixel q(u, v)

as z(k)uv , and the corresponding reference distanceZ(k)
uv . Since

the same pixel q will be observed at multiple images, we use
k to express the index of the training image. The total error
function for a given pixel location u, v can be defined as

Fig. 23 Two sets of training images used in the calibration for system-
atic bias in depth readings (top and bottom). Each training set consists
of 3 images: the greyscale image a is used to compute a linear plane
model b for the reference depth. The reference depth is compared to the
measured depth data (c). We repeat for multiple checkerboard poses at
different distances and view positions
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e(u, v) =
∑

k

(
Z(k)
uv − z̃(k)uv

)2
(32)

where k iterates across all the images where the pixel u, v

was inside the checkerboard area. We wish to find the per-
pixel coefficients auv , buv and cuv which minimize the error
for each pixel.

arg min
a,b,c

e(u, v) (33)

We accomplish this by fitting a second-degree polynomial to
the data.

Using this procedure, we can remove a significant amount
of the bias in the depth reading. Figure 24 presents the results
for the Project Tango mobile phone, which exhibited the
worse systematic bias of the two devices. Each data point
in the figure represents the RMS error of z over all the pix-
els in a given checkerboard test image, versus the average
depth of the checkerboard. The results with and without cal-
ibration are displayed. The figure shows that the RMS error
is significantly lower when the polynomial compensation is
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performed on the depth images, and the error improvement
becomesmore pronounced as the distance between the object
and the camera grows.

Random noise model

We model the random noise as a Gaussian random variable,
centered at the measurement zuv , with a standard deviation
of σ(zuv). Similar to the approach of Nguyen et al. (2012),
we model σ(zuv) as a quadratic polynomial.

ε(zuv) = N (zuv, σ (zuv)) (34a)

σ(zuv) = σ0 + σ1zuv + σ2z
2
uv (34b)

The coefficients σ0:2 are computed by taking themeasured
standard deviation from the same training data that we used
for the systematic bias, and then performing quadratic regres-
sion on the result. A single set of coefficients is used for the
entire image, unlike the distortion model which is computed
on a per-pixel basis.
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