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Abstract. A robot-assisted feeding system must successfully acquire
many different food items. A key challenge is the wide variation in the
physical properties of food, demanding diverse acquisition strategies that
are also capable of adapting to previously unseen items. Our key insight
is that items with similar physical properties will exhibit similar success
rates across an action space, allowing the robot to generalize its actions to
previously unseen items. To better understand which skewering strategy
works best for each food item, we collected a dataset of 2450 robot bite
acquisition trials for 16 food items with varying properties. Analyzing
the dataset provided insights into how the food items’ surrounding envi-
ronment, fork pitch, and fork roll angles affect bite acquisition success.
We then developed a bite acquisition framework that takes the image of
a full plate as an input, segments it into food items, and then applies
our Skewering-Position-Action network (SPANet) to choose a target food
item and a corresponding action so that the bite acquisition success rate
is maximized. SPANet also uses the surrounding environment features
of food items to predict action success rates. We used this framework
to perform multiple experiments on uncluttered and cluttered plates.
Results indicate that our integrated system can successfully generalize
skewering strategies to many previously unseen food items.
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1 Introduction

Eating is a vital activity of daily living at home or in a community. Losing
the ability to feed oneself can be devastating to one’s sense of self-efficacy and
autonomy [1]. Helping the approximately 1.0 million US adults who require
assistance to eat independently [2] would improve their self-worth [3,4]. It would
also considerably reduce caregiver hours since feeding is one of a caregiver’s most
time-consuming tasks [5,6].

According to a taxonomy of manipulation strategies developed for the feeding
task [7], feeding requires the acquisition of food items from a plate or bowl and
the transfer of these items to a person. In this paper, we address the challenge
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Fig. 1: Left: A robot acquiring a food item from a plate. Center: A plate cluttered
with food items. Food items can be isolated, near a wall (i.e., the edge of a
plate) or another food item, or stacked on top of other food items. Right: Three
macro actions: VS: vertical skewer (two in the upper left), TV: tilted skewer with
vertical tines (two on the right), TA: tilted skewer with angled tines (two in the
lower left). Each macro action has two fork rolls (0◦ and 90◦).

of generalization to previously unseen food items during the bite acquisition
phase of the feeding task. Bite acquisition requires the perception of food items
on a cluttered plate and the manipulation of these deformable items, which is
challenging for two reasons. First, the universe of food items is immense, so we
cannot expect to to have previously trained on every type of food item. Second,
bite acquisition involves complex and intricate manipulation to handle food with
a variety of physical characteristics, such as sizes, shapes, compliance, textures.

Our previous work [8] showed that one can train a classifier to identify where
and how to skewer an item. While promising, the proposed approach requires
classifying food items and manually labeling skewering locations for each food
type, which does not generalize to unseen food items.

Our key insight is that items with similar physical properties (e.g., shapes
and sizes) will often exhibit similar success rates when the same action is used to
acquire them. If so, a robot can apply an action that was successful for acquiring
a known food item to unknown items of similar properties.

Our insight led us to a data-driven approach for autonomous bite acquisition
that generalizes to previously unseen food items. We collected a large dataset of
2450 bite acquisition trials for 16 food items using 6 actions. Using this dataset,
we trained a classifier to directly predict success rates of the six actions given a
cropped image of a food item and its environmental features that we empirically
found to be important when choosing an action. We refer to this model as the
Skewering-Position-Action Network (SPANet).

Our analysis shows that SPANet learns to predict success rates accurately
for trained food classes and generalizes well to unseen food classes. Our final
integrated system uses these predicted success rates to acquire various foods
items from cluttered and non-cluttered plates (see Figure 2).

Our contributions include:

– A dataset of bite acquisition trials with success rates for food items with
various physical properties and in varied environments [9]

– An algorithm that can generalize bite acquisition strategies to unseen items
– A framework for bite acquisition from a plate with various food items
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Fig. 2: Our framework: Using a full-plate image, RetinaNet outputs bounding
boxes around food items. An environment classifier identifies items as being in
one of three environments: isolated (ISO), near a wall (i.e., plate edge) or another
food item (WALL), or on top of other food items (STACK). SPANet uses the
bounding boxes and environment features to output the success probability for
each bite acquisition action and the skewering axis for each food item.

2 Related Work

2.1 Food Manipulation for Assistive Feeding

Manipulating food for assistive feeding poses unique challenges compared to ma-
nipulating it for other applications [10,11]. Previous studies have created a food
item taxonomy, explored the role of the haptic modality [7], developed scooping
strategies [12,13], and proposed an algorithm for intelligently selecting a strat-
egy from a set of expert-defined skewering strategies [8]. While expert-defined
strategies achieve a good degree of success [8], they require item classification and
therefore do not generalize to previously unseen food items. In this paper, our
goal is to develop a method that generalizes acquisition strategies to previously
unseen food items.

Food manipulation for assistive feeding shares similarities to existing lit-
erature on grasping. Determining a good grasping position resembles finding
a good skewering location. One approach in grasping literature uses learning-
based methods to identify good grasping locations on a 3d model and draws
them out to perceiving objects [14]. Others use real robot grasping trials [15] or
images [16,17]. However, these approaches generally focus on rigid objects, while
our work requires tool-mediated, non-prehensile manipulation of deformable ob-
jects for which the haptic modality plays a crucial role. Importantly, physical
properties of a food item may change after a failed skewering attempt, underlying
the importance of an intelligent first action.

Our work is most closely related to our previous work [8] which trains a
classifier, SPNet (Skewering-Position Network), to identify a food item and pro-
pose skewering positions. The food classification is used to determine the macro
skewering strategy, i.e., tilted or vertical skewering actions. In total, SPNet pro-
poses one of 5202 discrete skewering actions, while our new method predicts
success rates for only 6 actions that target the center of a food item in different
directions (Figure 1). The main reason for this reduced action space is for gen-
eralization to unseen food items, for which highly targeted skewering position
may not transfer.
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In addition, unlike SPNet [8] which relied on human labels of skewering
positions, we use empirical success rates from robot-driven bite acquisition trials,
which is a more accurate measure of the robot’s performance.

2.2 Food Perception

Many strides in food perception have been made, especially with respect to
deep supervised learning using computer vision systems, e.g., for food detec-
tion [18,19,20]. Our previous work [8] uses RetinaNet as an efficient, two-stage
food detector that is faster than other two-stage detectors but more accurate
than single-shot algorithms. The generated food item bounding boxes are then
input to our SPNet [8], which generates position and rotation masks for skewer-
ing those food items. This idea was adopted from [21], which uses independent
masks from Mask R-CNN with Fully Convolutional Network (FCN) branches.

An important question for the generalization of food items concerns out-
of-class classification in perception problems. Since it is not feasible to train
on every possible food item, systems like ours must intelligently handle items
missing from the training set without being reduced to taking random actions.
This work is related to the general task of detecting out-of-class examples. One
common baseline approach uses a softmax confidence threshold [22] to detect
such examples. Another looks at projecting seen and unseen categories into a
joint label space and relating similar classes by generalizing off of zero-shot
learning methods [23]. Similarly, we aim to generalize our actions to unseen food
items based on ones with similar properties.

3 Bite Acquisition on a Plate

Autonomous feeding system should take into account many factors such as bite
acquisition, user preferences, and bite sequence. In this work, we focus on bite
acquisition, and aim to maximize the success rate of a single item bite acquisition.
We call a bite acquisition attempt a success if the robot picks up a target item.

Towards that end, we design an action selector that chooses an action and a
target given the RGBD image of a full plate such that the success rate is max-
imized. For each food item, we define the skewering axis as the major (longer)
axis of the item of a fitted ellipse. Approach angles and orientations for all ac-
tions were defined with respect to the center of the skewering axis, with 0 degrees
being parallel to the skewering axis.

Each action is implemented as a closed-loop controller that takes as input
multimodal information (i.e., RGBD images and haptic signals) and outputs
a low-level control (e.g., fork-tine movement). The haptic signal, given by a
force/torque sensor attached to our fork, is not used as an input feature to our
model (SPANet) but is used to detect if a force threshold is met during skewering.

3.1 Action Space

Three macro actions are based on the angle of approach (fork pitch). For each
macro action, we have two fork rolls at 0 and 90 degrees, where 0 degree means



Generalizing Skewering Strategies 5

Fig. 3: Three environment features: Isolated (left), Wall (middle), and Stack
(right) scenarios. Note, the wall scenario can also be triggered if the desired
food item is near another food item.

the fork tines are parallel to the skewering axis (see Figure 2 right), which leads
to a total of six actions. These actions are derived from our previous work [8].
Vertical Skewer (VS): The robot moves the fork over the food so the fork
handle is vertical, moves straight down into the food, and moves straight up.
Tilted Vertical Skewer (TV): The robot tilts the fork handle so that the
fork tines are vertical, creating a vertical force straight into the food item. The
inspiration for this action comes from foods such as grapes, where a straight
vertical force could prevent the grapes from rolling away.
Tilted Angled Skewer (TA): The robot diagonally approaches the food with
horizontal fork tines. The inspiration for this action comes from foods such as
bananas, which are soft and require support from the fork to be lifted [7].

3.2 Environment Features

Three environment features are used in our model. They showcase the properties
of the immediate surrounding environment of a food item (see Figure 3).
Isolated: The surrounding environment of the target food item is empty. This
scenario may arise on any cluttered plate and becomes more common as the
feeding task progresses and the plate empties.
Wall: The target food item is either close to the edge (wall) of a plate or bowl
or close to another food item that acts as a support. This scenario may arise in
any cluttered plate configuration.
Stack: The target food item is stacked on top of another food item. This scenario
may arise in any cluttered plate configuration (e.g., a salad). To mimic food plate
setups similar to a salad plate, we used lettuce as an item on which to stack other
food items. In this work, we do not consider food items stacked on items other
than lettuce.

4 Generalizing to Previously Unseen Food Items

We now develop a model for predicting bite acquisition success rates that can
potentially generalize to previously unseen food items. In our prior study [8], we
built a model that finds the best vertical skewering position and angle from the
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Fig. 4: The architecture of SPANet, which predicts success rates of the six actions
and the two end points of the major axis.

input RGB image; this model showed high performance for trained food items.
However, identity information served a significant role in the detection model, so
the model did not generalize to unseen food items even if they could be skewered
with the same action. We also used a hand-labeled dataset for where to skewer,
which reflected subjective annotator intuitions.

To build a generalizable model that is not biased by human intuition, we
propose three solutions. First, we increase the range of food items compared to
[8]. Second, we use empirical success rates based on real-world bite acquisition
trials performed by a robot instead of manual labels. Third, we directly predict
success rates over our action space instead of predicting the object class to
select its predefined action. Our previous model [8] output a 17× 17 grid of fork
positions and one of 18 discretized fork roll angles, leading to an action space
of 5202 discrete actions. In this work, we developed a model that abstracts the
position and rotation by using a skewering axis, reducing the action space to just
6 actions, which could improve the model’s generalizability. With this approach,
regression for the skewering axis is more general and easier to solve, and the
quantity and variety of data required for training can be significantly reduced.

4.1 Skewering-Position-Action Network: SPANet

We designed a network to visually determine the location to skewer and the
acquisition strategy to take. Our network receives a 288 × 288 × 3 RGB image
from a wrist-mounted camera as input; it outputs a 10× 1 vector containing the
two endpoints of the main axis and k predicted success rates, where k = 6 to
depict the three macro action types over two fork roll angles.

We experimented with two network architecture designs. The first used a
DenseNet [24] base that was pre-trained on ImageNet [25]. The second used an
AlexNet [26] style base with simple convolution layers with batch normalization.
In both cases, the base network was followed by three fully convolutional layers
and a linear layer for the final output. We decided upon using the latter, which
ran 50% faster with only a marginal performance hit. Even with 7 convolutional
layers, it has only 1.1M parameters. For the loss function, we used the smooth L1-
loss between the ground truth vector and the predicted vector, so that the model
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Fig. 5: Environment classifier pipeline. A food item is categorized by comparing
the depth of its surrounding environment with that of the table surface depth.

can learn the success rate distribution as closely as possible. To avoid overfitting,
we made SPANet lightweight and used batch norm and early stopping.

Based on our previous human user study, we hypothesized that environmen-
tal position of the food relative to surrounding items would be a key factor in
choosing an action. SPANet, therefore, takes as input the surrounding environ-
ment type as one hot encoding of whether the food item is isolated, near a wall,
or is stacked. It concatenates the encoding with the image feature vector from
the base network.

4.2 Environment Classifier Pipeline

Classifying the surrounding environment of a food item is not straightforward
using SPANet itself because it requires looking at the cropped surroundings.
Therefore, we use a series of classical computer vision methods to extract this
feature (see Fig. 5).

We first use a Hough circle transform to detect the plate and fit a planar table
from the depth of the region immediately surrounding it. Subtracting the original
depth map yields a height map relative to the table. After color-segmenting each
food item from the RGB image, we divide the surrounding region of interest
into sub-regions. If a sub-region intersects the plate boundary or if its median
height exceeds some threshold, it is considered to be “occupied.” Otherwise, it
is “unoccupied.” A food item is classified as “isolated” if a super-majority of the
sub-regions are unoccupied, “stacked” if a super-majority of the sub-regions are
occupied, and “near-wall” otherwise.

4.3 Bite Acquisition Framework

We developed a robotic feeding system that uses our framework to acquire food
items from a plate by applying the actions defined in Section 3.1. Note that our
definition of action specifies everything a motion planner needs to know in order
to generate a trajectory, i.e., the approach angle and target pose. Given the
success rates of each action on all visible items on the plate, the motion planner
chooses a (target item, action) with the highest success rate and generates a
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trajectory. The robot executes it with a closed-loop, force-torque control until a
certain force threshold is met or the trajectory has ended.

5 Experiments

5.1 Experimental Setup

Our setup consists of a 6 DoF JACO robotic arm [27]. The arm has 2 fingers
that grab an instrumented fork (forque, see Figure 1) using a custom-built, 3D-
printed fork holder. The system uses visual and haptic modalities to perform
the feeding task. For haptic input, we instrumented the forque with a 6-axis ATI
Nano25 Force-Torque sensor [28]. We use haptic sensing to control the end effec-
tor forces during skewering. For visual input, we mounted a custom built wireless
perception unit on the robot’s wrist; the unit includes the Intel RealSense D415
RGBD camera and the Intel Joule 570x for wireless transmission. Food is placed
on an assistive bowl mounted on an anti-slip mat commonly found in assisted
living facilities.

We experimented with 16 food items: apple, banana, bell pepper, broccoli,
cantaloupe, carrot, cauliflower, celery, cherry tomato, grape, honeydew, kale,
kiwi, lettuce, spinach and strawberry.

5.2 Data Collection

For each food item, the robotic arm performed each of the six actions (see Fig.
1 right) under three different positional scenarios (see Fig. 3). For rotationally
symmetrical items, such as kiwis, bananas, and leaves, the robot performed the
trials with one fork roll. For each configuration (action, item, scenario), we col-
lected 10 trials per item and marked success and failure rates. Note that vision
was not part of this data collection: we manually placed the food items directly
under the fork such that when the fork hits the food, it would hit the center
of the food item. This manual placement was to ensure that the collected trials
reflect how good an action is, assuming that the a perception module can cor-
rectly locate the center of the food and derive the fork to the desired location,
as verified previously [8]. We defined failure as at least 2 of 4 tines touching the
food item but either the fork failing to skewer the item or the item falling off in
less than 5 seconds. If less than 2 fork tines touch a food item, we discard that
trial because it indicates that the food item was misplaced. We defined success
as the forque skewering the item and the item staying on the fork after being
lifted up for 5 seconds.

For each new trial, we changed the food item since every item has a slightly
different size and shape even within the same class, and it is important to capture
this variation. During each skewering trial, we recorded RGBD images of the
whole plate before and after acquisition, forces and torques and all joint positions
of the arm during the trial, and whether the acquisition attempt was a success
or a failure. Our entire dataset is available in the Harvard Dataverse [9].



Generalizing Skewering Strategies 9

Honeydew Banana Lettuce
0

0.25

0.5

0.75

1
Su

cc
es

s
R

at
e

Environment
ISO vs. WALL vs. STACK

ISO WALL STACK
Lettuce Honeydew Banana

0

0.25

0.5

0.75

1

Su
cc

es
s

R
at

e

Fork Pitch
VS vs. TV vs. TA

VS TV TA
Carrot Celery Apple

0

0.25

0.5

0.75

1

Su
cc

es
s

R
at

e

Fork Roll
0◦ vs. 90◦

0◦ 90◦

Fig. 6: Left: Surrounding environment affects the bite acquisition: Even the same
action on the same item has different success rates depending on how the item
is placed with respect to other items or the plate. Vertical skewer on honeydew
is the most successful when it is isolated. Tilted angled skewer on banana is a
lot more successful when it is near wall. Any skewering action on lettuce is more
successful when it is stacked. Center: Fork pitch affects bite acquisition: Actions
with different fork pitches perform differently for different food items. Right:
Fork roll affects bite acquisition: For long and slender items, aligning the fork
tines perpendicular to the item (90◦) is more likely to succeed than horizontally.

6 Dataset Analysis

We analyzed the collected data to verify whether environmental features or the
choice of actions with respect to the fork pitch and roll affect bite acquisition suc-
cess rates. Effect of these variations would validate the need for the environment
classifier as well as the choice of our action space.

We validated that the six actions and the three environment scenarios indeed
resulted in different success rates. To test statistical significance, we performed
a series of Fisher Exact tests for homogeneity as opposed to the more com-
mon t-test, u-test, or chi-squared test since our dataset was sparse. Our p-value
threshold was 0.05 and, with Bonferroni correction, the corrected p-value thresh-
old was 0.0024.

6.1 Surrounding Environment Affects Bite Acquisition

We tested our three environment categories over all actions and food items. We
found that the stacked category played a significant role in bite acquisition, with
a p-value of 0.0005, compared to the wall or isolated categories. For these latter
features, our current experiments did not find a statistically significant difference
in success rates. Investigating further, we found that for a subset of food items
– viz., kiwi, banana, apple, bell pepper, broccoli, cantaloupe, cauliflower, and
strawberry – the wall and stacked environments are significantly better than the
isolated environment for the tilted-angled (TA) strategy, with a p-value of 0.0475
and 0.0037, respectively. This group was investigated because we empirically
observed that these items needed a TA skewer to prevent their sliding off the
fork tines, and that the TA skewer worked best near a wall or on top of items.
However, note that the p-values exceed our corrected threshold.



10 Feng et al.

Figure 6 left shows cases where the three environment scenarios result in
different acquisition success rates for the same food item and action. Figure 8
further show that depending on the surrounding environment, a food item may
have different success rate distributions and thus an intelligent bite acquisition
system should decide its bite acquisition strategy not only based on a food item
but also on its surrounding environment.

6.2 Fork Pitch Affects Bite Acquisition

We tested our three macro actions (which differ in their fork pitch angles) over
all environment scenarios, food items, and fork roll angles. We found that the
tilted-angled (TA) action had a statistically different result, with a p-value of
0.0005, from vertical-skewer (VS) and tilted-vertical (TV) actions. This result
was echoed (albeit less significantly or not corrected) for a specific subset of food
items in the stacked environment: kale, spinach, strawberry, kiwi, and honeydew
(p-values of 0.0234 and 0.0255, respectively); for these items, we found that TV
and VS outperformed TA. Figure 6 center shows that different fork pitch actions
work better for different food items.

6.3 Fork Roll Affects Bite Acquisition

We tested whether skewering a food perpendicular to the skewering axis results
in a different success rate from skewering horizontally. We did not find a strong
significance, but since the test indicated a difference (p-value of 0.0030) at our
original p-value threshold, we hypothesize that with more data we could find a
relationship. Investigating further, we found that for large long items with flat
surfaces – e.g., carrot, celery, and apple – skewering at 90◦ was better than at 0◦

for all macro actions and environments. This implies that distinguishing these
two fork rolls may be necessary for long items with flat surfaces. We compared
carrot, apple, and celery and again found a p-value of 0.0044, which is below our
original threshold. This difference is echoed in Figure 6 right.

7 Experimental Results

In this section we discuss the training results of SPANet and full integration tests
on the real robot system. As an input to SPANet, we used images tightly cropped
around each food item. Multiple images taken per trial from different angles to
augment this dataset, leading to a total of approximately 10, 000 images.

7.1 In-Class and Generalization Results

Figure 7 show SPANet’s ability to generalize to food items that it has not seen
during training (Out-Of-Class). SPANet generalizes well for 7 out of 16 items
(the first 7 items in Figure 7 right). Even when the gap is bigger (from kiwi to
the right), SPANet’s proposal action performs significantly better than a random
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Fig. 7: SPANet’s generalizability to unseen food items (Out-Of-Class) compared
with known food items (In-Class). Each bar represents the expected success
rate of SPANet’s proposal action, i.e., how well the best action proposed by
SPANet would have performed according to the ground-truth data. Left: Overall
comparison. The success rate of SPANet’s proposal action drops by 18% for
unseen food items. Right: Per class comparison. For food classes from celery to
cantaloupe, SPANet’s OOC predictions stay very close to IC predictions.
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Fig. 8: SPANet’s action success rate predictions compared with the empirical
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image, SPANet successfully predicts the action distributions. More importantly,
it correctly predicts the best actions (red).

action except for banana and kiwi, which have very different action distributions
than the rest of the dataset.

Although the expected success rates even for the In-Class items are not 100%
for SPANet, it does not imply its inability to propose the right action. Even the
ground-truth best action does not achieve 100% success for most items. SPANet’s
proposal action has only 2.6% lower success rate than the ground-truth best
action across all food items when proposing for In-Class items, and it’s 20%
lower for Out-Of-Class items.

To better understand how SPANet generalizes to unseen items, we compared
the success rate predictions generated for Out-Of-Class (OOC) items and In-
Class (IC) items. Figure 9 left shows the results clustered into four classes for
easy visualization. We grouped food items into four categories based on visual
properties, “long”, “non-flat”, “flat”, “leafy”. “Leafy” included lettuce, spinach,
kale, cauliflower, and broccoli. “Long” included celery, carrots, apples, and bell
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action success rate distributions, and their best actions are the same.

pepper. “Flat” included cantaloupe and honeydew. “Non-flat” included items
with non-flat surfaces, such as strawberry, cherry tomato, and grape. The results
suggest that, given an unseen leafy item, SPANet’s output is similar to other leafy
items it has seen in the training set. The same can be said for long and non-flat
items. We constructed this matrix by taking the expected success rate vector for
each OOC food item and finding its nearest neighbor (under L2-distance) among
the ground-truth of all food items. A small distance indicates that SPANet
predicts the OOC item’s action distribution to be similar to the nearest IC item.
Indeed, some items have very similar success rate distributions, as in Figure 9
right, a small L2 distance would be ideal. To mitigate a bias towards food items
with success rate vectors near the mean of the whole dataset, we computed the
softmax of the output vector before comparison. When grouping these results
to generate Figure 9 left, we took the maximum value within each group and
normalized across all groups.

7.2 Full System Integration Results

To test the viability of SPANet on our bite acquisition framework, we inte-
grated SPANet with our robotic system. We performed experiments with a rep-
resentative set of foods and environments and measured the acquisition success
rate. First, we tested carrot under all three environment scenarios to represent
SPANet’s ability to pick the correct angle for long and slender items. Second,
we tested strawberry in the wall and stacked environment scenarios as a non-flat
item where the best action depends on the environment. We collected 10 trials
for each. To deal with positional accuracy issues with the fork being dislodged
or bent during physical interaction with the environment, we used visual tem-
plate matching to detect the fork-tip and adjust its expected pose to reduce
image projection error. Anomalies external to the SPANet (see Section 8), such
as planning or wall detection/RetinaNet anomalies, were not counted towards
the 10 trials.

We found that SPANet tended to pick the most successful strategies to try to
skewer carrots and strawberries. In each food-scenario pair except for strawberry-
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Fig. 10: Full system integration acquisition success rates and selected actions for
carrot (Left) and strawberry (Right).

wall, SPANet always picked either the best or second best options. As shown in
Figure 10, the carrot tests perfectly matched their expected success rate and best
action success rate. Strawberry-stacked experienced marginally less success than
expected, having just 1 failure out of 10 where the fork went in and out without
acquiring the strawberry. Interestingly, for strawberry-wall, the tests matched
the best action success rate despite SPANet not picking the best actions in this
case. This could perhaps be explained by slight variations in strawberry shapes
and positions.

7.3 Bite Acquisition from a Plate

To demonstrate the viability of our bite acquisition system on a cluttered plate,
we tested SPANet’s ability to acquire a variety of foods from a cluttered full
plate, as shown in Figure 11. For these experiments, we trained a version of
SPANet without a set of 3 food items (carrot, celery, and bell pepper). We
tested two Out-Of-Class plates that contained all three excluded items plus
cantaloupe in different configurations, as well as an In-Class plate containing
honeydew, strawberry, and broccoli. We placed two to three pieces of each item
onto a lettuce base, filling the plate so that items were often close to each other
but not stacked on the lettuce, not themselves. Food item positions were chosen
arbitrarily. We then attempted to acquire all food items on the plate except the
lettuce.

As shown in Figure 11, both Out-Of-Class plates had high success rates,
acquiring all 10 items in only 11 attempts (excluding external anomalies, see
Section 8). Each attempt picked one of the best two actions. These results show
that our system generalizes to unseen food items by picking reasonable actions
and successfully acquiring items with few failures. The In-Class plate had lower
performance. The first five items were picked up with only a single failure. The
first honeydew attempt picked the best action. While the action choices for
broccoli and strawberry were less consistent, they were acquired with only a
single strawberry failure where the item slid off of the fork. We had a total of
five planning failures where the system could not find a feasible motion plan to
the commanded action. There were also perception anomalies with RetinaNet
bounding box detection whereby two honeydew pieces and one broccoli piece
could not be detected correctly due to the matching green background of lettuce.
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(a) IC: 83% Success (b) OOC1: 91% Success (c) OOC2: 91% Success

Fig. 11: Food plates used for full integration tests, marked with best actions and
their corresponding success rates predicted by SPANet. (a) Food plate with In-
Class items resulted in 83% success rate. (b) (c) Plates with Out-Of-Class items
resulted in 91% success rates. The lower success rate of the IC plate is likely
because some of the items are more challenging to acquire.

8 Discussion

Our SPANet successfully generalized actions to unseen food items with similar
action distributions as known ones. For soft and slippery items such as bananas
or items with softer outside but harder core such as kiwis, the action distributions
for successful bite acquisition significantly differed from the rest of the dataset,
and hence our algorithm did not generalize well. This trait of slipperiness is
difficult to capture by visual modality alone and is a topic of future work.

Compared to our previous work [8] with a much larger action space, the
reduced action space enables generalizability, but it remains to be seen if these
6 actions would suffice for a wider range of food items. Additional actions could
be added to our action space, including scooping or twirling.

Our system’s robustness could be improved to handle planning and percep-
tion anomalies. The system occasionally struggled to handle partially observable
objects, leading to inaccurate box or axis detection. In terms of motion planning,
some of the actions were more difficult to plan for when the item in clutter.This
suggests a need for pre-skewer actions which maneuver food items to places
where they can be skewered. Finally, as the fork holder is not rigidly attached
to the robot’s gripper, the fork tine’s shape and position varied over time and
led to positional variance at the end of the fork. While the fork-tip template’s
matching add-on helped, it would be beneficial to stabilize the fork and pre-
vent it from bending out of shape due to repeated physical interactions with the
environment.
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