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Abstract— This paper explores the planning and control
of a manipulation task accomplished in conditions of high
uncertainty. Statistical techniques, like particle filters, provide a
framework for expressing the uncertainty and partial observ-
ability of the real world and taking actions to reduce them.
We explore a classic manipulation problem of planar batting,
but with a new twist of shape, pose and impact uncertainty.
We demonstrate a technique for characterizing and reducing
this uncertainty using a particle filter coupled with a lookahead
planner that maximizes information gain. We show that a two-
step planner that first acts for information gain and then acts to
maximize the expectation of achieving a desired goal is effective
at managing shape, pose and impact uncertainty.

I. INTRODUCTION

Real-world manipulation often must take place in condi-
tions of high uncertainty. We may not know the exact shape
of an object we are to manipulate, our sensors provide noisy
information, and parameters of the world such as surface
properties may not be exactly known.

Various strategies have been proposed for handling uncer-
tainty in grasping and manipulation tasks.

One strategy is to take actions that reduce uncertainty
given the availability of simple sensors (e.g., [1]) or no
sensors at all (e.g., [2]). In such a framework, actions
are akin to funnels that map a larger set of states into a
smaller set, and a plan consists of a sequential composition
of funnels that take all (or most) states to the goal [3],
[4]. In some situations, open-loop strategies can produce
periodic trajectories that are stable even in the presence of
uncertainties (e.g., [5]). Note that uncertainty is modelled
as a set, each point being equally important, and the plan
guaranteed to take any point in this set to the goal.

Another strategy is to decouple the problem into two
parts: an observer that monitors uncertainty and a controller
which takes the best estimate of the observer and runs
a deterministic strategy based on that. However, in most
nonlinear systems, this is an artificially imposed decompo-
sition and there is no guarantee that the controller’s strategy
will not interfere with the observer’s ability to observe.
Furthermore, the dynamics of manipulation are most often
highly nonlinear and there have been a select few successful
attempts at writing observers, for pushing [6] and for palmar
manipulation [7].

An alternative strategy is to model the uncertainty as a
probability mass, where points that are more likely to occur
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are given more weight, and treated preferentially, by the
controller. Such statistical techniques allow for a quantifi-
cation of uncertainty and the likelihood of a plan’s success,
as well as the construction of controllers and observers that
can reason and trade-off between gaining information and
achieving the goal. Statistical observers like Kalman filters
and particle filters, statistical controllers based on solving
Markov Decision Processes (MDPs), and many variations
thereof have been extremely successful in solving a wide
variety of problems in mobile robotics, like the simultaneous
localization and mapping (SLAM) of a mobile robot in an
unknown environment and localization of a target that is
evading search [8]. We refer the reader to [9] for a detailed
description and literature survey on probabilistic techniques.

Fig. 1. Planar batting: a.Ideal situation; b.Pose and shape uncertainty;
c.Impact noise;d.Two-step strategy: batting for information gain followed
by batting to the goal

In this paper, we explore the use of statistical observa-
tion and control techniques to solve a version of a classic
manipulation problem of planar batting with the added
complexity of uncertainty in shape and pose. We observe
that the manipulation problem possesses a unique structure
that is unlike the mobile robotics problems for which these
techniques have been successfully applied, thereby requiring
the application of a unique strategy.

The goal of our planar batting problem is to bat an object
into a desired goal state. The object moves under the action
of gravity on a planar table, collides with walls, and is batted
by a single degree of freedom revolute arm located at the
bottom of the table (Fig.1). A number of researchers have
addressed the problem of batting a spherical ball, in a variety
of contexts like juggling, ping-pong [10], [11], 3D batting
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[12]–[14], and devil-sticking [15].
We add two sources of uncertainty to the problem. First,

the true shape of the object belongs to one of a finite number
of shapes. Also, the true pose of the object is completely
unknown, to begin with, as shown in Fig.1(b). Second, much
like the real world, we model the uncertainty that is expected
at impact. As a result, the uncertainty in shape and pose
increases sharply after each impact.

To give the robot a fighting chance of actually completing
the task, we add a planar pinhole camera to observe the
object, albeit with noisy sensor measurements. The camera
image is a segmented line composed of the object and the
background.

A unique characteristic of our problem is that unlike the
funnel framework, where actions collapse states and reduce
uncertainty, in our problem, due to the noise during impact,
actions expand states and increase uncertainty.

Another unique characteristic of our problem is that it
is dynamic, with two distinct phases: a flight phase, where
errors do not accumulate and we can zero in quickly on
an estimate of object state based on camera readings, and a
collision phase, where large errors are introduced, and our
estimate of object state scatters.

Apart from the two-phase feature, the batting problem is
different from other mobile robot problems that use particle
filter in that the batting problem has only intermittent control
instead of continuous control. Furthermore, one wrong action
taken by the batter in the batting problem may lead to
catastrophic consequences such as batting the object off the
edge of the table.

These characteristics of our problem motivated a two-
phase planner where we first take action to gain state
information and then take a second action to achieve the
goal given a model of uncertainty during the collision
phase (Fig.1(d)). Of particular note, we observe (§VI) that
considering the single best object state during the second
action has a better performance than considering the entire
distribution of particle states.

The rest of the paper is organized as follows. In §II and
§III we describe the motion and impact models chosen for
our problem. In §IV, we describe the implementation of a
particle filter for tracking our belief of the shape and pose
of the object. In §V, we describe our strategies for planning
and observation to solve the planar batting problem. In §VI,
we show the results of our strategies and discuss limitations
and future work in §VII.

II. PROBLEM STATEMENT

This paper examines planar batting with object shape
and pose uncertainty and impact uncertainty by a one joint
robot arm in a gravitational field. We focus on finding
batting control that can deal with the uncertainties and bat
the object to the goal with the information from camera
observation.

In our problem, we start with a known set of object shapes,
but we do not know which instance we are batting. The

object state space is then a 7D space and object states can
be denoted as: Q=(q,q̇,d)=(x,y,ϕ,ẋ,ẏ,ϕ̇,d), where d represents
the index of the shape instance in the object shape set, (x,y,ϕ)
represents the object’s position, and (ẋ,ẏ,ϕ̇) represents the
object’s velocity.

The robot arm’s state is (θ,θ̇), which are the joint angle
and the angular velocity of the arm.

Observation information is available from a 2D camera,
which has a 1D screen line. The observation information is
the line segment on the screen line projected from the object.

We count the object as falling in the goal area, as long as
the object’s COM is within δ distance of the goal position,
assuming the goal is an area instead of an exact point. The
orientation of the object is not currently considered when
evaluating whether it reaches the goal.

III. BATTING AND BOUNCING

We model the batting and the bouncing of the ball off the
walls of the environment as collisions between rigid bodies
with nonzero friction and restitution.

To compute the impact during the collisions, we use the
collision model proposed by Chatterjee and Ruina [16].
The impact P relates the velocity of the object before and
instantaneously after collision.

According to the model, given a pre-collision relative
velocity of Vbef and the local mass matrix M at the contact
point, the impulse P is a linear combination of two compo-
nents: an impulse under a perfectly plastic and frictionless
impact

PI = −(
nT Vbef

nT M−1n
)n, (1)

where n is the contact normal, and an impulse under the
condition of perfectly plastic and perfectly sticking impact

PII = −MVbef , (2)

Then a candidate impulse, P can be defined as:

P̄ = (1 + e)PI + (1 + et)(PII − PI), (3)

where 0≤ e ≤ 1 is the coefficient of restitution and -1≤et≤ 1
is the coefficient of tangential restitution.

If this candidate falls in the friction cone, then it is the final
impulse resulting from the collision. Otherwise, we project
it onto the friction cone surface, that is:

P = (1 + e)PI + k(PII − P I), (4)

where

k = {
1 + et, if ‖ P̄ − nnT PII ‖≤ µnT P̄

µ(1+e)nT PI

‖PII−nnT PII‖−µnT (PII−PI)
, otherwise

(5)

where µ is the friction coefficient.
To account for the noise and perturbation during the

impact, we include normally distributed noise about the
direction of the computed impulse:

P ′ = P + ε (6)
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IV. SHAPE AND POSE UNCERTAINTY

We use a particle filter to track the distribution of the
shape and pose of the object through time. For detailed
description of the particle filter technique, see [9]. Briefly, in
this problem, each particle represents a state of the object.
We start with a set of particles that are uniformly distributed
in the state space, assuming no particular good guess of the
state. Then at each time step, with the information of the
current control and the current observation from the camera,
the particle filter updates and resamples the particle set.

The particle set at time step t can be denoted as:

St = {st,1, st,2, ..., st,m} (7)

where m is the number of particles in the set and each st,i

is a 7D vector, representing a possible state of the object.
At each time step, we update the particle set with the

following steps:
1. Use physical rules described in the previous section to

update the state of each particle in the set from the previous
time step.

St = PhysicalUpdate(St−1). (8)

For each particle, this can be either ballistic motion or
collision with the batter or the walls of the environment,
depending on the previous state of that particle.

2. For each particle, compute a the probability of the
current camera observation given the current state:

wt,i = P (ot|st,i) (9)

where ot is the current camera reading.
The camera readings are represented by the two end points

of the perspective projection of the object onto the screen line
of a planar pinhole camera. To add realism, we add normally
distributed noises to the camera readings.

3. Resample the particles with probability proportional to
Wt=wt,1, wt,2, ..., wt,m, which fills

the particle set with the same number of particles.
We observe that the particle set converges towards the true

object state during the ballistic phase of the true object and
then diverges again due to the noise injected at impact.

V. PLANNING

A blind strategy could only bat open loop and not take
into consideration any information feedback throughout the
process. For instance, we can let the batter follow a preset
trajectory, such as:

θ = A sin (ωt) (10)

where A is the magnitude and -π/6≤θ≤π/6.
We propose a two-step planer where the planner first

finds the control that maximizes a measure of information
gain for the particle filter, followed by batting to reach the
goal.

A. Information gain

During the information-gain step, the batter does an n-
timestep look ahead to choose one controller from a discrete
set of open loop controllers that would yield the most
converged particle set at time t, where t≤ n. The controllers
are chosen from the set of cyclic controllers in Eqn.10. We
bat the particle set using the selected controller to the time
step t which has the lowest entropy. Approximating the (x, y)
position of the particles by a 2D Gaussian model, we use the
entropy of the distribution as a measure of its convergence:

H =
1
2
(1 + log 2π + log det (Σ)) (11)

where Σ is the covariance matrix of the particles. When the
set is relatively converged, the entropy is low and we believe
that the particles have a high probability of representing the
true object state.

B. Batting to the goal

1) Open-loop batting with perfect information: The prob-
lem of successfully batting an object whose shape and pose
are completely known is hard and interesting by itself. Like
a trick shot in billiards, there can exist strategies that bounce
the object off many walls. There can also exist strategies that
require multiple bats to send the object to the goal. Finally,
noise is a factor that must be considered in any strategy - for
example, batting the object multiple times may only decrease
the probability that it reaches the goal.

While the computation of an optimal policy given all of the
above complexity is possible, and very interesting, we choose
computational speed over optimality, primarily because we
are interested in an algorithm that is near real-time so that
it can be implemented on a real system, where the time
between bats is small.

To achieve speed-up, we search only for the best single
bat to the goal. We also discretize the control space (of
bat angle and angular velocity at which the particle next
hits the bat) into a finite set of possible actions (similar
to techniques in [17]). We simulate the effect of all of the
actions for the duration of one bat(i.e., until the object hits
the bat a second time; there is no restriction on the number
of impacts between the object and the stationary walls) and
pick the discretized action that minimizes a cost function
f which is quadratic in the distance between the center of
mass of the object and the center of the goal region. We then
run an optimizer (MATLAB’s fminsearch) to polish the
solution.

In the presence of impact noise, however, there is a range
of costs returned for the same action, since the trajectory,
and thereby the cost, is affected by the noisy impact.

We would like to find a control u ∈ U that does the best,
even in the presence of uncertainty in the objective function
f induced by the uncertainty in the impact. We frame this
as a problem of maximizing the probability of doing better
than any other control v for a given f :

u∗ = arg max
u

Pr [∀v ∈ U, f(u) ≤ f(v)] (12)
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Because speed is of the essence, we use an approximate
algorithm to solve Eqn.12. We sample a value for the noise
and fix it. We compute the solution u∗i to Eqn.12 for the
fixed noise. We repeat this for n different values of the noise.
From the n solutions {u∗1, . . . u∗n}, we pick the one that is
statistically the most representative. We observed that the u∗i
are tightly clustered and unimodal and pick the mean of this
cluster as our representative control.

We experimented with two strategies for the objective
function f , one minimizing the weighted sum of the distance
between the particles and the goal, the other minimizing the
distance between the most likely particle and the goal.

While both strategies maximize the expectation of
success, there is no guarantee that either of them will
actually succeed in a given trial.

2) Batting the whole set: In this strategy, we specify
the objective function as minimizing the weighted sum of
distance from the COM of every particle in the set to the
goal.

3) Batting the best particle: Instead of batting the whole
set, another strategy is to bat the particle which has the
highest probability.

VI. SIMULATION RESULTS

To test the planning algorithms, we ran a set of simulation
experiments in Matlab. To understand the value of different
choices made in designing our algorithms, we test the
following strategies:

1. Open loop. This is a straw man against which to
compare all strategies which make use of information and
planning. The bat simply performs the open loop trajectory
of Eqn.10 with A=π/6 and ω = {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
These values of ω were chosen to provide a variety of
controls without adding extreme amounts of energy to the
objects. These are the same values of ω that are used in
batting for information gain.

2. Closed loop, bat the entire particle set with no
uncertainty in planning. Here we perform one bat for
information gain and then find the optimal control to bat
the entire particle set towards the goal.

3. Closed loop, bat the best particle with no uncertainty
in planning. Here we perform one bat for information gain
and then select the best particle. The best control is then
found for this particle. We compare this strategy to 2) to
determine whether choosing the best particle or batting all
particles is a better choice.

4. Closed loop, bat the best particle with uncertainty in
planning. This scenario is identical to 3), but uncertainty
at impact is considered during planning. We compare this
strategy to 3) to determine whether considering impact
uncertainty during planning is a better choice.

5. Closed loop, bat the best particle with no uncertainty
in planning and world. This scenario is identical to 3),
except that impact uncertainty is also not simulated in the
world. This scenario is unrealistic but serves as a point of
comparison because no realistic scenario could ever improve

upon this one.

A. Experiment setup

All the following simulation were run under a -1m/s2

gravitational field (pointing downwards), with e=0.95,
et=0.75 and µ=0.8. The size of the table and the positions
of the camera and the batter are shown in Fig.3. The
width of the camera screen is 2. The world frame origin is
defined at the batter joint. The batter has a moving range
between -π/6 and π/6. The red filled circle is the goal at
(7,3) with a radius of 0.8; The green object is an example
of the initial object state. There are seven smooth convex
objects in the object set (Fig.2). The camera readings have
a normally distributed noise with σ=0.1m and the impulse
has a normally distributed noise of σ=0.0001Kg·m/s. We
start with a set of particles that are uniformly distributed in
the 7D state space, assuming no particular good guess of
the start state and the initial number of particles is 200.

Fig. 2. Shapes used in the experiment.

Fig. 3. Table, batter and camera setup

B. Particle filter

The particle filter uses the observation from the camera
to resample the particle set, which discards the particles
that have less probability of being the true object state
and keeps multiple copies of the ones that are of high
probability. Over time, the particles would converge toward
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the true state, but the uncertainty in the collision would
then cause them to diverge. Fig.4 shows the entropy over
time and some examples of the corresponding states of the
particles. The converging phase happens when there are few
collisions and good camera readings, while the diverging
phase happens when there are many collisions and few good
camera readings.

We identify the most likely particle at the end of the first
step (the information gain step) and proceed with planning
assuming this particle represents the true state of the object.

Fig. 4. Entropy over time and examples of the corresponding states of the
particles

C. Two-step lookahead

For the closed-loop planner, in the first step we choose a
control that results in the least entropy for a chosen amount of
time. Fig.5 shows the entropies over time resulting from the
five control candidates, respectively. The control represented
by the green line (ω=1.0) will be chosen in this figure and
the batter will use this control until the lowest point on the
green line.

Fig.6 and Fig.7 show some screen shots from the simu-
lation during the two steps. Note that in Fig.7 the particles
start to diverge after the impact, which accounts for the more
widely distributed particles in the right hand figure (after
impact) vs. the center figure (just before impact).

Fig. 5. Entropies of five control candidates during the first step.

Fig. 6. Screen shots of the particles during the first step.

Fig. 7. Screen shots of the particles during the second step.

D. Planning strategies

Table I shows the number of the times the object enters
the goal under different control strategies for ten trials of
different initial object states in two hundred seconds.

A. Iteratively do a t-timestep look ahead first for a control
that leads to lowest entropy, then search for a control that
leads to minimum weighted sum of distance between all the
particles in the set and the goal.

B. Iteratively do a t-timestep look ahead first for a control
that leads to lowest entropy, then search for an optimal
control that bats the best particle to the goal. The planning
part does not take into account the impact uncertainty.

C. Iteratively does a t-timestep look ahead first for a
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control that leads to lowest entropy, then search for an
optimal control that bats the best particle to the goal. The

D-I. Openloop controls. The batter follows the following
planning part takes into account the impact uncertainty.
trajectory:

θ = A sin (ωt) (13)

where ω = {0.2, 0.4, 0.6, 0.8, 1.0}, respectively for E-I
and A=0.4. A has the most counts of reaching the goal.
However this is under a world without noise in the second
step of the two-step control strategy and with no uncertainty
in planning. Although it is not realistic, it shows that the two-
step control strategy works well when there is no noise. C is
batting the best particle with no uncertainty in planning. It
performs worse because when impact uncertainty is not taken
into account in planning step and this impact uncertainty can
cause the object’s trajectory to depart from the best trajectory
planned. However, when we plan with uncertainty, as in B,
the performance improves significantly. It is still not as good
as the result under a world without impact noise, but this
is expected, as we can decrease the impact of the impact
uncertainty on the result through careful planning, but we can
never eliminate the uncertainty entirely. Batting the whole set
does not work well, perhaps because it searches for a control
that works well over the entire distribution of particles. The
control has to compensate for the particles that are far away
from the real object state and this requirement has an adverse
effect on the good particles’ performance. The open loop
controls (E-J) have some interesting trends. For instance, E
does much better than the other open loop controls, but they
all do worse than the closed loop controls.

VII. DISCUSSION

In summary, we present a two-step algorithm for planar
batting under shape and pose uncertainty. Our algorithm first
takes one step to gain information about object state and then
executes a second step to perform a desired task–in this case,
to bat the object toward the goal.

We handle shape and pose uncertainty simultaneously.
However, in our experiments, shape uncertainty was very
easily dismissed, because the state of the object collapsed
to a single shape very rapidly. Incorrect shapes were not
consistent with camera readings for very long, even given
the expected uncertainty in camera readings.

It was more difficult to compensate for pose uncertainty.
Our problem has the interesting property that noise is added
to our estimate of object state through events which are
discrete in nature and relatively far apart in time. In between
these events, our sensors allow us to nearly localize an object,
but each event once again increases uncertainty, making it
difficult to plan many steps into the future.

We had two interesting findings while developing an
algorithm to handle this type of pose uncertainty. First,
as Table I illustrates, choosing an action based on our
single best guess at particle state performs much better than
considering the entire distribution of particle states. We are
better off ignoring the distribution of likely particle states and

optimizing based on our single best guess. For some intuition
for why this may be true, consider that the best action for
one particle may differ substantially from the best action for
another particle, even if the states are similar. The mean of
the two actions, then, may be good for neither particle, and
so this mean action may result in a lower expected score
than optimizing for either particle alone.

A second interesting finding, also supported by the results
shown in Table I, is that when choosing an action, it was
important to model uncertainty at impact. Simply considering
the effect of the most likely impact response produced sig-
nificantly worse results than considering the results over the
distribution of impact responses. In this case, the distribution
of uncertainty could not be ignored and was important for
good performance. Our intuition here is that the single best
guess for particle state before impact is likely to be correct
or nearly correct, yet the particle state after impact will over
many trials reflect the distribution of states captured by our
impact uncertainty model.

In terms of future work, our immediate plan is to construct
a robot platform to test whether our two-step batting strategy
works as well in practice as in simulation. We would also
like to identify good strategies in a more automatic fashion.
For this paper, we had to specify that the robot would
first perform a single action for information gain followed
by a second action to accomplish the task. We expect to
pursue two parallel directions for identifying good strategies,
the first based on performing a more comprehensive search
through the space of possibilities and the second based on
learning from human demonstration. We also believe that
particle filter approach and two phase strategy can be applied
to a broader range of manipulation tasks, for example, to
address uncertainties caused by impact as the hand acquires
an object and manipulates it into the palm for use in a
particular task.
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