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Abstract—Successful robotic assistive feeding depends on reli-
able bite acquisition and easy bite transfer. The latter constitutes
a unique type of robot-human handover where the human needs
to use the mouth. This places a high burden on the robot to
make the transfer easy. We believe that the ease of transfer
not only depends on the transfer action but also is tightly
coupled with the way a food item was acquired in the first
place. To determine the factors influencing good bite transfer, we
designed both skewering and transfer primitives and developed a
robotic feeding system that uses these manipulation primitives to
feed people autonomously. First, we determined the primitives’
success rates for bite acquisition with robot experiments. Next,
we conducted user studies to evaluate the ease of bite transfer for
different combinations of skewering and transfer primitives. Our
results show that an intelligent food item dependent skewering
strategy improves the bite acquisition success rate and that the
choice of skewering location and the fork orientation affects the
ease of bite transfer significantly.

Index Terms—assistive feeding; deformable object manipula-
tion; bite acquisition; bite transfer

I. INTRODUCTION

Eating is an activity of daily living (ADL) and losing the

ability to self-feed can be devastating [1]. According to a

survey in 2010, around 1.0 million adults in the United States

required the assistance of another person to help them eat [2].

Conditions such as cerebrovascular diseases like strokes [3],

Parkinson’s, arthritis, multiple sclerosis [4], spinal cord in-

juries [5], bilateral amputations, and many others can render

individuals unable to eat on their own accord. Instead, they

depend on a caregiver to feed them every morsel of every

meal every day [6]. In addition to positively impacting the

self-worth of people with disabilities [7], [8], independent

dining would have a considerable effect on caregiver hours

because feeding is one of the most time-consuming tasks for

caregivers [9], [10]. Also, dining together with other people

is a cornerstone of society and provides a personal link to

the wider community [11]–[13] but the presence of caregivers

during dinner with friends or relatives may pose a privacy

concern [14].

Some commercial powered feeding systems currently on

the market [15]–[18] address this problem using a robotic

arm that scoops food with a spoon. These systems have

lacked widespread acceptance probably because of limited
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Fig. 1: Robotic feeding using various manipulation strategies.

mobility and minimal autonomy demanding a time-consuming

food preparation process in specialized food containers [15],

[16], [19]. A general-purpose robotic system attached to a

wheelchair with increased mobility can perform in situ feeding

tasks in addition to general tasks such as opening doors and

picking up items. Feeding is challenging in because it involves

complex bite acquisition strategies for food with a variety

of physical characteristics. Bite transfer is also challenging

because the food needs to be positioned and oriented relative to

the mouth in a way conducive to easy bite transfer. We address

this challenge by employing our key insight that depending

on the physical properties of a food item, the manipulation

strategies for easy bite transfer may be dependent on the

strategies for reliable bite acquisition.

Using a fixed strategy for bite acquisition is not ideal in

realistic situations because food items come in various shapes,

and have physical properties that are difficult to model. Eggs,

for example, may require skewering at a position where the

white and the yolk are simultaneously skewered to prevent any

one part from falling off [20]. Bananas may require angled

skewering approach angles to prevent them from slipping due

to gravity when lifting off. Our robotic system uses fine manip-

ulation planning and leverages the complementary capabilities
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Fig. 2: Our feeding system autonomously skewers food items and feeds people with different strategies using multiple sensing

modalities. The system uses a food item dependent force threshold (shaded region in Fig.2(c)) to skewer a food item.

of multiple sensing modalities such as vision and haptics

to automatically acquire bites for a variety of food items.

Our system decides which discrete manipulation primitive to

instantiate such as a food item dependent skewering approach

angle as well as select its continuous parametrization such

as skewering position, rotation and how much force to apply.

We analyzed the effect of these variations on bite acquisition

success rate.

Bite transfer may also need different food item dependent

strategies because an easy bite transfer strategy may require a

robot to orient the food item such that a user can take a bite

without opening the mouth excessively [20]. One can think

of feeding as a handover of food from the fork or spoon to

the mouth. However, unlike traditional hand-to-hand transfers,

hand-to-mouth transfers pose a greater burden to the robot

initiator because of fewer degrees-of-freedom to orient the

mouth to receive a bite. Therefore, we developed our system

to transfer a bite using different discrete handover primitives

and compared these primitives for the ease of bite transfer

using studies with 25 human participants.

Our results show that a skewering strategy based on a

food item’s shape, size and physical properties outperforms

the baseline approach of skewering at the center in terms of

the bite acquisition success rate, especially for long, slippery,

and heterogeneous food items. Our human participant studies

show that transfer depends on acquisition. Angled skewering

combined with angled transfer performed significantly better

than vertical skewering combined with horizontal transfer for

easy bite transfer (See Fig.1). Also, people tend to avoid hitting

the tines of the fork while biting a long and slender carrot and

thus, where a robot skewers an item can affect the ease of bite

transfer as well.

Our contributions can be summarized below as:

1) We developed a feeding system that can acquire solid

food items and feed a user autonomously using multiple

complementary modalities of vision and haptics.

2) We designed various discrete manipulation primitives

and their continuous parametrizations for reliable bite

acquisition and ease of bite transfer, and empirically

compared the different strategies with human partici-

pants.

3) We created a new dataset [21] of food items with masks

of skewering positions and rotations for effective bite

acquisition and bite transfer.

II. RELATED WORK

An autonomous robotic feeding system encompasses the

fields of manipulation, perception, and human-robot interac-

tion. There is hardly any work investigating the human-robot

interaction aspects of varied manipulation strategies used for

autonomous robotic feeding, but here, we present a review of

work related to manipulation and perception.

A. Food Manipulation

Though there are few studies on manipulation of solid

food items for assistive feeding, related work on solid food

manipulation focus on the either packaging or cooking applica-

tions [22], [23]. However, food manipulation in the context of

assistive feeding is different from food manipulation in other

contexts and it has its unique manipulation, perception, and

human-robot interaction challenges.

1) Acquisition: Gemici et al. [24] study food manipulation

in the context of food preparation for cooking, but their system

uses a spatula and a gripper for grasping the food items

which require different manipulation strategies than skewering.

There is also considerable work on industrial robotic food

manipulation but Chua et al. [25] noted that intrusive gripping

methods are generally not used in this field because they could

potentially damage the food items and force feedback is crucial

to manipulate non-rigid food items. Park et al. [26] developed

a semi-solid food acquisition system for assistive feeding

using a general purpose manipulator to scoop yogurt with a

spoon. They also developed an anomaly detection framework

for assistive feeding using multiple sensing modalities [27],

[28]. The system that comes closest to ours in terms of bite

acquisition is the work done by Herlant [19], which also uses

a fork to skewer solid food items autonomously. However,

our objective to improve bite transfer calls for additional

capabilities, such as identifying single food items on the plate

and choosing skewering positions and fork rotations with bite

transferability in mind.
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Fig. 3: Our system uses multimodal sensing modalities to

sense, perceive, plan, and control the robot to skewer food

items and transfer them to a user.

Interestingly, there is also a vast body of literature on

grasping that is related to food manipulation. However, unlike

most of the work on grasping which focuses on directly manip-

ulating a rigid object, our application demands indirect tool-

mediated manipulation of deformable objects. Having said

that, finding a good grasping location is conceptually similar

to finding good skewering locations. A common approach

for finding good grasping locations is using learning based

methods to learn good grasping locations on a 3d model and

match them to a perceived object, as seen in [29]–[31], or

using images as in [32], [33], or from real robot grasping

trials [34]. However, most of these approaches may have

challenges with deformable objects and may be difficult to use

for manipulating food items because the food may be damaged

and the physical characteristics may change after one skewer-

ing attempt. Additional interesting results in manipulation of

difficult items include the research on articulated objects by

Katz et al. [35] and the work on learning elasticity parameters

by Frank et al. [36].

2) Transfer: Although it is hard to find related studies

on analyzing manipulation strategies for robotic bite transfer,

similarities can be drawn to the studies on robot-human

handovers. Research on robot-human handovers often focuses

on rigid objects that are gripped with fingers [37]–[39] which

is different from tool-based handovers, where a robot transfers

a bite using a fork. The feeding handover situation poses an

additional challenge of transferring to a mouth with fewer

degrees of freedom. Canal et al. [40] explore bite transfer in

the context of a personalization framework. A related, more

general idea is found in [41], where the human preference

for ”default orientations” of objects and the importance of

grasp type were identified. Aleotti et al. [42] built on this

by orienting items in a way that makes grasping easier and

confirmed it with a human user study. In our paper, we want to

extend the research domain of robot handovers to the use case

of assistive feeding, where items are not grasped and handed

to a person’s hand, but skewered with a fork and transferred

to a human’s mouth.

B. Food Perception

Food perception for an autonomous robotic feeding system

requires classification and detection of food items on a plate

and segmentation for skewering position and rotation masks.

With the latest success in deep supervised learning, image

classification and object detection research have been under ac-

tive development. Researchers have proposed many networks

for object classification such as AlexNet [43], GoogLeNet

[44], VGG Net [45], ResNet [46], DenseNet [47], Feature

Pyramid Network (FPN) [48], and a variety of work on food

detection [49]–[51]. There have also been variants that prior-

itize speed such as MobileNet [52] and SqeezeNet [53]. On

top of the evolution of the computing power, comprehensive

datasets such as ImageNet [54], PASCAL VOC [55], and

COCO [56] datasets continue to drive this research area.

For object detection, algorithms such as Overfeat [57], R-

CNN series [58]–[62], Yolo [63], SSD [64], RetinaNet [65],

and DetNet [66] have made great strides. Among the state-

of-the-art object detectors, we chose RetinaNet for food item

detection and recognition, mainly because RetinaNet is faster

and lighter than two-stage object detectors such as Faster R-

CNN, but more accurate than other single stage networks such

as SSD or YOLO [65].

Another area focusing on image segmentation or semantic

segmentation infers tight masks for each object in a scene. For

image segmentation, researchers developed algorithms such

as Vanilla FCN [67], U-Net [68], SegNet [69], and segmen-

tation with two-way DenseNet [70]. Mask RCNN [71] and

BlitzNet [72] generate fine masks on top of object detection

layers. [71] showed that the independent masks from Mask

RCNN with the Fully Convolutional Network (FCN) branch

achieved the highest performance. We adopt this idea and

implement two sub-branches for our skewering position and

rotation masks for bite acquisition, which sits on top of our

RetinaNet object detection network.

III. AN AUTONOMOUS ASSISTIVE FEEDING SYSTEM

We developed an autonomous robotic feeding system that

uses newly developed sensing, perception, planning, and con-

trol modules to acquire a bite from a plate and feed it to

a person using various manipulation primitives. Our system

consists of a 6 DoF JACO robotic arm [73] mounted on a

powered ROVI wheelchair [74] to mimic similar setups used

in real homes. The robotic arm has 2 fingers that grab an

instrumented fork (forque, see Fig.2(b)) using a custom built

3D printed fork holder. The system uses visual and haptic

modalities to perform the feeding task. For haptic feedback,

we instrumented the forque with a 6-axis ATI Nano25 Force-

Torque sensor [75]. We use haptic sensing to control the

end effector forces during skewering and to detect if food

acquisition was successful as well as if the fork hits something

unexpectedly to improve safety. For visual feedback, we

mounted a custom built wireless RGBD camera on the robot’s

wrist by using the Intel RealSense D415 camera and the Intel

Joule 570x for wireless transmission.

We designed the system such that it perceives a food

item on a plate using the perception methods described in
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Fig. 4: Our system uses RetinaNet to detect food items. After detecting food items, our system can either use a baseline method

to estimate a skewering location in the center or SPNet for estimating masks of skewering locations and rotations.

Section IV-A, servoes to it using the visual modality, acquires

the bite using the haptic modality, and then feeds it to a

person by detecting the face and servoing to it using the

visual modality. Our system runs on Ubuntu 16.04.5 and

uses ROS Kinetic [76] for communication between modules

and visualization, AIKIDO [77] for planning and executing

trajectories, and PyTorch [78] and Dlib C++ Library [79] for

perception methods. Our face perception works with ±80°

roll, ±30° pitch, ±38° yaw, and is reasonably robust to

mouth occlusion. We developed various ROS nodes which

communicate with each other for the feeding task. The feeding

node, which uses information from the other nodes, decides

the sequence of actions to control the robot.

Fig.3 shows the flow of information in the system. First,

the user selects a type of food for the next bite. Different

interfaces depending on the abilities of the user are conceivable

for this interaction, but since interface design is not the focus

of this work, we used a terminal. The robot responds by

moving its camera above the plate, perceiving the environment

and checking if the selected food can be found. If it does

find a suitable food item, a visual servoing control loop

begins: While carefully moving the fork and camera closer

to the desired food item, the system continually perceives

the plate, tracks the selected food item and estimates its

continuous parametrization of fork position and rotation using

our perception module. We implemented the visual servoing

procedure to help increase skewering precision in the pres-

ence of manipulation and perception uncertainties in realistic

scenarios such as a non-rigid wheelchair base.

Once the fork tines touch the food item, the controller uses

haptic feedback to skewer it. Once the force values exceed

a threshold, the controller stops the skewering motion and

the system continues with planning for the bite transfer step.

This threshold depends on the type of food item and was

adapted from the average force data obtained from the human

experiments in [20]. On an average, approaching the food

takes around 3 seconds and skewering it takes 1.3 seconds.

Food perception takes anywhere between 120ms and 450ms

depending on the number of items on the plate.

For bite transfer, we re-use our closed loop visual servoing

capability to approach the user’s face using discrete manipula-

tion primitives of transfer angles. The system, while carefully

moving the fork and food close to the user, continually re-

perceives the face and adjusts its trajectory. In this case, visual

servoing not only improves precision but also allows the robot

to handle some degree of neck movement on the user’s part.

This is important because some disabilities involve involuntary

spastic movements which may make the care-recipient move

unpredictably. In our study (Section VII) the robotic system

stopped the approach before the fork touched the mouth be-

cause of safety concerns. However, the haptic sensing modality

enables the system to continue moving towards a user’s mouth

until it feels a slight touch based on haptic feedback from the

physical interaction.

We run our bite acquisition and transfer experiments using

this autonomous robotic feeding system. For bite acquisition,

we designed our system to be able to use two discrete

skewering primitives based on the skewering approach angles,

vertical and angled, which are parameterized by the perception

outputs. Similarly for bite transfer, our system can use two

discrete transfer primitives, horizontal and angled. We also de-

signed our system to use different continuous parametrizations

of these manipulation primitives (See Section IV). However,

the system design is independent of the specific sensors or

robot used and we expect our methods to generalize to any

robot equipped with haptic and visual sensing capabilities.

IV. SKEWERING MANIPULATION PRIMITIVES

For each of the discrete skewering manipulation primitives,

we designed their continuous parametrizations not only for

successful bite acquisition but also with easy bite transfer

in mind. For example, the system can estimate an intelligent

skewering position (where) and fork rotation (how) based on

physical characteristics of a food item. We implement and train

two neural networks to give the robot autonomous capabilities

to answer these questions.

A. Skewering Primitives: Where and How to Skewer?

Perceiving food items is an essential initial step of bite

acquisition. Our goal is to localize food items and estimate

their pose in 3D space from the input RGBD stream. In

a realistic situation, food items may be small, placed in a

cluttered plate, and need to be perceived in real-time.

For detecting food items, we choose RetinaNet for the

reasons mentioned in Section II-B. For each bounding box
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Fig. 5: SPNet architecture with two dense blocks and two sub-

branches for binary and rotation masks.

generated by the object detector, our Baseline approach sets

the midpoint of the bounding box as its skewering position.

However, food items are of different shapes and physical

characteristics. Therefore, we propose the Skewering Position

Network (SPNet), a network that estimates the skewering loca-

tions and rotations that could result in reliable bite acquisition

and easy bite transfer for each bounding box (see Fig.5). SPNet

consists of base convolutional layers and two sub-branches for

binary masks and rotation masks. Compared with a single lo-

cation and rotation per bounding box, masks can represent the

probability distribution of all the possible skewering locations

and corresponding rotations. We developed SPNet running on

top of RetinaNet instead of extending Mask RCNN because

we do not need pixel-wise mask generation and masks over

the entire input scene – SPNet runs only for the food item we

want to acquire.

The base convolutional layers are composed of multiple

Convolution-Activation-Pooling sets and reduce the width

and height of the input (136 × 136) to the size of binary

and rotation masks (17 × 17). We developed two kinds

of base convolutional layers. The simple network has only

three Convolution-Activation-Pooling sets, and we adopt the

dense block structure from DenseNet in order to increase the

representation power of the network. We placed two dense

blocks with different numbers of inner layers in the network. A

shallower version has 3 and 6 inner layers in each dense block

and a deeper version has 6 and 12 inner layers respectively.

The binary mask is one of the two branches on top of

the base convolutional layers. After four convolutions without

pooling, the final mask consists of 17×17 grid cells. Each cell

represents the probability score of the skewering location at

the center of the cell. We use the binary cross entropy loss for

training this mask. The rotation mask consists of 17× 17× a

grid cells, where a is the angle resolution represented by the

number of classes for the discretized angles between [0, π).

We discretized angles because the rotation classification was

more reliable than rotation regression for our early test cases.

Furthermore, with discretization, we can handle the rotation

free annotation as a class among other specific rotations. For

example, when the angle resolution is 18, there are a total of

19 classes: class 0 represents any rotation while class 1 ∼ 18
denote specific angles, (class id−1)×10°. We use the cross

entropy loss to train the rotation for each cell.

B. Food Manipulation Dataset

We created a new dataset of food items to train RetinaNet

and SPNet [21]. For the data collection, we maximized the

variety of viewpoints and the selection and placement of food

items in the scenes to increase the detection performance. We

collected total 478 images including 349 real images by taking

photos of plates of food items and 129 synthetic images which

were rendered using the Unreal Engine.

We collected a total of 3,722 bounding boxes composed

of 560 bananas (15%), 576 cantaloupes (15.5%), 556 carrots

(14.9%), 636 celeries (17.1%), 597 eggs (16%), and 797

strawberries (21.4%). For the real images, we used an applica-

tion, LabelImg [80], to manually record bounding boxes. For

the synthetic images, we modified an Unreal Engine plugin,

UnrealCV [81], so that it can automatically generate PASCAL

VOC style annotations for random scenes. We generated a

total of 2,954 masks for real images by using a new labeling

application we developed. From the images and bounding

box annotations, the application generates cropped images

and overlays a 17 × 17 grid on the images so that a user

can select skewerable grids and set a rotation value for a

group of adjacent cells. Our dataset and code for the labeling

application are available at [21], [82].

We categorized the six food items into three categories

based on their shape and size: small, long, and round. Can-

taloupes, bananas, and strawberries were in the small category,

carrots and celeries were in the long category, and eggs

were in the round and heterogeneous category. We generated

the masks with specific rules for each category for effective

feeding, so that SPNet learns our category-dependent strategies

(see Fig.4), like skewering long items at their ends with the

tines perpendicular to the item’s long axis. We identified these

skewering rules using the insights presented in [20].

C. Skewering Primitive Selection Performance

We tested multiple versions of SPNet with varying dense

block sizes and angle resolutions. All the network variants

including the simple SPNet were trained with the dataset until

the training loss stabilized, and for the binary masks, they

reached a similar test accuracy of 96.5%. However, the F1

score of the dense block SPNet was 11.76% higher than the

simple SPNet. The recall of the dense block SPNet was higher

than that of the simple SPNet while their precisions were

similar.

All networks showed usable performance for the rotation

masks. Among the various discretizations of angles such as 9,

18, 36, 90, and 180, we get the best performance when we

discretized [0, 180) into 18 angles. Thus, we chose the SPNet

variant with shallow dense blocks and 18 angles resolution for

bite acquisition. The performance of SPNet varies depending

on the category of food items. See Table I for details.

The “small” category was the easiest one since it is rotation

free and the skewering positions in the category are symmetric



TABLE I: SPNet performance per category of food items

Cate-
gory

Mask
Accuracy

Mask
Precision

Mask
Recall

Mask F1
Score

Rotation
Error

S* 0.974 0.739 0.664 0.693 -1.000

L* 0.974 0.691 0.551 0.604 6.986

RH* 0.934 0.687 0.666 0.675 4.710

* S = Small, L = Long, and RH = Round and Heterogeneous.

and placed around the center of the masks. SPNet performed

better for this category compared to the other categories.

The “long” category was more difficult than the “small”

category. We generally labeled two groups of skewering po-

sitions per mask near each end, and the rotation of a group

of skewering positions was perpendicular to the long edge of

the item. SPNet showed 97.4% accuracy, but the recall of

this category was lower than that of others. The main reason

for the low recall is probably due to the random shapes of

celeries.

The “round and heterogeneous” category only included eggs

which were labeled with skewering positions along the edge

of yolk based on inputs from previous human studies. SPNet

performed well for this category and interestingly showed a

high F1 score. Although the accuracy of binary masks was

slightly lower than others, it was reasonable for our robot

experiments.

V. BITE ACQUISITION EXPERIMENTS

We performed experiments to determine the success rate

of bite acquisition using various discrete manipulation prim-

itives and their continuous parametrizations. We used our

autonomous robotic feeding system (See Section III) for these

experiments. We performed our experiments with 6 food items:

bananas, cantaloupes, carrots, celeries, hard-boiled eggs, and

strawberries. We selected these food items based on their

varied shape, size, and compliance, which may affect bite

acquisition [20]. Carrots and celeries are long and slender,

cantaloupes and strawberries are small and round, bananas are

soft and slippery, and hard-boiled eggs are heterogeneous with

both yolk and white. Furthermore, caregivers mentioned that

these food items are among the regular salad items that patients

eat.

Our experiment consisted of the robotic arm autonomously

acquiring food items with different skewering strategies: the

baseline method, which skewers at the center of the food item,

SPNet, and BLD (Bite Location Detector), the state of the art

method used by Herlant [19].

Using each of these strategies, our autonomous robotic

system skewered 2 plates of 5 pieces of each of these 6 food

items, thus totalling to 3 skewering position strategies × 2

plates × 5 pieces × 6 food items = 180 trials. Since both

the baseline and SPNet methods are capable of letting the

user select the food item to acquire, our system attempted

skewering each item only once. This is in contrast to BLD,

which doesn’t let the user choose and thus is free to retry food

items. We restrict BLD to 30 attempts to match the number

of trials used for the other methods.

For two of the food items, bananas, and strawberries, we

also compared two skewering approach angle strategies: ver-

tical and angled. We had two discrete manipulation primitives

for the angled primitive, one with horizontal tines and one

with vertical. Bananas often slip off the fork, so we tilted

the fork by 45 degrees to orient the tines more horizontally.

When skewering strawberries, the tines tend to slip on the

rounded surface without penetrating it. Therefore, we tilted

the fork in the other direction to so that the tines skewered the

strawberry vertically. Using SPNet, we skewered 2 plates of 5

items for bananas and strawberries, resulting in 20 additional

trials which we compared with the vertical performance of the

above experiment.

For each trial, the robotic arm perceived food items from

above the plate, chose one of the food items to skewer, and

lifted it off the plate. If it stayed for at least 5 seconds, we

labelled the bite acquisition attempt as successful. After each

trial, we removed the food item from the fork and discarded

it.

VI. BITE ACQUISITION RESULTS

We found that SPNet generally outperformed the baseline

approach, especially for cantaloupes, carrots, and eggs (See

Fig.6(b)). The total success rate was 0.55 for the baseline, 0.7
for SPNet and 0.633 for BLD.

The results of baseline and SPNet are significantly different

with p < 0.05 using the t-test (t(29) = 2.19). In the case

of carrots, this difference can be attributed to their long and

slender shape: If the fork tines are not oriented perpendicular

to the long axis of the carrot, they tend to slip off the curved

surface. The intelligent orientation of the fork with respect

to the food item solves this issue. Likewise, for eggs with

the heterogeneous mixture of yolk and white, skewering those

simultaneously prevents the yolk from falling off during lift-

off, and thus leads to successful bite acquisition.

In comparison, the state-of-the art method BLD performed

better than the baseline approach and slightly worse than

SPNet. The current experiment did not find statistically sig-

nificant differences with SPNet. However, it should be noted

that BLD is free to choose which item to try next and

skewer multiple items whereas the baseline method and SPNet

are constrained to try to acquire each food item only one

time. This implies that BLD could try skewering easier items

multiple times and ignore difficult items.

Our second experiment compared the performance of ver-

tical skewering with angling to adapt to the properties of the

food item. Angling the tines more horizontally for bananas

results in a success rate of 0.9, compared to 0.2 with a vertical

fork, which is significantly different at p < 0.01 using a t-

test (t(9) = 3.15). For strawberries, angling the tines more

vertically results in a success rate of 0.8, compared to 0.4
with a vertical fork, which is significantly different at p < 0.05
(t(9) = 1.83). Generally, tilting the fork to adapt for food type

specific difficulties results in big a improvement in success rate

from 0.3 to 0.85 with a statistical significance of p < 0.01
(t(19) = 3.52). Using SPNet together with fork angling for

specific items results in a success rate of 0.88.
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Fig. 6: SPNet outperformed the baseline approach particularly for long food items. For strawberries and bananas, angled

skewering improved the success rate significantly.

VII. BITE TRANSFER STUDY

For the next set of experiments, our objective was to find a

set of manipulation primitives that makes biting off the fork

easier. We hypothesized that users would prefer different bite

transfer strategies for different food items and that choosing

an appropriate combination of transfer and acquisition strategy

would affect the ease of bite transfer.

Insight about the former was gained from a human

study [20], which found that some people, when tasked with

feeding a mannequin, tilted the fork for specific food items

in order to orient the food and allow for easy bite transfer.

Fig.7(a) illustrates the difference in the human participants’

transfer angles. This told us that the shape of the food item

may call for a different transfer angle. The workspace of our

robot did not allow us to evaluate all of these angles, so we

compared the horizontal approach with an angled approach

tilted by 45°, which was the maximum we could reach reliably.

We believe that it is not so much angling the fork during

transfer as it is the relative orientation of the food item with

respect to the mouth that affects bite transfer. Thus, higher

angular configurations can be achieved by not only angling

the fork at transfer but also by picking up the food item at an

angle in the first place, thus compounding the effect. Therefore

we added a third strategy combination which consists of

picking up the food item in an angled way and approaching

the face at 45°. We abbreviate these three combinations of

strategies with VS-HT (vertical skewering-horizontal transfer),

VS-AT (vertical skewering-angled transfer), and AS-AT (angled

skewering-angled transfer).

To test the second hypothesis, we also employed another

insight found by [20]: Some people skewered the food in

a way that would make it easy for a recipient to take a

bite without hitting the tines and therefore chose their bite

acquisition method to improve bite transfer. To analyze the

hypothesis with our system, we used SPNet to skewer a long

food item at its ends. We designed the study such that the robot

skewered the items at different ends and brought the food item

to the user. This procedure resulted in the tines being closer

or farther from the recipient during transfer.

To investigate the impact of these strategies on the the

ease of bite transfer, we performed a study with 25 human

participants from 18-37 years of age, under our organization’s

Institutional Review Board. 8 out of the 25 participants had

experience feeding other people, 2 out of 25 were fed as an

adult by someone else, and 7 out of 25 participants were

female. We presented the participants with plates of 2 or 3

food items which our feeding system skewered and brought

to their mouths autonomously using different manipulation

primitives. We asked the participants to take a bite and rate

how easy it was to take the bite off the fork, specifically if

they had to strain themselves or move in an uncomfortable

way. The recipients could either eat the food or bite it off

the fork and discard it. The robot used a different strategy for

each item on the plate and we required the participants to rank

these strategies with respect to each other. We randomized the

order in which the robot applied these different manipulation

primitives and used SPNet for all of them since it had the

highest acquisition success rate.

The study began by comparing the first 3 strategies: VS-HT,

VS-AT, and AS-AT (See Fig.7(b)). Our robot fed the human

users 2 plates of cantaloupes, carrots, and celeries with 1 food

item for each strategy per plate. We selected these items based

on their varied shapes and sizes.

Next, we evaluated the effect of the proximity of tines

during bite transfer by having the participants eat one plate

each with 2 carrots and 2 celeries using the vertical skewering

and angled transfer, VS-AT strategy but skewered either at the

near end or far end of the food item (see Fig.7(c)).

For each participant, we performed a total of 22 autonomous

feeding trials (3 angular strategies × 2 plates × 3 food types

+ 2 far-near strategies × 2 plates).

VIII. BITE TRANSFER RESULTS

For the ranked angular strategies, we analyzed the partic-

ipants’ ranking with the Friedman test [83] followed by a

Nemenyi post-hoc analysis [83]. On average, angled skew-

ering combined with angled transfer (AS-AT) resulted in

significantly easier bite transfer than vertical skewering with

horizontal transfer VS-HT (p < 0.001 with df = 22, α =
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Fig. 7: Humans feed using different transfer angles [20]. For ease of bite transfer, participants preferred manipulation primitives

for bite transfer that depended on primitives for bite acquisition. VS-AT: Vertical Skewering - Angled Transfer, AS-AT: Angled

Skewering - Angled Transfer, VS-HT: Vertical Skewering - Horizontal Transfer.

0.001, q = 6.6 > qcrit = 6.065) and vertical skewering

with angled transfer VS-AT (p < 0.001 with df = 22, α =
0.001, q = 7.9 > qcrit = 6.065) for long food items. Also, on

an average for the food items in our study, angled skewering

with angled transfer AS-AT makes a significant difference in

the ease of bite transfer compared to vertical skewering and

angled transfer VS-AT (p < 0.001 with df = 22, α =
0.001, q = 6.167 > qcrit = 6.065). Thus, how a food

item is skewered significantly impacts the bite transfer process.

Interestingly, on a per food item basis, this is particularly true

for celeries which were long in shape (p < 0.001 with df =
22, α = 0.001, q = 7.9 > qcrit = 6.065). For carrots, both

skewering and transfer strategies had an effect. For example,

comparison between VS-HT and AS-AT (p < 0.001 with df =
22, α = 0.001, q = 6.1 > qcrit = 6.065), as well as between

VS-AT and AS-AT (p < 0.001 with df = 22, α = 0.001, q =
7.9 > qcrit = 6.065) resulted in significant differences.

However, for smaller and more cubic-like shaped cantaloupes,

the current experiment did not find statistically significant

differences between any of three manipulation primitives. This

implies that for small food items, a simple strategy like vertical

skewering with horizontal transfer may work quite well.

For the far-near strategies, we implemented Wilcoxon’s

Signed Rank test [83] to analyze the participants’ ranking.

On average, participants preferred to bite when the tines were

distal compared to proximal for both carrots and celeries with

statistical significance (p < 0.001 with α = 0.001, z =
5.35 > zcrit = 3.291) with continuity correction. This implies

that for long food items the choice of proximal vs. distal

positioning of the tines affected the ease of bite transfer, and

thus where a food item is skewered during bite acquisition

significantly impacts the ease of bite transfer.

IX. DISCUSSION

Assistive feeding is a problem with many facets. We saw

multiple strategies in which bite acquisition significantly af-

fected the ease of bite transfer. There could be other factors

that may influence the perception of ease of bite transfer

such as how close or far the food item is from the mouth or

personal preferences for a food item. Responses to a qualitative

question about the reasoning behind their ranking revealed

some interesting insights. Some participants mentioned that

for certain strategies taking the bite off the fork was difficult

because of the curvature of the fork tines. This leads us to

think that not only is the relative positioning between the

food item and the mouth crucial but also factors that affect

the physical interaction between the fork, food item, and the

mouth are important. As found by Herlant [19], good food

transfer timing is a crucial component of assistive feeding.

While we developed a module to detect open and closed mouth

states, a proper solution including the nuances of social dining

falls outside the scope of this paper.

Note, the need to adapt the robot’s motion to the user’s

face movement as well as the eye-in-hand camera system,

which is inherently different from human body anatomy,

necessitates the need for the robot to be positioned in cer-

tain pre-determined configurations during feeding to properly

perceive the environment. However, the current system can

be improved in future with more autonomous capabilities for

realistic feeding situations such as generalizing perception to

unseen food items, automated categorization of manipulation

primitives based on food item characteristics, as well as using

learning from demonstration techniques for annotations.

It is also important to note that this study was conducted

with able-bodied participants who were able to move their

neck slightly to be able to take a bite off the fork. This is

however not a limiting factor for most of the target population

because according to our interactions with occupational ther-

apists and therapeutic recreational specialists with expertise

in feeding, people with bilateral amputations and spinal cord

injury have the necessary neck movement to be able to use

the system as it is. However, note that our system assumes

no cognitive or swallowing impairment on the user’s side.

Another qualitative study by Martinsen et al. [14] on caregiver-

assisted feeding found that the objective of the interaction was

to replicate a meal experience from before the disability. This

also supports the premise of using insights learned from able-

bodied peoples eating patterns to inform the way an assistive

feeding device should behave [19]. In the future, we plan

to investigate the capabilities of the system for both people

with disabilities with similar range of neck movements as well

as people with more severe motor impairments and no neck

movements where the system would need to bring the food

item close enough to actually touch the mouth.
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