
Batch Informed Trees (BIT*): Informed
Asymptotically Optimal Anytime Search

c©The Author(s) 2017

Manuscript #IJR-17-2980

Jonathan D. Gammell1, Timothy D. Barfoot2, and Siddhartha S. Srinivasa3

Abstract

Path planning in robotics often requires finding high-quality solutions to continuously valued and/or high-dimensional

problems. These problems are challenging and most planning algorithms instead solve simplified approximations.

Popular approximations include graphs and random samples, as respectively used by informed graph-based searches

and anytime sampling-based planners.

Informed graph-based searches, such as A*, traditionally use heuristics to search a priori graphs in order of potential

solution quality. This makes their search efficient but leaves their performance dependent on the chosen approximation.

If its resolution is too low then they may not find a (suitable) solution but if it is too high then they may take a prohibitively

long time to do so.

Anytime sampling-based planners, such as RRT*, traditionally use random sampling to approximate the problem

domain incrementally. This allows them to increase resolution until a suitable solution is found but makes their search

dependent on the order of approximation. Arbitrary sequences of random samples approximate the problem domain in

every direction simultaneously and but may be prohibitively inefficient at containing a solution.

This paper unifies and extends these two approaches to develop Batch Informed Trees (BIT*), an informed, anytime

sampling-based planner. BIT* solves continuous path planning problems efficiently by using sampling and heuristics

to alternately approximate and search the problem domain. Its search is ordered by potential solution quality, as in A*,

and its approximation improves indefinitely with additional computational time, as in RRT*. It is shown analytically to

be almost-surely asymptotically optimal and experimentally to outperform existing sampling-based planners, especially

on high-dimensional planning problems.

Keywords

path planning, sampling-based planning, optimal path planning, heuristic search, informed search

1 Introduction

A fundamental task of any robotic system operating
autonomously in dynamic and/or unknown environments
is the ability to navigate between positions. The difficulty
of this path planning problem depends on the number of
possible robot positions (i.e., states) that could belong
to a solution (i.e., the size of the search space). This
search space is often continuous since robots can be
infinitesimally repositioned and also often unbounded (e.g.,

planning outdoors) and/or high dimensional (e.g., planning
for manipulation).

1University of Oxford, Oxford, United Kingdom. Work performed while
at the University of Toronto, Toronto, Canada
2University of Toronto, Toronto, Canada
3University of Washington, Seattle, USA

Corresponding author:
Jonathan D. Gammell, University of Oxford, Oxford, OX2 6NN, UK.

Email: gammell@robots.ox.ac.uk

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 Journal Title XX(X)

(a) RRT* (b) RRT# (c) FMT* (d) BIT*

Figure 1. The relative efficiency of the searches performed by RRT* (a), RRT# (b), FMT* (c), and BIT* (d) as illustrated by their
initial solution and its resulting informed set. Each planner was run until an initial solution was found and then stopped. The resulting
set of states that could provide a better solution is shown as a dark-grey dashed line. Search outside this informed set is provably
unnecessary for the solution found by each planner and illustrates the inefficiency of the initial search of RRT*, RRT#, and FMT*,
(a)–(c). Note that RRT# finds an initial solution from the same samples as RRT* as the heuristics presented in Arslan and Tsiotras
(2015) do not alter the search until a solution is found. Also note that by ordering its search on potential solution quality, BIT* does
not consider any samples that cannot provide the best solution in its current approximation (i.e., batch of samples). The start and
goal states of the problem are shown in green and red, respectively, while the graph built by the planner is shown in blue and the
initial solution is highlighted in purple.

Most global path planning algorithms reduce this search
space by considering a countable subset of the possible states
(i.e., a discrete approximation). This simplifies the problem
but limits formal algorithm performance to the chosen
discretization. Popular discretizations in robotics include a

priori graph- and anytime sampling-based approximations.

A priori graph-based approximations can be searched
efficiently with informed algorithms, such as A* (Hart
et al. 1968). These informed graph-based searches not
only find the optimal solution to a representation (i.e., they
are resolution optimal) but do so efficiently. For a chosen
heuristic, A* is the optimally efficient search of a given graph
(Hart et al. 1968).

This efficient search makes informed graph-based
algorithms effective on many continuous path planning
problems despite a dependence on the chosen approximation.
Sparse approximations can be searched quickly but may
only contain low quality continuous solutions (if they
contain any). Dense approximations alternatively contain
high-quality continuous solutions (Bertsekas 1975) but may
be prohibitively expensive to search. Choosing the correct
resolution a priori to the search is difficult and is exacerbated
by the exponential growth of graph size with state dimension
(i.e., the curse of dimensionality; Bellman 1954, 1957).

Anytime sampling-based approximations are instead built
and searched simultaneously by sampling-based algorithms
such as Probabilistic Roadmaps (PRM; Kavraki et al.
1996), Rapidly exploring Random Trees (RRT; LaValle and
Kuffner Jr. 2001), and RRT* (Karaman and Frazzoli 2011).
These sampling-based planners incrementally improve their
approximation of the problem domain until a (suitable)
solution is found (i.e., they have anytime resolution) and
have probabilistic performance. The probability that they
find a solution, if one exists, goes to unity with an infinite
number of samples (i.e., they are probabilistically complete).
The probability that algorithms such as RRT* and versions
of PRM (e.g., s-PRM; Kavraki et al. 1998 and PRM*;
Karaman and Frazzoli 2011) asymptotically converge
towards the optimum, if one exists, also goes to unity with
an infinite number of samples (i.e., they are almost-surely

asymptotically optimal; Karaman and Frazzoli 2011).

This anytime representation makes sampling-based
planners effective on many continuous path planning
problems despite a dependence on sampling. Incremental
planners, such as RRT*, generally search the problem
domain in the order given by their random samples (Fig. 1).
This simultaneously expands the search into the entire
sampling domain (i.e., it is space filling) and almost-
surely converges asymptotically to the optimal solution by

Prepared using sagej.cls

Gammell et al. 3

The search of a batch expands
outwards from the minimum
solution propsed by a heuristic.

The search stops when a solution
is found or the batch of samples
has been completely searched.

A batch of new samples is then
added and the search resumes
from the minimum solution.

This process repeats indefinitely,
focusing both the approximation
of the domain and its search.

(a) (b) (c) (d)

Figure 2. A simple example of the ordered sampling-based search performed by BIT*. The start and goal states are shown in
green and red, respectively, while the current solution is highlighted in purple. The set of states that can provide a better solution
(the informed set) is shown as a dark grey dashed line, while the progress of the current batch is shown as a light grey dashed line
illustrating the informed set that the current edge would define. Fig. (a) shows the growing search of the first batch of samples, and
(b) shows the first search ending when a solution is found. Note that ordering the search finds a solution without considering any
states outside the informed set it defines. Fig. (c) shows the search continuing after pruning the representation and increasing its
accuracy with a new batch of samples while (d) shows this second search ending when an improved solution is found.

asymptotically finding optimal paths to every state. This
random order is inefficient and wastes computational effort
on states that are not used to find a solution. This may be
prohibitively expensive in many real problems, including
unbounded or high-dimensional environments.

Previous work combining the complementary advantages
of these two approaches has been incomplete. Sampling
concepts have been added to informed graph-based search
by either sacrificing anytime resolution or by decreasing
efficiency by ordering the search on metrics other than
solution cost. Heuristic concepts have been added to
sampling-based planners by either also sacrificing anytime
resolution or by decreasing efficiency by only applying
heuristics to some aspects of the search.

This paper demonstrates how informed graph-based
search and sampling-based planning can be directly uni-
fied and extended without compromise. It presents Batch
Informed Trees (BIT*) as an example of an informed,
anytime sampling-based planner that incrementally approx-
imates continuous planning problems while searching in
order of potential solution quality (Fig. 2). This efficient
approach avoids unnecessary computational costs while still
almost-surely converging asymptotically to the optimum
and finding better solutions faster than existing algorithms,
especially in high state dimensions.

BIT* approximates continuous search spaces with an
edge-implicit random geometric graph (RGG; Penrose 2003).
This RGG is defined by a set of random samples and
an appropriate connection condition. The accuracy of this
approximation improves as the number of samples increases
and almost-surely converges towards containing the optimal
solution as the number of samples approaches infinity,
similar to RRT*.

This improving approximation is maintained and searched
using heuristics. The initial approximation is searched
in order of potential solution quality, as in A*. When it
is improved the search is updated efficiently by reusing
previous information, as in incremental search techniques
such as Lifelong Planning A* (LPA*; Koenig et al. 2004)
and Truncated LPA* (TLPA*; Aine and Likhachev 2016).
The improving approximation is focused to the informed set

of states that could provide a better solution, as in Informed
RRT* (Gammell et al. 2018, 2014c).

BIT* only requires three user-defined options, (i) a RGG-
connection parameter, (ii) the heuristic function, and (iii) the
number of samples per batch and can generalize existing
algorithms (Fig. 3). With a single batch of samples and no
heuristic, it is a search of a static approximation ordered by
cost-to-come. This is exactly Dijkstra’s algorithm (Dijkstra
1959) on a RGG or a version of Fast Marching Tree (FMT*;

Prepared using sagej.cls

4 Journal Title XX(X)

PRM* et al.

graphstrees

Almost-surely asymptotically
optimal sampling-based planners

RRT* et al.

BIT*

FMT*

`m batches

` batches

1 batch
1 sample/batch

m samples/batch

`m samples/batch

Figure 3. A simplified taxonomy of almost-surely asymptotically
optimal sampling-based planners that demonstrates the
relationship between RRT*, FMT*, and BIT*. When using a
batch size of a single sample, BIT* is a version of RRT*. When
using a single batch consisting of multiple-samples, BIT* is a
version of FMT*.

Janson et al. 2015). With a single batch of samples and a
heuristic, it is a search of a static approximation ordered
by estimated solution quality. This is exactly a lazy version
of A* (e.g., Cohen et al. 2014) on a RGG. With multiple
batches and a heuristic, it is a truncated incremental search
of a changing approximation ordered by estimated solution
quality. This is equivalent to a lazy version of TLPA* on
a RGG where replanning is always truncated after one
propagation. With multiple batches of one sample and no
heuristic, it is a construction of a tree through incremental
sampling. This is equivalent to a ‘steer’-free version of
RRT* where unsuccessful samples are maintained.

BIT* can also be extended to create new planners.
Sorted RRT* (SORRT*) is presented as an extension of
heuristically ordered search concepts to the incremental
sampling of RRT* algorithms. A version of both BIT* and
SORRT* are publicly available in the Open Motion Planning
Library (OMPL; Şucan et al. 2012).

The benefits of performing an ordered anytime search of
the problem domain are demonstrated on both abstract prob-
lems and experiments for the CMU Personal Robotic Lab’s
Home Exploring Robot Butler (HERB), a 14-DOF mobile
manipulation platform (Srinivasa et al. 2012). The results
show that BIT* finds better solutions faster than existing
almost-surely asymptotically optimal planners and also
RRT, especially in high dimensions. The only tested planner
that found (worse) solutions faster was RRT-Connect
(Kuffner Jr. and LaValle 2000), a bidirectional version of
RRT that is not almost-surely asymptotically optimal.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a review of previous work combining aspects
of informed search and sampling-based planning. Section 3
presents BIT* as an efficient search of an increasingly
dense approximation of a continuous planning problem.
Section 4 proves that BIT* is probabilistic complete and
almost-surely asymptotically optimal and demonstrates its
relationship to LPA* and TLPA*. Section 5 presents simple
extensions of BIT* that may further improve performance
in some planning situations, including SORRT*. Section 6
demonstrates the benefits of BIT* on both abstract problems
and experiments for HERB. Section 7 finally presents a
closing discussion and thoughts on future work.

1.1 Relationship to Previous Publications

This paper is distinct from our prior work analyzing the
necessary conditions for anytime sampling-based planners
to improve an existing solution (“Informed sampling for
asymptotically optimal path planning”; Gammell et al. 2018).
This other publication investigates focusing the search
for improvements in anytime sampling-based planners. It
presents both analytical concepts that are applicable to
any cost function (e.g., informed sets) and algorithmic
approaches specific to problems seeking to minimize path
length (e.g., direct informed sampling of the L2 informed
set).

In comparison, this paper presents algorithmic approaches
to order the search for both an initial solution and subsequent
improvements. These techniques are applicable to any cost
function, similarly to A*, and make use of the appropriate
analytical results from Gammell et al. (2018). The
performance of these techniques are illustrated on a number
of problems seeking to minimize path length (Section 6)
where we make use of the appropriate algorithmic results
of Gammell et al. (2018).

1.2 Statement of Contributions

This paper is a continuation of ideas that were first presented
at an RSS workshop (Gammell et al. 2014b) along with
a supporting technical report (Gammell et al. 2014a) and
were then published in Gammell et al. (2015) and Gammell
(2017). It makes the following specific contributions:

Prepared using sagej.cls

Gammell et al. 5

• Presents an updated version of BIT* that avoids
repeated consideration of failed edges and is a
direct unification of informed graph-based search and
sampling-based planning (Algs. 1–3).

• Develops new extensions to BIT*, including just-
in-time (JIT) sampling for the direct search of
unbounded problems (Alg. 5) and SORRT* (Alg. 6)
as an application of ordered search concepts to the
algorithmic simplicity of RRT*.

• Provides expanded proof that BIT* is probabilistically
complete and almost-surely asymptotically optimal
(Theorems 2 and 3) and has a queue ordering
equivalent to a lazy TLPA* (Lemma 4).

• Demonstrates experimentally the benefits of using
ordered search concepts to combat the curse of
dimensionality.

2 Prior Work Ordering Sampling-based
Planners

A formal definition of the optimal path planning problem
is presented to motivate a review of existing literature on
the combination of informed graph-based and sampling-
based concepts (Section 2.1). This prior work can be loosely
classified as either incorporating sampling into informed
A*-style searches (Section 2.2) or adding heuristics to
incremental RRT/RRT*-style searches (Section 2.3).

2.1 The Optimal Path Planning Problem

The two most common path planning problems in robotics
are those of feasible and optimal planning. Feasible path
planning seeks a path that connects a start to a goal in
a search space while avoiding obstacles and obeying the
differential constraints of the robot. Optimal path planning
seeks the feasible path that minimizes a chosen cost function
(e.g., path length). By definition, solving an optimal planning
problem requires solving the underlying feasible problem.

The optimal path planning problem is defined in
Definition 1 similarly to Karaman and Frazzoli (2011). This
definition is expressed in the state space of a robot but can
be posed in other representations, including configuration
space (Lozano-Pérez 1983). The goal of these problems may
be a single goal state (e.g., a pose for a mobile robot) or any

state in a goal region (e.g., the set of joint angles that give a
redundant manipulator a desired end-effector position).

Definition 1. The optimal path planning problem. Let

X ⊆ Rn be the state space of the planning problem,

Xobs ⊂ X be the states in collision with obstacles, and

Xfree = cl (X \Xobs) be the resulting set of permissible

states, where cl (·) represents the closure of a set. Let

xstart ∈ Xfree be the initial state and Xgoal ⊂ Xfree be

the set of desired goal states. Let σ : [0, 1]→ Xfree

be a continuous map to a sequence of states through

collision-free space of bounded variation that can be

executed by the robot (i.e., a collision-free, feasible path)

and Σ be the set of all such nontrivial paths.

The optimal path planning problem is then formally

defined as the search for a path, σ∗ ∈ Σ, that minimizes a

given cost function, c : Σ→ R≥0, while connecting xstart

to xgoal ∈ Xgoal,

σ∗ = arg min
σ∈Σ

{c (σ) | σ (0) = xstart, σ (1) ∈ Xgoal} ,

where R≥0 is the set of non-negative real numbers.

2.2 A*-based Approaches

A* is a popular planning algorithm because it is the optimally
efficient search of a graph. Any other algorithm guaranteed
to find the resolution-optimal solution will expand at least
as many vertices when using the same heuristic (Hart
et al. 1968). This efficiency is achieved by ordering the
search by potential solution quality such that the optimal
solution is found by only considering states that could have
provided a better solution. Applying A* to continuous path
planning problems requires discretizing the search domain
and significant work has incorporated sampling into this
process, often to avoid the need to do so a priori.

Sallaberger and D’Eleuterio (1995) demonstrate the
advantages of including stochasticity in the representation of
a continuous state space by adding random perturbations to
a regular discretization. They solve path planning problems
for spacecraft and multilink robotic arms using dynamic
programming and show that their technique finds better
solutions than regular discretizations alone; however, the
approximation is still defined a priori to the search.

Prepared using sagej.cls

6 Journal Title XX(X)

Randomized A* (RA*; Diankov and Kuffner Jr. 2007)
uses random sampling to apply A* directly to continuous
planning problems. Vertices are expanded a user-specified
number of times by randomly sampling possible nearby
descendants. If a sample is sufficiently different than the
existing states in the tree and can be reached without
collision it is added as a child of the expanded vertex. The
resulting sampling-based search expands outwards from the
start in order of potential solution quality but is not anytime.
If a (suitable) solution is not found then the search must be
restarted with a different number of samples per vertex.

Hybrid Randomized A* (HRA*; Teniente and Andrade-
Cetto 2013) performs a similar search for systems with
differential constraints by sampling control inputs instead
of states. Vertices are expanded a user-specified number of
times by generating random control inputs and propagating
them forward in time with a motion model. These new states
are used both to expand a tree and rewire it when they are
sufficiently similar to existing states. The vertex to expand
is selected with a hybrid cost policy that considers path cost,
the number of nearby vertices, and the distance to obstacles.
This biases sampling into unexplored regions of the problem
domain but may waste computational effort on states that
are unnecessary to find the eventual solution.

Sampling-based A* (SBA*; Persson and Sharf 2014)
performs an ordered search by iteratively expanding vertices
in a heuristically weighted version of Expansive Space
Tree (EST; Hsu et al. 1999). At each iteration, a single

random sample is generated near the vertex at the front
of a priority queue. This queue is ordered on the potential
solution quality of vertices and the likelihood of sampling
a unique and useful sample in their neighbourhoods. These
likelihoods are required to bias sampling into unexplored
space since vertices are never removed from the queue. They
are estimated from previous collision checks and estimates
of the sample density around vertices. Again, this search
order on metrics other than the optimization objective may
waste computational effort on states that are unnecessary to
find the eventual solution.

Unlike these methods to incorporate sampling into
informed graph-based search, BIT* maintains anytime
performance while ordering its search only on potential

solution quality. This allows it to be run indefinitely until
a suitable solution is found, return incrementally better
solutions, and almost-surely asymptotically converge to the
optimum. This also limits its search of each representation to
the set of states that were believed to be capable of providing
a better solution than the one eventually found.

2.3 RRT-based Approaches

RRT and RRT* solve continuous path planning problems
by using incremental sampling to build a tree through
obstacle-free space. This avoids a priori discretizations of
the problem domain and allows them to be run indefinitely
until a (suitable) solution is found. This also makes the
search dependent on the sequence of samples (i.e., makes
it random) and significant work has sought ways to use
heuristics to order the search. Heuristics can also be used to
focus the search, as in Anytime RRTs (Ferguson and Stentz
2006) and Informed RRT* (Gammell et al. 2018, 2014c)
but this does not change the order of the search.

Heuristically Guided RRT (hRRT; Urmson and Simmons
2003) probabilistically includes heuristics in the RRT expan-
sion step. Randomly sampled states are probabilistically
added in proportion to their heuristic value relative to the
tree. This balances the Voronoi bias of the RRT search with a
preference towards expanding potentially high-quality paths.
This improves performance, especially in problems with
continuous cost functions (e.g., path length; Urmson and
Simmons 2003), but maintains a nonzero probability of
wasting computational effort on states that are unnecessary
for the eventual solution.

Karaman et al. (2011) and Akgun and Stilman (2011)
both use heuristics to accelerate the convergence of RRT*.
Karaman et al. (2011) remove vertices whose current cost-to-
come plus a heuristic estimate of cost-to-go is higher than the
current solution. Akgun and Stilman (2011) reject samples
that are heuristically estimated to be unable to provide a
better solution. These approaches both avoid unnecessary
computational effort but do not alter the initial search as
heuristics are not applied until a solution is found.

Kiesel et al. (2012) use a two-stage process to order
sampling for RRT* in their f-biasing technique. A heuristic
is first calculated by solving a coarse discretization of the

Prepared using sagej.cls

Gammell et al. 7

planning problem with Dijkstra’s algorithm. This heuristic
is then used to bias RRT* sampling to the regions of the
problem domain where solutions were found. This increases
the likelihood of finding solutions quickly but maintains
a nonzero sampling probability over the entire problem
domain for the whole search and allows search effort to
be wasted on states unnecessary for the eventual solution.

RRT# (Arslan and Tsiotras 2013, 2015) uses heuristics
to find and update a tree in the graph built incrementally
by Rapidly exploring Random Graph (RRG; Karaman
and Frazzoli 2011). It efficiently maintains the optimal
connection to each vertex by using LPA* to propagate
changes through the entire graph. This can also be
implemented as policy iteration (Arslan and Tsiotras 2016).

RRT# uses heuristics to limit this graph to regions of
the problem domain that can improve an existing solution.
This focuses the search for an improvement but does not
alter the order in which the graph itself is constructed.
As in RRT*, this graph is built in the order given by the
sampling sequence using RRT-style incremental techniques.
This may cause important, difficult-to-sample states to be
discarded simply because they cannot currently be connected
to the tree. It may also waste computational effort, especially
during the search for an initial solution (Fig. 1).

RRTX (Otte and Frazzoli 2014, 2016) extends propagated
rewiring to dynamic environments by limiting propagation to
changes that improve the graph by more than a user-specified
threshold. This ε-consistency balances the local rewiring
performed by RRT* and the cascaded rewiring performed
by RRT# to improve performance. As in RRT* and RRT#, it
does not order the construction of the graph itself.

FMT* (Janson and Pavone 2013; Janson et al. 2015) uses
a marching method to search a batch of samples in order
of increasing cost-to-come, similar to Dijkstra’s algorithm.
This separation of approximation and search makes the
search order independent of the sampling order but sacrifices
anytime performance. Solutions are not returned until the
search is finished and the search must be restarted if a
(suitable) solution is not found, as with any other a priori

discretization.

The Motion Planning Using Lower Bounds (MPLB)
algorithm (Salzman and Halperin 2015) extends FMT*

with a heuristic and quasi-anytime resolution. Quasi-
anytime performance is achieved by independently searching
increasingly large batches of samples and returning the
improved solutions when each individual search finishes. It is
stated that this can be done efficiently by reusing information
but no specific methods are presented.

Unlike these methods to incorporate informed search
concepts into single-query sampling-based algorithms, BIT*
orders its entire search only on potential solution quality
and still maintains anytime performance. This avoids
wasting computational effort by only considering states
that are believed to be capable of providing the best
solution given the current representation. This also returns
suboptimal solutions in an anytime manner while almost-
surely converging asymptotically to the optimum.

3 Batch Informed Trees (BIT*)†

Any discrete set of states distributed in the state space of
a planning problem, Xsamples ⊂ X , can be viewed as a
graph whose edges are given algorithmically by a transition
function (an edge-implicit graph). When these states are
sampled randomly, Xsamples = {x ∼ U (X)}, this graph is
known as a RGG and has studied probabilistic properties
(Penrose 2003).

The connections (edges) between states (vertices) in a
RGG depend on their relative geometric position. Common
RGGs have edges to a specific number of each vertex’s
nearest neighbours (a k-nearest graph; Eppstein et al. 1997)
or to all neighbours within a specific distance (an r-disc
graph; Gilbert 1961). RGG theory provides probabilistic
relationships between the number and distribution of
vertices, the k or r defining the graph, and specific properties
such as connectivity or relative cost through the graph
(Muthukrishnan and Pandurangan 2005; Penrose 2003).

Anytime sampling-based planners can be viewed as
algorithms that construct a graph in the problem domain
and search it. Some algorithms perform this construction
and search simultaneously (e.g., RRT*) and others
separately (e.g., FMT*) but, as in graph-based search, their

†Pronounced bit star.

Prepared using sagej.cls

8 Journal Title XX(X)

(a) (b) (c)

(d) (e) (f)

Figure 4. An example of how BIT* uses incremental techniques to efficiently search batches of samples in order of potential
solution quality. The search starts with a batch of samples uniformly distributed in the planning domain. This batch is searched
outward from the start in order of potential solution quality, (a). The search continues until the batch is exhausted or a solution is
found that cannot be improved with the current samples, (b). New samples are then added to the informed set and incremental
techniques are used to continue the search, (c)–(e). This results in an algorithm that performs an ordered anytime search that
almost-surely asymptotically converges to the optimal solution, shown enlarged in (f). Note that BIT* orders all aspects of the
search and never considers states in a batch that cannot provide the best solution (i.e., searches only inside the informed set
defined by the eventual solution in the current graph).

performance always depends on both the accuracy of their
approximation and the quality of their search. RRT* uses
RGG theory to limit graph complexity while maintaining
probabilistic bounds on approximation accuracy but
incompletely searches the graph in the order it is constructed
(i.e., performs a random search). RRT# and RRTX exploit
the constructed graphs more thoroughly than RRT* but do
not alter the order of its construction (i.e., they depend on
the same random search of the underlying problem domain).
FMT* performs a complete ordered search but uses RGG
theory to define an a priori approximation of the problem
domain (i.e., it is not anytime).

BIT* uses RGG theory to limit graph complexity while
simultaneously building the graph in an anytime manner and
searching it in order of potential solution quality. This is
made possible by using batches of random samples to build
an increasingly dense edge-implicit RGG in the informed
set and using incremental search techniques to update the
search (Fig. 4). The anytime approximation allows BIT*
to run indefinitely until a (suitable) solution is found. The
ordered search avoids unnecessary computational cost by
only considering states when they represent the best possible
solution to a given approximation. The incremental search

Prepared using sagej.cls

Gammell et al. 9

allows it to update its changing representation efficiently by
reusing previous information.

The complete BIT* algorithm is presented in Algs. 1–3
and Sections 3.1–3.7 with a discussion on some practical
considerations presented in Section 3.8. For simplicity, the
discussion is limited to a search from a single start state to
a finite set of goal states with a constant batch size. This
formulation can be directly extended to searches from a start
or goal region, and/or with variable batch sizes. This version
is publicly available in OMPL.

BIT* builds an explicit spanning tree of the implicit RGG
defined by a batch of samples. The graph initially consists
of only the start and goal (Alg. 1, Lines 1–5; Section 3.2)
but is incrementally grown with batches of new samples
during the search (Alg. 1, Lines 7–12; Section 3.3). The
graph is searched in order of potential solution quality by
selecting the best possible edge from a queue ordered by
potential solution cost (Alg. 1, Lines 13–15; Section 3.4) and
considering whether this edge improves the cost-to-come
of its target vertex and could improve the current solution
(Alg. 1, Lines 16–34; Section 3.5). The search continues
until no edges in the implicit RGG could provide a better
solution, at which point the accuracy of the approximation is
increased by adding a batch of new samples and the search is
resumed. This process continues indefinitely until a suitable
solution is found.

3.1 Notation

The functions ĝ (x) and ĥ (x) represent admissible estimates
of the cost-to-come to a state, x ∈ X , from the start and
the cost-to-go from a state to the goal, respectively (i.e.,
they bound the true costs from below). The function, f̂ (x),
represents an admissible estimate of the cost of a path
from xstart to Xgoal constrained to pass through x, i.e.,
f̂ (x) := ĝ (x) + ĥ (x). This estimate defines an informed
set of states, Xf̂ :=

{
x ∈ X

∣∣∣ f̂ (x) < ci

}
, that could

provide a solution better than the current best solution cost,
ci (Gammell et al. 2018, 2014c).

Let T := (V,E) be an explicit tree with a set of vertices,
V ⊂ Xfree, and edges, E = {(v,w)} for some v, w ∈ V .
The function gT (x) then represents the cost-to-come to a
state x ∈ X from the start vertex given the current tree, T .

A state not in the tree, or otherwise unreachable from the
start, is assumed to have a cost-to-come of infinity. It is
important to recognize that these two functions will always
bound the unknown true optimal cost to a state, g (·), i.e.,
∀x ∈ X, ĝ (x) ≤ g (x) ≤ gT (x).

The functions ĉ (x,y) and c (x,y) represent an
admissible estimate of the cost of an edge and the true cost
of an edge between states x, y ∈ X , respectively. Edges that
intersect an obstacle are assumed to have a cost of infinity,
and therefore ∀x, y ∈ X, ĉ (x,y) ≤ c (x,y) ≤ ∞.

The notation X
+←− {x} and X

−←− {x} is used to
compactly represent the set compounding operations X ←
X ∪ {x} and X ← X \ {x}, respectively. As is customary,
the minimum of an empty set is taken to be infinity.

3.2 Initialization (Alg. 1, Lines 1–5)

BIT* begins searching a planning problem with the start,
xstart, in the spanning tree, T := (V,E), and the goal states,
Xgoal, in the set of unconnected states, Xunconn (Alg. 1,
Lines 1–2). This defines an implicit RGG whose vertices
consist of all states (i.e., V ∪Xunconn) and whose edges are
defined by a distance function and an appropriate connection
limit. When the goal is a continuous region of the problem
domain it will need to be discretized (e.g., sampled) before
adding to the set of unconnected states.

The explicit spanning tree of this edge-implicit RGG
is built using two queues, a vertex expansion queue, QV ,
and an edge evaluation queue, QE . These queues are
sorted in order of potential solution quality through the
current tree. Vertices in the vertex queue, v ∈ QV , are
ordered by the sum of their current cost-to-come and an
estimate of their cost-to-go, gT (v) + ĥ (v). Edges in the
edge queue, (v,x) ∈ QE , are sorted by the sum of the
current-cost-to-come of their source vertex, an estimate
of the edge cost, and an estimate of the cost-to-go of their
target vertex, gT (v) + ĉ (v,x) + ĥ (x). Ties are broken
in the vertex queue in favour of entries with the lowest
cost-to-come through the current tree, gT (v), and in the
edge queue in favour of the lowest cost-to-come through
the current tree and estimated edge cost, gT (v) + ĉ (v,x),
and then the cost-to-come through the current tree, gT (v).

Prepared using sagej.cls

10 Journal Title XX(X)

These queues are initialized to contain all the vertices in the
tree and an empty queue, respectively (Alg. 1, Line 3).

To improve search efficiency, BIT* tracks the vertices
in the goal region, Vsol’n, the vertices that have never been
expanded, Vunexpnd, the samples newly created during this
batch, Xnew, and the current best solution, ci. These are
initialized to any vertices already in the solution (empty
in all but the most trivial planning problems), the existing
vertices, the existing samples, and the current best solution,
respectively (Alg. 1, Lines 4–5).

Initialized, BIT* now searches the continuous planning
problem by alternately building increasingly accurate
implicit RGG approximations (Section 3.3) and searching
these representations for explicit solutions in order of
potential solution quality (Sections 3.4 and 3.5).

3.3 Batch Addition (Alg. 1, Lines 7–12)

BIT* alternates between building an increasingly dense
approximation of the continuous planning problem
and searching this representation for a solution. The
approximation is updated whenever it has been completely
searched (i.e., both queues are empty; Alg. 1, Line 7) by
removing unnecessary states and adding a batch of new
samples. This avoids the computational cost of representing
regions of the problem domain that cannot provide a better
solution while increasing the accuracy of approximating the
regions that can (i.e., the informed set). This improving
approximation allows BIT* to almost-surely converge
asymptotically to the optimal solution.

The approximation is pruned to the informed set by
removing any states or edges that cannot improve the
current solution (Alg. 1, Line 8; Section 3.7). This reduces
unnecessary complexity but may disconnect vertices in the
informed set that cannot improve the solution solely because
of their current connections. These vertices are recycled as
additional ‘new’ samples in the batch so that they may be
reconnected later if better connections are found.

The approximation is improved by adding m new
randomly generated samples from the informed set (Alg. 1,
Line 9). This can be accomplished with direct informed
sampling (Gammell et al. 2018, 2014c) or advanced rejection
sampling (e.g., Kunz et al. 2016) as appropriate.

Algorithm 1: BIT*(xstart ∈ Xfree, Xgoal ⊂ Xfree)

1 V ← {xstart} ; E ← ∅; T = (V,E);
2 Xunconn ← Xgoal;
3 QV ← V ; QE ← ∅;
4 Vsol’n ← V ∩Xgoal; Vunexpnd ← V ;

Xnew ← Xunconn;
5 ci ← minvgoal∈Vsol’n {gT (vgoal)} ;
6 repeat
7 if QE ≡ ∅ and QV ≡ ∅ then
8 Xreuse ← Prune (T , Xunconn, ci);
9 Xsampling ← Sample (m,xstart, Xgoal, ci);

10 Xnew ← Xreuse ∪Xsampling;
11 Xunconn

+←− Xnew;
12 QV ← V ;

13 while BestQueueValue (QV) ≤
BestQueueValue (QE) do

14 ExpandNextVertex (QV ,QE , ci);

15 (vmin,xmin)← PopBestInQueue (QE);
16 if gT (vmin) + ĉ (vmin,xmin) + ĥ (xmin) < ci

then
17 if gT (vmin) + ĉ (vmin,xmin) < gT (xmin)

then
18 cedge ← c (vmin,xmin);
19 if gT (vmin) + cedge + ĥ (xmin) < ci then
20 if gT (vmin) + cedge < gT (xmin) then
21 if xmin ∈ V then
22 vparent ← Parent (xmin);
23 E

−←− {(vparent,xmin)};
24 else
25 Xunconn

−←− {xmin};
26 V

+←− {xmin};
27 QV

+←− {xmin};
28 Vunexpnd

+←− {xmin};
29 if xmin ∈ Xgoal then
30 Vsol’n

+←− {xmin};

31 E
+←− {(vmin,xmin)};

32 ci ← minvgoal∈Vsol’n {gT (vgoal)} ;

33 else
34 QE ← ∅; QV ← ∅;
35 until STOP;
36 return T ;

§3.2

§3.3

§3.4

§3.5

Each batch of states are labelled as Xnew for the duration
of that batch’s search (Alg. 1, Line 10). This set is used to
improve search efficiency and consists of both the newly
generated samples and the recycled disconnected vertices.

Prepared using sagej.cls

Gammell et al. 11

BIT* adds these new states to the set of unconnected states
and initializes the vertex queue with all the vertices in the
tree (Alg. 1, Lines 11–12) to restart the search (Sections 3.4
and 3.5).

3.4 Edge Selection (Alg. 1, Lines 13–15)

Graph-based search techniques often assume that finding
and evaluating vertex connections is computationally
inexpensive (e.g., given explicitly). This is not true in
sampling-based planning as finding vertex connections (e.g.,
the edges in the edge-implicit RGG) requires performing
a nearest-neighbour search and evaluating them requires
checking for collisions and solving two-point boundary-
value problems (two-point BVPs), such as differential
constraints. BIT* avoids these computational costs until
required by using a lazy search procedure that delays both
finding and evaluating connections in the RGG. Similar
lazy techniques can be found in both advanced graph-based
search and sampling-based planners (Bohlin and Kavraki
2000; Branicky et al. 2001; Cohen et al. 2014; Hauser 2015;
Helmert 2006; Salzman and Halperin 2016; Sánchez and
Latombe 2002).

Connections are found by using a vertex queue, QV ,
ordered by potential solution quality. This vertex queue
delays processing a vertex (i.e., performing a nearest-
neighbour search) until its outgoing connections could be
part of the best solution to the current graph. Connections
from all vertices are evaluated by using an edge queue, QE ,
also ordered by potential solution quality. This edge queue
delays evaluating an edge (i.e., performing collision checks
and solving two-point BVPs) until it could be part of the
best solution to the current graph.

A vertex in the vertex queue could be part of the best
solution when it could provide an outgoing edge better
than the best edge in the edge queue. When the heuristic is
consistent (e.g., the L2 norm) the queue value of a vertex,
v ∈ QV , is a lower-bounding estimate of the queue value of
its outgoing edges,

∀x ∈ X, gT (v) + ĥ (v) ≤ gT (v) + ĉ (v,x) + ĥ (x) .

The best edge at any iteration can therefore be found
by processing the vertex queue until it is worse than the

edge queue (Alg. 1, Line 13). This process of removing
a vertex from the vertex queue and placing its outgoing
edges in the edge queue is referred to as expanding a vertex
(Alg. 1, Line 14; Section 3.6). Once all necessary vertices
are expanded, the best edge in the queue, (vmin,xmin), is
removed (Alg. 1, Line 15) and used for this iteration of the
search (Section 3.5).

The functions BestQueueValue (·) and
PopBestInQueue (·) return the value of the element
at the front of a queue and pop the element off the front of a
queue, respectively.

3.5 Edge Processing (Alg. 1, Lines 16–34)

BIT* also uses heuristics to avoid expensive calculations
when evaluating the best edge, (vmin,xmin). An edge is
added to the spanning tree if and only if

1. an estimate of its cost could provide a better solution,
given the current tree (Alg. 1, Line 16),

gT (vmin) + ĉ (vmin,xmin) + ĥ (xmin) < ci,

2. an estimate of its cost could improve the current tree

(Alg. 1, Line 17),

gT (vmin) + ĉ (vmin,xmin) < gT (xmin) ,

3. its real cost could provide a better solution, given the
current tree (Alg. 1, Line 19),

gT (vmin) + c (vmin,xmin) + ĥ (xmin) < ci,

4. and its real cost will improve the current tree (Alg. 1,
Line 20),

gT (vmin) + c (vmin,xmin) < gT (xmin) .

For collision-free edges, Conditions 1 and 3 are always true
in the absence of a solution, while Conditions 2 and 4 are
always true when the target of the edge, xmin, is not in the
spanning tree.

Checking if the edge could ever provide a better solution
or improve the current tree (Conditions 1 and 2) allows
BIT* to reject edges without calculating their true cost
(Alg. 1, Lines 16–17). Condition 1 also provides a stopping

Prepared using sagej.cls

12 Journal Title XX(X)

condition for searching the current RGG. When an edge
fails this condition so does the entire queue and both queues
can be cleared to start a new batch (Alg. 1, Line 34). If
the edge fails Condition 2 it is discarded and the iteration
finishes. If the edge passes both these conditions its true cost
is calculated by performing a collision check and solving
any two-point BVPs (Alg. 1, Line 18). Note that edges in
collision are considered to have infinite cost.

Checking if the real edge could provide a better solution
given the current tree (Condition 3), allows BIT* to reduce
tree complexity by rejecting edges that could never improve
the current solution (Alg. 1, Line 19). Checking if the real
edge improves the current tree (Condition 4), assures the
cost-to-come of the explicit tree decreases monotonically
(Alg. 1, Line 20). If the edge fails either of these conditions
it is discarded and the iteration finishes.

An edge passing all of these conditions is added to the
spanning tree. If the target vertex is already connected
(Alg. 1, Line 21), then the edge represents a rewiring and the
current edge must be removed (Alg. 1, Lines 22–23). Other-
wise, the edge represents an expansion of the tree and the tar-
get vertex must be moved from the set of unconnected states
to the set of vertices, inserted into the vertex queue for future
expansion, and marked as a never-expanded vertex (Alg. 1,
Lines 25–28). The new vertex is also added to the set of ver-
tices in the goal region if appropriate (Alg. 1, Lines 29–30).

The new edge is then finally added to the tree (Alg. 1,
Line 31) and the current best solution is updated as necessary
(Alg. 1, Line 32). The search then continues by selecting
the next edge in the queue (Section 3.4) or increasing the
approximation accuracy if the current RGG cannot provide
a better solution (Section 3.3).

3.6 Vertex Expansion (Alg. 1, Line 14; Alg. 2)

The function ExpandNextVertex (QV ,QE , ci) removes
the front of the vertex queue (Alg. 2, Line 1) and adds
its outgoing edges in the RGG to the edge queue. The
RGG is defined using the results of Karaman and Frazzoli
(2011) to limit graph complexity while maintaining almost-
sure asymptotic convergence to the optimum. Edges exist
between a vertex and the kBIT∗-closest states or all states

Algorithm 2: ExpandNextVertex (QV ⊆ V,
QE ⊆ V × (V ∪X) , ci ∈ R≥0)

1 vmin ← PopBestInQueue (QV);
2 if vmin ∈ Vunexpnd then
3 Xnear ← Near (Xunconn,vmin, rBIT∗);

4 else
5 Xnear ← Near (Xnew ∩Xunconn,vmin, rBIT∗);

6 QE
+←−
{

(vmin,x) ∈ V ×Xnear

∣∣∣ ĝ (vmin)

+ ĉ (vmin,x) + ĥ (x) < ci

}
;

7 if vmin ∈ Vunexpnd then
8 Vnear ← Near (V,vmin, rBIT∗);

9 QE
+←−
{

(vmin,w) ∈ V × Vnear

∣∣∣ (vmin,w) 6∈ E,

ĝ (vmin) + ĉ (vmin,w) + ĥ (w) < ci,

ĝ (vmin) + ĉ (vmin,w) < gT (w)
}

;

10 Vunexpnd
−←− {vmin};

within a distance of rBIT∗ , with

rBIT∗ > r∗BIT∗ ,

r∗BIT∗ :=

2

(
1 +

1

n

)min
{
λ (X) , λ

(
Xf̂

)}
ζn

(

log (|V |+ |Xunconn| −m)

|V |+ |Xunconn| −m

)
1
n

, (1)

and

kBIT∗ > k∗BIT∗ ,

k∗BIT∗ := e

(
1 +

1

n

)
log (|V |+ |Xunconn| −m) , (2)

where |·| is the cardinality of a set, m is the number of
samples added in the last batch, λ (·) is the Lebesgue
measure of a set (e.g., the volume), and ζn is the Lebesgue
measure of an n-dimensional unit ball. Recent work has
presented different expressions (Janson et al. 2015) and
expressions for non-Euclidean spaces (Kleinbort et al. 2016).

This connection limit is calculated from the cardinality
of the graph minus the m new samples to simplify proving
almost-sure asymptotic optimality (Section 4). This lower
bound will be large for the initial sparse batches but it can
be thresholded with a maximum edge length, as is done by

Prepared using sagej.cls

Gammell et al. 13

RRT*, i.e., r′BIT∗ := min {rmax, rBIT∗}. The function Near
returns the states that meet the selected RGG connection
criteria for a given vertex.

Every vertex in the tree is either expanded or pruned in
every batch. Processing all the outgoing edges from vertices
would result in BIT* repeatedly considering the same previ-
ously rejected edges. This can be avoided by using the sets of
never-expanded vertices, Vunexpnd, and new samples, Xnew,
to add only previously unconsidered edges to the edge queue.

Whether edges to unconnected samples are new depends
on whether the source vertex has previously been expanded
(Alg. 2, Line 2). If it has not been expanded then none of its
outgoing connections have been considered and all nearby
unconnected samples are potential descendants (Alg. 2,
Line 3). If it has been expanded then any connections to
‘old’ unconnected samples have already been considered
and rejected and only the ‘new’ samples are considered as
potential descendants (Alg. 2, Line 5). The subset of these
potential edges that could improve the current solution are
added to the queue in both situations (Alg. 2, Line 6).

Whether edges to connected samples (i.e., rewirings) are
new also depends on whether the source vertex has been
expanded (Alg. 2, Line 7). If it has not been expanded then
all nearby connected vertices are considered as potential
descendants (Alg. 2, Line 8). The subset of these potential
edges that could improve the current solution and the current
tree are added to the queue (Alg. 2, Line 9) and the vertex is
then marked as expanded (Alg. 2, Line 10).

If a vertex has previously been expanded then no rewirings
are considered. Improvements in the tree may now allow a
previously considered edge to improve connected vertices
but considering these connections would require repeatedly
reconsidering infeasible edges. As in RRT*, this lack of
propagated rewiring has no effect on almost-sure asymptotic
optimality.

3.7 Graph Pruning (Alg. 1, Line 8; Alg. 3)

The function, Prune (T , Xunconn, ci), reduces the complex-
ity of both the approximation of the continuous planning
problem (i.e., the implicit RGG) and its search (i.e., the
explicit spanning tree) by limiting them to the informed
set. It removes any states that can never provide a better

Algorithm 3: Prune (T = (V,E) , Xunconn ⊂ X,
ci ∈ R≥0)

1 Xreuse ← ∅;
2 Xunconn

−←−
{
x ∈ Xunconn

∣∣∣ f̂ (x) ≥ ci
}

;

3 forall v ∈ V in order of increasing gT (v) do
4 if f̂ (v) > ci or gT (v) + ĥ (v) > ci then
5 V

−←− {v} ; Vsol’n
−←− {v} ; Vunexpnd

−←− {v};
6 vparent ← Parent (v);
7 E

−←− {(vparent,v)};
8 if f̂ (v) < ci then
9 Xreuse

+←− {v};

10 return Xreuse;

solution and disconnects any vertices that cannot provide a
better solution given the current tree. Disconnected vertices
that could improve the solution with a better connection
are reused as new samples in the next batch to maintain
uniform sample density in the informed set. This assures
that every vertex is either expanded or pruned in each batch
as assumed by ExpandNextVertex to avoid reconsidering
edges (Section 3.6).

The set of recycled vertices is initialized as an empty
set (Alg. 3, Line 1) and all unconnected states that cannot
provide a better solution (i.e., are not members of the
informed set) are removed (Alg. 3, Line 2). The connected
vertices are then incrementally pruned in order of increasing
cost-to-come (Alg. 3, Line 3) by identifying those that can
never provide a better solution or improve the solution given
the current tree (Alg. 3, Line 4). Vertices that fail either
condition are removed from the tree by disconnecting their
incoming edge and removing them from the vertex set and
any labelling sets (Alg. 3, Lines 5–7).

Any disconnected vertex that could provide a better
solution (i.e., is a member of the informed set) is reused as a
sample in the next batch (Alg. 3, Lines 8–9). This maintains
uniform sample density in the informed set and assures that
vertices will be reconnected if future improvements allow
them to provide a better solution. This set of disconnected
vertices is returned to BIT* at the end of the pruning
procedure (Alg. 3, Line 10).

Prepared using sagej.cls

14 Journal Title XX(X)

3.8 Practical Considerations

Algs. 1–3 describe a generic version of BIT* and leave room
for a number of practical improvements depending on the
specific implementation.

Searches (e.g., Alg. 2, Line 3) can be implemented
efficiently with appropriate datastructures that do not require
an exhaustive global search (e.g., k-d trees or randomly
transformed grids; Kleinbort et al. 2015). Pruning (Alg. 1,
Line 8; Alg. 3) is computationally expensive and should
only occur when a new solution has been found or limited
to significant changes in solution cost.

In an object-oriented programming language, many of
the sets (e.g., Xnew, Vunexpnd) can be implemented more
efficiently as labels. The cost-to-come to a state in the current
tree, gT (·), can also be implemented efficiently using back
pointers.

While queues can be implemented efficiently by using
containers that sort on insertion, the value of elements
in the vertex and edge queues will change when vertices
are rewired. There appears to be little practical difference
between efficiently resorting the affected elements in these
queues and only lazily resorting the queue before finishing
to assure no elements have been missed.

Depending on the datastructure used for the edge queue,
it may be beneficial to remove unnecessary entries when a
new edge is added to the spanning tree, i.e., by adding

QE
−←−{(v,xmin) ∈ QE | ĝ (v)

+ ĉ (v,xmin) ≥ gT (xmin)}

after Alg. 1, Line 31.

4 Analysis

BIT* performance is analyzed theoretically using the
results of Karaman and Frazzoli (2011). It is shown to be
probabilistically complete (Theorem 2) and almost-surely
asymptotically optimal (Theorem 3). Its search ordering is
also shown to be equivalent to a lazy version of the ordering
used in LPA* and TLPA* (Lemma 4).

Theorem 2. Probabilistic completeness of BIT*. The

probability that BIT* finds a feasible solution to a given

path planning problem, if one exists, when given infinite

samples is one,

lim inf
q→∞

P (σq,BIT∗ ∈ Σ, σq,BIT∗ (0) = xstart,

σq,BIT∗ (1) ∈ Xgoal) = 1,

where q is the number of samples, σq,BIT∗ is the path found

by BIT* from those samples, and Σ is the set of all feasible,

collision-free paths.

Proof. Proof of Theorem 2 follows from the proof of almost-
sure asymptotic optimality (Theorem 3).

Theorem 3. Almost-sure asymptotic optimality of BIT*.
The probability that BIT* converges asymptotically towards

the optimal solution of a given path planning problem, if one

exists, when given infinite samples is one,

P

(
lim sup
q→∞

c (σq,BIT∗) = c (σ∗)

)
= 1,

where q is the number of samples, σq,BIT∗ is the path found

by BIT* from q samples and σ∗ is optimal solution to the

planning problem.

Proof. Theorem 3 is proven by showing that BIT* considers
at least the same edges as RRT* for a sequence of
states, Xsamples = (x1,x2, . . . ,xq), and connection limit,
rBIT∗ ≥ rRRT∗ .

RRT* incrementally builds a tree from a sequence of
samples. For each state in the sequence, xk ∈ Xsamples, it
considers the neighbourhood of earlier states that are within
the connection limit,

Xnear,k :=
{
xj ∈ Xsamples

∣∣ j < k,

‖xk − xj‖2 ≤ rRRT∗
}
.

It selects the connection from this neighbourhood that
minimizes the cost-to-come of the state and then evaluates
the ability of connections from this state to reduce the cost-
to-come of the other states in the neighbourhood.

Given the same sequence of states, BIT* groups them
into batches of samples, Xsamples = (Y1, Y2, . . . , Y`),
where each batch is a set of m < q samples, e.g., Y1 :=

{x1,x2, . . . ,xm}. It incrementally builds a tree by process-
ing this batched sequence of samples. For each state in the

Prepared using sagej.cls

Gammell et al. 15

sequence, y ∈ Yk, it considers the neighbourhood of states
from the same or earlier batches within the connection limit,

Xnear,k := {x ∈ Yj | j ≤ k, ‖y − x‖2 ≤ rBIT∗} .

It adds the edge in this neighbourhood to the tree that
minimizes the cost-to-come of the state and considers all the
outgoing edges to connect its neighbours. This set of edges
contains all those considered by RRT* for an equivalent
connection limit, rBIT∗ ≥ rRRT∗ , given that m ≥ 1.

As (1) uses the same connection radius for a batch that
RRT* would use for the first sample in the batch and the
connection radius of both are monotonically decreasing, this
shows that BIT* considers at least the same edges as RRT*.
From these edges, BIT* selects those that improve the cost-
to-come of the target state and could currently provide a bet-
ter solution as in Karaman et al. (2011). It is therefore almost-
surely asymptotically optimal as stated in Theorem 3.

BIT* searches the RGG in order of potential solution
quality using an edge queue. This is shown to be equivalent
to the vertex queue ordering used by LPA*/TLPA* with a
lazy approximation of incoming edge costs (Lemma 4). The
search itself is not equivalent to LPA* as BIT* does not
reconsider outgoing connections from rewired vertices (i.e.,
it does not propagate rewirings). It is instead a version of
TLPA*.

Lemma 4. The equivalent queue ordering of BIT* and
LPA*/TLPA*. The edge ordering in BIT* that uses first the

sum of a vertex’s estimated cost-to-go, estimated incoming

edge cost, and current cost-to-come of its parent,

gT (u) + ĉ (u,v) + ĥ (v) ,

then the estimated cost-to-come of the vertex,

gT (u) + ĉ (u,v) ,

and then the cost-to-come of its parent,

gT (u) ,

is equivalent to the vertex ordering in LPA* (Koenig et al.

2004) and TLPA* (Aine and Likhachev 2016).

Proof. LPA* and TLPA* use a queue of vertices ordered
lexicographically first on the solution cost constrained to
go through the vertex and then the cost-to-come of the
vertex. Both these terms are calculated for a vertex, v ∈ V ,
considering all its possible incoming edges (referred to as
the rhs-value in LPA*), i.e.,

min
(u,v)∈E

{gT (u) + c (u,v)}+ ĥ (v)

and

min
(u,v)∈E

{gT (u) + c (u,v)} .

This minimum requires calculating the true edge
cost between a vertex and all of its possible parents.
This calculation is expensive in sampling-based planning
(e.g., collision checking, differential constraints, etc.) and
reducing its calculation is desirable. This can be achieved by
incrementally calculating the minimum in the order given by
an admissible heuristic estimate of edge cost. Considering
edges into the vertex in order of increasing estimated cost
calculates a running minimum that can be stopped when the
estimated cost through the next edge to consider is higher
than the current minimum.

BIT* combines the minimum calculations for individual
vertices into a single edge queue. This simultaneously
calculates the minimum cost-to-come for each vertex in the
current graph while expanding vertices in order of increasing
estimated solution cost.

5 Modifications and Extensions

The basic version of BIT* presented in Algs. 1–3 can be
modified and extended to include features that may improve
performance for some planning applications. Section 5.1
presents a method to delay rewiring the tree until an initial
solution is found. This prioritizes exploring the RGG to
find solutions and may be beneficial in time-constrained
applications. Section 5.2 presents a method to delay
sampling until necessary. This avoids approximating regions
of the planning problem that are never searched, improves
performance in large planning problems, and avoids the need
to define a priori limits in unbounded problems.

Section 5.3 presents a method for BIT* to occasionally
remove unconnected samples while maintaining almost-sure

Prepared using sagej.cls

16 Journal Title XX(X)

asymptotic optimality. This avoids repeated connection
attempts to infeasible states and may be beneficial in prob-
lems where many regions of the free space are unreachable.

Section 5.4 extends the idea of reducing the number of
connections attempted per sample during an ordered search
to develop SORRT*. This version of RRT* uses batches
of samples to order its search of the problem domain by
potential solution quality, as in BIT*, but uses a steer

function and only makes one connection attempt per sample,
as in RRT*.

5.1 Delayed Rewiring

Many robotic systems have a finite amount of computational
time available to solve planning problems. In these situations,
rewiring the existing tree before an initial solution is
found reduces the likelihood of BIT* solving the given
problem. A method to delay rewirings until a solution
is found is presented in Alg. 4 as simple modifications
to ExpandNextVertex, with changes highlighted in red
(cf. Alg. 2). The rewirings are still performed once a
solution is found and this method does not affect almost-
sure asymptotic optimality.

Rewirings are delayed by separately tracking whether
vertices are unexpanded to nearby unconnected samples,
Vunexpnd, and unexpanded to nearby connected vertices,
Vdelayed. This allows BIT* to prioritize finding a solution by
only considering edges to new samples until a solution is
found and then improving the graph by considering rewirings
from the existing vertices.

A vertex is moved from the never-expanded set to
the delayed set when edges to its potential unconnected
descendants are added to the edge queue (Alg. 4, Lines 4–
5). This allows future expansions of the vertex to avoid
old unconnected samples while tracking that the vertex’s
outgoing rewirings have not yet been considered. Vertices in
the delayed set are expanded as potential rewirings of other
connected vertices once a solution is found (Alg. 4, Line 9)
and the delayed label is removed (Alg. 4, Line 12).

This extension requires initializing and resetting Vdelayed

along with the other labelling sets (e.g., Alg. 1, Line 4 and
Alg. 3, Line 5). This extension is included in the publicly
available OMPL implementation of BIT*.

Algorithm 4: ExpandNextVertex (QV ⊆ V,
QE ⊆ V × (V ∪X) , ci ∈ R≥0)

1 vmin ← PopBestInQueue (QV);
2 if vmin ∈ Vunexpnd then
3 Xnear ← Near (Xunconn,vmin, rBIT∗);
4 Vunexpnd

−←− {vmin};
5 Vdelayed

+←− {vmin};
6 else
7 Xnear ← Near (Xnew ∩Xunconn,vmin, rBIT∗);

8 QE
+←−
{

(vmin,x) ∈ V ×Xnear

∣∣∣ ĝ (vmin)

+ ĉ (vmin,x) + ĥ (x) < ci

}
;

9 if vmin ∈ Vdelayed and ci <∞ then
10 Vnear ← Near (V,vmin, rBIT∗);

11 QE
+←−
{

(vmin,w) ∈ V × Vnear

∣∣∣ (vmin,w) 6∈ E,

ĝ (vmin) + ĉ (vmin,w) + ĥ (w) < ci,

ĝ (vmin) + ĉ (vmin,w) < gT (w)
}

;

12 Vdelayed
−←− {vmin};

5.2 Just-in-Time (JIT) Sampling

Many robotic systems operate in environments that are
unbounded (e.g., the outdoors). These problems have
commonly required using a priori search limits to make
the problem domain tractable. Selecting these limits can be
difficult and may prevent finding a solution (e.g., defining
a domain that does not contain a solution) or reduce
performance (e.g., defining a domain too large to search
sufficiently). A method to avoid these problems in BIT* by
generating samples just in time (JIT) is presented in Alg. 5
and accompanying modifications to the main algorithm. This
modification generates samples only when needed by BIT*’s
search while still maintaining uniform sample density and
almost-sure asymptotic convergence to the optimum. This
avoids approximating regions of the problem that are not
used to find a solution and allows BIT* to operate directly
on large or unbounded planning problems.

BIT* searches a planning problem by constructing and
searching an implicit RGG defined by a number of uniformly
distributed samples (vertices) and their relative distances
(edges). These samples are given explicitly in Algs. 1–3 but
are not used until they could be a descendant of a vertex in
the tree. This occurs when the samples are within the local
neighbourhood of the vertex (Fig. 5). The cost associated

Prepared using sagej.cls

Gammell et al. 17

xstart xgoal

r

Connection neighbourhood

csampled

creq’d

Shell of required new samples

Vertex being expanded

Region of existing samples

v

Figure 5. An illustration of just-in-time (JIT) sampling. Samples
are generated only when they are necessary for the expansion
of a vertex, v, into the edge queue. This is accomplished
while maintaining uniform sample density by an expanding
informed set. The informed set is expanded by adding uniformly
distributed samples in the prolate hyperspheroidal shell defined
by the difference between the maximum heuristic value of the
neighbourhood, creq’d, and the currently sampled informed set,
csampled.

with the informed set containing the neighbourhood of a
vertex, Xnear, for planning problems seeking to minimize
path length,

creq’d := max
x∈Xnear

{
f̂ (x)

}
,

is bounded from above as,

creq’d ≤ f̂ (v) + 2rBIT∗ .

JIT sampling only generates samples when necessary to
expand vertices by incrementally sampling this growing
informed set. It does this while maintaining uniform sample
density by tracking the previously sampled size of the set,
csampled, and only generating the new samples necessary to
increase it. The function UpdateSamples (v, csampled, ci)

generates JIT samples for vertex expansion in problems
seeking to minimize path length (Alg. 5). The required
size of the sampled informed set, creq’d, is a function of the
neighbourhood and the maximum size of the informed set
(Alg. 5, Line 1). If it is higher than the previously sampled

Algorithm 5: UpdateSamples (v ∈ V, csampled ≤ ci,
ci ∈ R≥0)

1 creq’d ← min
{
f̂ (v) + 2rBIT∗ , ci

}
;

2 if creq’d > csampled then
3 λsample ← λPHS (creq’d)− λPHS (csampled);
4 m′ ← ρλsample;
5 Xnew

+←− Sample (m′, csampled, creq’d);
6 Xunconn

+←− Xnew;
7 csampled ← creq’d;

cost, csampled, then the local neighbourhood has not been
completely sampled and new samples are generated (Alg. 5,
Line 2). If it is lower then the neighbourhood has already
been sampled and no new samples are generated.

The number of required new samples, m′, can be
calculated from the chosen batch sample density, ρ, and
the volume of the shell being sampled (Alg. 5, Lines 3–4).
These samples are added to the set of new states and the
set of unconnected states (Alg. 5, Lines 5–6). Finally, the
sampled cost is updated to reflect the new size of the sampled
informed set (Alg. 5, Line 7).

The function λPHS (·) calculates the measure of the
prolate hyperspheroid defined by the start and goal with
the given cost,

λ
(
Xf̂

)
≤ λ (XPHS) =

ci
(
c2i − c2min

)n−1
2 ζn

2n
,

where ζn is the Lebesgue measure of an n-dimensional unit
ball,

ζn :=
π

n
2

Γ
(
n
2 + 1

) ,
and Γ (·) is the gamma function, an extension of
factorials to real numbers (Euler 1738). The function
Sample (m′, csampled, creq’d) generates informed samples
within the cost interval [csampled, creq’d) and may be
implemented with rejection sampling.

Using Alg. 5 requires modifying Algs. 1 and 2. The
Sample function of a batch (Alg. 1, Line 9) is replaced with
an initialization of the sampled cost variable, csampled ← 0,
and UpdateSamples (v, csampled, ci) is added to the front
of ExpandNextVertex (Alg. 2). This extension is included
in the publicly available OMPL implementation of BIT*.

Prepared using sagej.cls

18 Journal Title XX(X)

5.3 Sample Removal

BIT* approximates continuous planning problems with
an implicit RGG. It efficiently increases the accuracy of
this approximation by focusing it to the informed set. It
alternately increases density by adding new samples and
shrinks the set by searching the existing samples for better
solutions. This builds an explicit spanning tree that contains
all states that could currently provide a better solution but
may not use every state in the RGG.

States in an informed set may not be able to improve
a solution for many reasons. The approximation may
be insufficiently accurate (i.e., low sample density) to
capture difficult features (e.g., narrow passages) or represent
sufficiently optimal paths. The informed set may also include
regions of the problem domain that cannot improve the
solution due to unconsidered problem features (e.g., barriers
separating free space) or because it is otherwise poorly
chosen (i.e., low precision). Unconnected samples in the
first situation may later be beneficial to the search but
samples in the second represent unnecessary computational
cost. Periodically removing these samples would reduce
the complexity of the implicit RGG and avoid repeatedly
attempting to connect them to new vertices in the tree.

Unconnected samples can be removed while maintaining
the requirements for almost-sure asymptotic optimality by
modifying the RGG connection limits to consider only
uniformly distributed samples. This can be accomplished by
using the number of uniformly distributed samples added
since the last removal of unconnected states in (1) and (2).
This simple extension is included in the publicly available
OMPL implementation of BIT*.

5.4 Sorted RRT* (SORRT*)‡

Approaching sampling-based planning as the search of
an implicit RGG motivates BIT* to consider multiple
connections to each sample. Section 5.3 presents a method
to limit this number of attempts by periodically removing
samples. The natural extension of this idea is to consider
only a single connection attempt per sample, as in RRT*.
This motivates the development of SORRT*, a version of
RRT* that orders its search by potential solution quality by
sorting batches of samples.

Algorithm 6: SORRT*(xstart ∈ Xfree, Xgoal ⊂ X)

1 V ← {xstart} ; E ← ∅; T = (V,E);
2 Vsol’n ← ∅; QSamples ← ∅;
3 for i = 1 . . . q do
4 ci ← minvgoal∈Vsol’n {gT (vgoal)};
5 if QSamples ≡ ∅ then
6 QSamples ← Sample (m,xstart, Xgoal, ci);

7 xrand ← PopBestInQueue (QSamples);
8 vnearest ← Nearest (V,xrand);
9 xnew ← Steer (vnearest,xrand);

10 if CollisionFree (vnearest,xnew) then
11 if xnew ∈ Xgoal then
12 Vsol’n

+←− {xnew};

13 V
+←− {xnew};

14 Vnear ← Near (V,xnew, rrewire);
15 vmin ← vnearest;
16 forall vnear ∈ Vnear do
17 cnew ← gT (vnear) + ĉ (vnear,xnew);
18 if cnew < gT (vmin) + c (vmin,xnew) then
19 if CollisionFree (vnear,xnew) then
20 vmin ← vnear;

21 E
+←− {(vmin,xnew)};

22 forall vnear ∈ Vnear do
23 cnear ← gT (xnew) + ĉ (xnew,vnear);
24 if cnear < gT (vnear) then
25 if CollisionFree (xnew,vnear) then
26 vparent ← Parent (vnear);
27 E

−←− {(vparent,vnear)};
28 E

+←− {(xnew,vnear)};

29 Prune (V,E, ci);

30 return T ;

SORRT* is presented in Alg. 6 as simple modifications
of Informed RRT*, with changes highlighted in red (cf.
Gammell et al. 2018, 2014c). Instead of expanding the
tree towards a randomly generated sample at each iteration,
SORRT* extends the tree towards the best unconsidered
sample in its current batch. It accomplishes this by using a
queue of samples, QSamples, ordered by potential solution
cost, f̂ (·). This queue is filled with m samples (Alg. 6,
Lines 5–6) and the search proceeds by expanding the tree
towards the best sample in the queue (Alg. 6, Line 7). This

‡Pronounced sort star.

Prepared using sagej.cls

Gammell et al. 19

orders the search for them samples in a batch, at which point
a new batch of samples is generated and the search continues.

The function PopBestInQueue (·) pops the best element
off the front of a queue given its ordering. A goal bias may
be implemented in SORRT* by adding a small probability of
sampling the goal instead of removing the best sample from
the queue. This algorithm is publicly available in OMPL.

SORRT* can be viewed as a simplified version of BIT*
that only considers the best-possible edges. Attempting to
connect each sample once avoids the computational cost of
repeated connection attempts to infeasible samples but still
maintains some dependence on the sampling order. High-
utility samples (e.g., samples near the optimum) may be
underutilized depending on the state of the tree when they
are found. This can become problematic if these samples
have a low sampling probability (e.g., samples in narrow
passages). Making multiple connections attempts per sample
and retaining samples for multiple batches allows BIT* to
exploit these useful samples more than algorithms such
as SORRT*. As seen in Section 6, this results in different
performance, especially in high state dimensions.

6 Experiments

The benefits of ordering the search of continuous planning
problems are demonstrated on simulated problems in R2,
R4, R8, and R16 (Section 6.1) and one- and two-armed
problems for HERB (Section 6.2) using OMPL.§ BIT* is
compared to the OMPL versions of RRT, RRT-Connect,
RRT*, RRT# (i.e., RRTX with ε = 0), FMT*, Informed
RRT*, and SORRT*.

All planners used the same tuning parameters and
configurations where possible. Planning time was limited to
1 seconds, 10 seconds, 30 seconds, and 100 seconds in R2,
R4, R8, and R16 and 20 seconds and 600 seconds for HERB
(R7 and R14), respectively. RRT-style planners used a goal-
sampling bias of 5% and a maximum edge length of η = 0.3,
0.5, 0.9, and 1.7 on the abstract problems (R2, R4, R8, and
R16) and 0.7 and 1.3 on HERB, respectively. These values
were selected experimentally to reduce the time required to
find an initial solution on simple training problems.

The RRT* planners, FMT*, and BIT* all used a
connection radius equal to twice their lower bound (e.g.,

l

l

(a) (b)
l

xstart xgoal

w2w

dxgoalxstart

d

b

b bt

Figure 6. An illustration of the planning problems used in
Sections 6.1.1 and 6.1.2. They are used to investigate algorithm
performance on complex problems containing dual enclosures,
(a), and many homotopy classes, (a), across state dimension.
The problem dimensions in (a) were chosen to make the
gaps symmetric, i.e., b = 0.6, and l = 2.8, for the chosen wall
thickness, t = 0.1. The width of the individual obstacles in (b)
are chosen such that the start and goal states are 5 ‘columns’
apart in a problem domain of size l = 4. For both problems, the
distance between the start and goal, d, is 1.

rRRT∗ = 2r∗RRT∗) and approximated the Lebesgue measure
of the free space with the measure of the entire planning
problem. The RRT* planners also used the ordered rewiring
technique presented in Perez et al. (2011). Informed RRT*,
SORRT*, and BIT* used theL2 norm as estimates of cost-to-
come and cost-to-go, direct informed sampling, and delayed
pruning the graph until solution cost changed by more than
5%. SORRT* and BIT* both used m = 100 samples per
batch for all problems. BIT* also thresholded its initial
connection radius by using the same radius for both the
first and second batches.

6.1 Simulated Planning Problems

The algorithms were tested on simulated problems in
R2, R4, R8, and R16 on problems consisting of dual
enclosures (Section 6.1.1), many different homotopy
classes (Section 6.1.2), and randomly generated obstacles
(Section 6.1.3). The planners were tested with 100 different
pseudo-random seeds on each problem and state dimension.
The solution cost of each planner was recorded every
10−4 seconds by a separate thread and the median was
calculated from the 100 trials by interpolating each trial

§The experiments were run on a laptop with 16 GB of RAM and an Intel
i7-4810MQ processor running Ubuntu 14.04 (64-bit).

Prepared using sagej.cls

20 Journal Title XX(X)

at a period of 10−4 seconds, except for the problems in R16

where 10−3 seconds was used for both times. The absence of
a solution was considered an infinite cost for the purpose of
calculating the median and infinite values were not plotted.

6.1.1 Dual-Enclosure Problems The algorithms were
tested on problems with two enclosures in R2, R4, R8, and
R16 (Fig. 6a). The problems consisted of a (hyper)cube
of width l = 2.8 with the start and goal located at
[−0.5, 0, . . . , 0]

T and [0.5, 0, . . . , 0]
T , respectively. The

enclosures were symmetric around the start and goal with a
thickness of t = 0.1 and openings of width b = 0.6. As all
almost-surely asymptotically optimal planners struggled to
solve the problem in R16, it was run for 1000 seconds with
recording and interpolation periods of 2× 10−3 seconds.

The results are presented in Fig. 7 with the percent of
trials solved and the median solution cost plotted versus run
time. The results demonstrate the advantages of ordering
the approximation and search of difficult planning problems.
BIT* is competitive to other almost-surely asymptotically
optimal planning algorithms in R2 and outperforms
all algorithms other than RRT-Connect in higher state
dimensions. In all dimensions, BIT* finds a solution in
every trial (i.e., attains 100% success) sooner than the other
anytime almost-surely asymptotically optimal planners.

Specifically in R2, the median time required for BIT*
to find an initial solution is more than that of the RRT*-
based planners (Fig. 7c); however, once a solution is found,
BIT* finds better or equivalent solutions than the best
performing RRT* planners at any given time. FMT* slightly
outperforms the other almost-surely asymptotically optimal
planners but is not anytime.

The performance of RRT*-based planners decreases more
rapidly with increasing state dimension on this problem
than planners that process multiple samples such as BIT*
and FMT*. BIT* outperforms all planners other than RRT-
Connect in terms of success rate and median solution cost in
R4 (Figs. 7b and 7d). This difference increases in R8 where
the RRT*-based planners only find a solution in the available
time in 35% of the trials or less (Figs. 7e and 7g). All almost-
surely asymptotically optimal planners struggle to solve the
problem in R16 but BIT* is the only one that finds a solution
in more than 50% of the trials (Figs. 7f and 7h).

6.1.2 Problems with Many Homotopy Classes The
algorithms were tested on problems with many homotopy
classes in R2, R4, R8, and R16 (Fig. 6b). The problems
consisted of a (hyper)cube of width l = 4 with the start
and goal located at [−0.5, 0, . . . , 0]

T and [0.5, 0, . . . , 0]
T ,

respectively. The problem domain was filled with a regular
pattern of axis-aligned (hyper)rectangular obstacles with a
width such that the start and goal were 5 ‘columns’ apart.

The results are presented in Fig. 8 with the percent of
trials solved and the median solution cost plotted versus
run time. These results demonstrate both the advantages
and disadvantages of attempting multiple connections per
sample in problems with many disconnected obstacles. In
lower dimensions, informed algorithms that only make a
single connection attempt per sample (e.g., Informed RRT*
and SORRT*) have better median solution costs at any
given time. In higher dimensions, only the bidirectional
RRT-Connect and algorithms that make multiple connection
attempts per sample (e.g., BIT* and FMT*) find solutions in
a reasonable amount of time. In all dimensions, BIT* finds
a solution in every trial (i.e., attains 100% success) sooner
than every planner tested other than RRT-Connect.

Specifically, BIT* is the most likely almost-surely
asymptotically optimal planning algorithm to solve the
problem in R2, R4, and R8 (Figs. 8a, 8b, and 8e) but
the informed, RRT*-based algorithms have better median
solution costs (Figs. 8c, 8d, 8g). This advantage disappears
in R16 where BIT* is the only anytime almost-surely
asymptotically optimal planner to always solve the planning
problem in the given time (Figs. 8f and 8h).

This difference in performance may arise from the relative
difficulty of planning tasks in different state dimensions. It
appears that in lower state dimensions the main challenge
of this problem is avoiding obstacles. In these situations,
informed, RRT*-based algorithms will outperform BIT* as
they only make one connection attempt per sample. In higher
state dimensions, it appears that the exponential increase in
problem measure (i.e., the curse of dimensionality) makes
navigating towards the goal an equal challenge and BIT*
outperforms these other algorithms by considering multiple
connection attempts per sample in an ordered fashion.

Prepared using sagej.cls

Gammell et al. 21

Bett
er

Better

Informed RRT* BIT*

RRTRRT-Connect RRT*

FMT* SORRT*

RRT#

50

0

S
u
c
c
e
ss

[%
]

100

50

0

S
u
c
c
e
ss

[%
]

100

(b) R4: Runs solved vs. time

Run time [s]
10−3 10−2 10−1 100

Run time [s]
10−3 10−2 10−1 100

(a) R2: Runs solved vs. time

Run time [s]

(c) R2: Solution cost vs. time

Run time [s]

(d) R4: Solution cost vs. time

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

3.0

4.5

5.0

5.5

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

4.0

9.0

50

0

S
u
c
c
e
ss

[%
]

100

50

0

S
u
c
c
e
ss

[%
]

100

(f) R16: Runs solved vs. time

Run time [s]Run time [s]

(e) R8: Runs solved vs. time

Run time [s]

(g) R8: Solution cost vs. time

Run time [s]

(h) R16: Solution cost vs. time

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

5.0

8.0

9.0

10.0

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

15

20

3.5

4.0

101

6.0

8.0

10−2 10−1 100 101

7.0

6.0

100 101 102

10

10−3 10−2 10−1 100

6.0

10−3 10−2 10−1 100 101
3.0

5.0

7.0

10−2 10−1 100 101

10−1 103

100 101 10210−1 103

Figure 7. Planner performance versus time for the problem illustrated in Fig. 6a. Each planner was run 100 different times in R2,
R4, R8, and R16 with run times limited to 1, 10, 30, and 1000 seconds, respectively. The percentage of trials solved is plotted
versus run time for each planner and presented in (a), (b), (e), and (f). The median path length is plotted versus run time for each
planner and presented in (c), (d), (g), and (h), with unsuccessful trials assigned infinite cost. The error bars denote a nonparametric
99% confidence interval on the median. The results show that BIT* is competitive to other almost-surely asymptotically optimal
planners in R2 and outperforms them in all other tested state dimensions. Note the difficulty of solving this problem in R8 and R16

in the available time.

Prepared using sagej.cls

22 Journal Title XX(X)

50

0

S
u
c
c
e
ss

[%
]

100

50

0

S
u
c
c
e
ss

[%
]

100

(b) R4: Runs solved vs. time

Run time [s]
10−4 10−3 10−2 10−1 100

Run time [s]
10−4 10−3 10−2 10−1 100

(a) R2: Runs solved vs. time

Run time [s]

(c) R2: Solution cost vs. time

Run time [s]

(d) R4: Solution cost vs. time

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

1.2

1.8

2.0

2.2

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

1.2

1.8

2.0

2.4

50

0

S
u
c
c
e
ss

[%
]

100

50

0

S
u
c
c
e
ss

[%
]

100

(f) R16: Runs solved vs. time

Run time [s]Run time [s]

(e) R8: Runs solved vs. time

Run time [s]

(g) R8: Solution cost vs. time

Run time [s]

(h) R16: Solution cost vs. time

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

1.5

3.0

3.5

4.0

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

2.0

5.0

6.0

7.0

1.4

1.6

101

2.2

1.4

1.6

10−4 10−3 10−2 10−1 100 101

2.5

2.0

10−4 10−3 10−2 10−1 100 102101

10−4 10−3 10−2 10−1 100 102101

3.0

4.0

Informed RRT* BIT*

RRTRRT-Connect RRT*

FMT* SORRT*

RRT#

Bett
er

Better

10−4 10−3 10−2 10−1

2.4

10−4 10−3 10−2 10−1 100 101

10−4 10−3 10−2 10−1 100 101

Figure 8. Planner performance versus time for the problem illustrated in Fig. 6b. Each planner was run 100 different times in
R2, R4, R8, and R16 with run times limited to 1, 10, 30, and 100 seconds, respectively. The percentage of trials solved is plotted
versus run time for each planner and presented in (a), (b), (e), and (f). The median path length is plotted versus run time for each
planner and presented in (c), (d), (g), and (h), with unsuccessful trials assigned infinite cost. The error bars denote a nonparametric
99% confidence interval on the median. The results show that on this problem BIT* finds a solution to all trials faster than all
tested planners other than RRT-Connect and outperforms other almost-surely asymptotically optimal planners in R16. Note that
RRT*-based planners are not able to find solutions for this high state dimension in the time available.

Prepared using sagej.cls

Gammell et al. 23

Informed RRT* BIT*

RRTRRT-Connect RRT*

FMT* SORRT*

RRT#

50

0

S
u
c
c
e
ss

[%
]

100

50

0

S
u
c
c
e
ss

[%
]

100

(b) R4: Runs solved vs. time

Run time [s]
10−2 10−1 100

Run time [s]
10−3 10−2 10−1 100

(a) R2: Runs solved vs. time

Run time [s]

(c) R2: Solution cost vs. time

Run time [s]

(d) R4: Solution cost vs. time

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

1.2

1.8

2.0

1.0 M
e
d
ia
n

so
lu
ti
o
n

c
o
st

2.5

3.0

50

0

S
u
c
c
e
ss

[%
]

100

50

0

S
u
c
c
e
ss

[%
]

100

(f) R16: Runs solved vs. time

Run time [s]Run time [s]

(e) R8: Runs solved vs. time

Run time [s]

(g) R8: Solution cost vs. time

Run time [s]

(h) R16: Solution cost vs. time

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

3.0

1.5

3.5

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

1.5

2.5

3.0

3.5

1.4

1.6

101

1.5

2.0

10−2 10−1 100 101

2.0

10−2 10−1 100 102101

2.0

10−2 10−1 100 102101

Bett
er

Better

10−3 10−2 10−1 100 10−2 10−1 100 101

2.5

4.0

10−2 10−1 100 101

Figure 9. Planner performance versus time for a randomly generated problem. Each planner was run 100 different times in R2,
R4, R8, and R16 with run times limited to 1, 10, 30, and 100 seconds, respectively. The percentage of trials solved is plotted versus
run time for each planner and presented in (a), (b), (e), and (f). The median path length is plotted versus run time for each planner
and presented in (c), (d), (g), and (h), with unsuccessful trials assigned infinite cost. The error bars denote a nonparametric 99%
confidence interval on the median. The results show that BIT* outperforms other almost-surely asymptotically optimal planners in
both ability to solve the problem and median solution cost. Note the increase in this difference with higher state dimension and the
difficulty of solving the problem in R16 in the available time with RRT*-based planners.

Prepared using sagej.cls

24 Journal Title XX(X)

6.1.3 Random Problems The planners were tested on
randomly generated problems in R2, R4, R8, and R16.
The worlds consisted of a (hyper)cube of width l = 2

populated with approximately 75 random axis-aligned
(hyper)rectangular obstacles that obstruct at most one third
of the environment.

For each state dimension, 10 different random worlds
were generated and the planners were tested on each with
100 different pseudo-random seeds. The true optima for
these 10 problems are different and unknown and there is
no meaningful way to compare the results across problems.
Results from a representative problem are instead presented
in Fig. 9 with the percent of trials solved and the median
solution cost plotted versus computational time.

These experiments show that BIT* generally finds better
solutions faster than other sampling-based optimal planners
and RRT on these types of problems regardless of the state
dimension. It has a higher likelihood of having found a
solution at a given computational time (Figs. 9a, 9b, 9e, and
9f), and converges faster towards the optimum (Figs. 9c, 9d,
9g, and 9h), with the relative improvement increasing with
state dimension. The only tested planner that found solutions
faster than BIT* was RRT-Connect, a nonanytime planner
that cannot converge to the optimum.

6.2 Path Planning for HERB

It is difficult to capture the challenges of actual high-
dimensional planning in abstract worlds. Two planning
problems inspired by manipulation scenarios were created
for HERB, a 14-DOF mobile manipulation platform.

Start and goal poses were chosen for one arm (7 DOFs,
Section 6.2.1) and two arms (14 DOFs, Section 6.2.2) to
define planning problems with the objective of minimizing
path length through configuration space. They were used to
compare the OMPL versions of RRT, RRT-Connect, FMT*,
RRT# (i.e., RRTX with ε = 0), Informed RRT*, SORRT*,
and BIT*. The planners were run on each problem 50

times while recording success rate, initial solution time and
cost, and final cost. Trials that did not find a solution were
considered to have taken infinite time and have infinite path
length, respectively, for the purpose of calculating medians.

The number of FMT* samples for both problems was chosen
to use the majority of the available computational time.

6.2.1 A One-Armed Planning Problem A planning
problem was defined for HERB’s left arm around a cluttered
table (Fig. 10). The arm starts folded at the elbow and held at
approximately the level of the table (Figs. 10a and 10b) and
must be moved into position to grasp a box (Figs. 10c and
10d). The planners were given 20 seconds of computational
time to solve this 7-DOF problem with the objective of
minimizing path length in configuration space. FMT* used
m = 30 samples.

The percentage of trials that successfully found a solution
(Fig. 11a), the median time and cost of the initial solution
(Figs. 11b and 11c) and the final cost (Fig. 11d) were plotted
for each planner. Infinite values are not plotted.

The results show BIT* finds solutions more often than
other almost-sure asymptotically optimal planners on this
problem (Fig. 11a) and also finds better solutions faster than
all tested algorithms, including RRT-Connect (Figs. 11b–
11d). Fig. 12 presents a composite photograph of HERB
executing a path found by BIT* for a similar problem.

6.2.2 A Two-Armed Planning Problem A second
planning problem was defined for both of HERB’s arms
moving around a cluttered table (Fig. 13). The arms start
at a neutral position with their forearms extended under the
table (Figs. 13a and 13b) and must be moved into position to
open a bottle (Figs. 13c and 13d). The planners were given
600 seconds of computational time to solve this 14-DOF
problem with the objective of minimizing path length in
configuration space. FMT* used m = 1750 samples.

The percentage of trials that successfully found a solution
(Fig. 14a), the median time and cost of the initial solution
(Figs. 14b and 14c) and the final cost (Fig. 14d) were plotted
for each planner. Infinite values are not plotted.

The results show that even when more computational time
is available, BIT* still finds solutions more often than other
almost-surely asymptotically optimal planners (Fig. 14a) and
also finds initial solutions faster than all tested algorithms,
including RRT-Connect (Fig. 14b). As a nonanytime
algorithm, FMT* is tuned to use the majority of the available
time and finds a better initial solution (Fig. 14c) but as BIT*
is able to improve its solution it still finds a better final

Prepared using sagej.cls

Gammell et al. 25

(a) (b) (c) (d)

Figure 10. A one-armed motion planning problem for HERB in R7. Starting at a position level with the table, (a) and (b), HERB’s
left arm must be moved in preparation for grasping a box on the far side of the table, (c) and (d).

(a) (b) (c) (d)

40

80

20

0

8

12

16

T
im

e
to

In
it
ia
l
S
o
lu
ti
o
n

[s
]

4

0

10

15

In
it
ia
l
P
a
th

L
e
n
g
th

0

F
in
a
l
P
a
th

L
e
n
g
th

S
u
c
c
e
ss

[%
]

100 20

60

5

RRT-Connect FMT*

Informed RRT* BIT*

RRT

SORRT*

10

15

0

5

RRT#

Figure 11. Results from 50, 20 second trials on the one-armed HERB planning problem shown in Fig. 10. The percent of solutions
solved, (a), the median time to an initial solution, (b), the median initial path length, (c), and the median final path length, (d), are
presented with 99% confidence intervals for each planner. Unsuccessful trials were assigned infinite time and cost. The inability of
nonanytime planners (e.g., RRT, RRT-Connect, and FMT*) to use the remaining available time to improve their initial solution is
denoted with diminished colour in (d), where present. BIT* is the only almost-surely asymptotically optimal planner to solve all 50
trials and does so in a time comparable to RRT-Connect. It also finds significantly lower cost paths then all the other planners.

Figure 12. A composite figure of HERB executing a path found by BIT* on a one-armed planning problem similar to Fig. 10.

Prepared using sagej.cls

26 Journal Title XX(X)

(a) (b) (c) (d)

Figure 13. A two-armed motion planning problem for HERB in R14. Starting under the table, (a) and (b), HERB’s arms must be
moved in preparation for opening a bottle, (c) and (d).

(a) (b) (c) (d)

40

80

20

0

200

300

400

T
im

e
to

In
it
ia
l
S
o
lu
ti
o
n

[s
]

100

0

10
In

it
ia
l
P
a
th

L
e
n
g
th

5

0

F
in
a
l
P
a
th

L
e
n
g
th

S
u
c
c
e
ss

[%
]

100

500

60 15

20

25

RRT-Connect FMT*

Informed RRT* BIT*

RRT

SORRT*

RRT#

600

10

5

0

15

20

25

Figure 14. Results from 50, 600 second trials on the two-armed HERB planning problem shown in Fig. 13. The percent of solutions
solved, (a), the median time to an initial solution, (b), the median initial path length, (c), and the median final path length, (d), are
presented with 99% confidence intervals for each planner. Unsuccessful trials were assigned infinite time and cost. The inability of
nonanytime planners (e.g., RRT, RRT-Connect, and FMT*) to use the remaining available time to improve their initial solution is
denoted with diminished colour in (d), when present. BIT* is the only anytime planner to solve all 50 trials and does so in a time
comparable to RRT-Connect. It focuses the search to the informed set once a solution is found and the resulting increasingly dense
RGG allows it to find lower cost paths then all the other planners.

Figure 15. A composite figure of HERB executing a path found by BIT* on a two-armed planning problem similar to Fig. 13.

Prepared using sagej.cls

Gammell et al. 27

path after approximately the same amount of time (Fig. 14d).
Fig. 15 presents a composite photograph of HERB executing
a path found by BIT* for a similar problem.

7 Discussion & Conclusion

Most planning algorithms discretize the search space of
continuous path planning problems. Popular approaches in
robotics include a priori graph- or anytime sampling-based
approximations. Both of these approaches are successful but
have important limitations.

A priori graphs approximate a problem before it is
searched. Doing so ‘correctly’ is challenging since the
relationship between resolution and search performance
depends on the specific features of a planning problem
(e.g., the size and arrangement of obstacles). If the chosen
approximation is insufficient (e.g., a sparse graph) it may
preclude finding a (suitable) solution but if it is excessive
(e.g., a dense graph) it may make finding a solution
prohibitively expensive.

Graph-based searches are effective path planning
techniques despite these limitations. This is because
informed algorithms, such as A*, use heuristics to order
their search by potential solution quality. This not only
finds the optimal solution to the given representation (i.e.,
it is resolution optimal) but does so by expanding the
minimum number of vertices for the chosen heuristic (i.e., it
is optimally efficient; Hart et al. 1968).

Anytime sampling-based planners alternatively build
approximations that increase in resolution. This avoids the
need to select a representation a priori and allows them to
be run indefinitely until a (suitable) solution is found. RRT*
has a unity probability of finding a solution, if one exists,
with an infinite number of samples (i.e., it is probabilistically

complete) and finds continuously improving solutions (i.e.,
it is almost-surely asymptotically optimal; Karaman and
Frazzoli 2011).

This has made them effective planning techniques despite
the fact their search is often inefficient. Incremental
sampling-based planners tend to explore the entire problem
domain equally (i.e., they are space filling). This wastes
computational effort on regions of the problem domain that
are not needed to find the solution and can be prohibitively

expensive in large planning problems and/or high state
dimensions.

Previous attempts to unify these two approaches have been
incomplete. They either sacrifice anytime resolution (e.g.,
RA* and FMT*), order the search on metrics other than
solution cost and waste computational effort (e.g., SBA*),
or do not order all aspects of the problem domain search
(e.g., RRT# and RRTX). This paper demonstrates that these
tradeoffs are unnecessary and that anytime sampling-based
planners can be directly and solely ordered by a heuristic
estimate of solution cost.

BIT* directly unifies informed graph-based search and
sampling-based planning (Section 3). It uses heuristics
and batches of random samples to simultaneously build
anytime approximations of continuous planning problems
and search these approximations in order of potential
solution quality. This avoids the computational costs of both
searching an improper approximation (graph-based search)
and performing an unordered search of the problem domain
(sampling-based planning). A version of BIT* is publicly
available in OMPL.

BIT* approximates the search space by using batches

of samples to define increasingly dense implicit RGGs.
Building this approximation with batches of multiple

samples allows each search to be ordered by potential
solution quality, as in A*. Building this approximation
from multiple batches of samples allows it to be improved
indefinitely until it contains a suitable solution, as in RRT*.
As a result, BIT* is probabilistically complete and almost-
surely asymptotically optimal (Section 4).

This simultaneous approximation and search is done
efficiently by using heuristics. The approximation is
focused to the regions of the planning problem that
could provide better solutions, as in Informed RRT*. The
denser approximations are searched efficiently by reusing
previous information, as in TLPA*. Edge calculations (e.g.,
two-point BVPs and collisions checks) are delayed until
necessary, as in lazy versions of both graph-based searches
and sampling-based planners (e.g., Bohlin and Kavraki 2000;
Branicky et al. 2001; Cohen et al. 2014; Hauser 2015;
Helmert 2006; Salzman and Halperin 2016; Sánchez and
Latombe 2002).

Prepared using sagej.cls

28 Journal Title XX(X)

Bett
er

Better

50

0

S
u
c
c
e
ss

[%
]

100

50

0

S
u
c
c
e
ss

[%
]

100

(b) R8: Runs solved vs. time

Run time [s]
10−2 10−1 100

Run time [s]
10−3 10−2 10−1 100

(a) R2: Runs solved vs. time

Run time [s]

(c) R2: Solution cost vs. time

Run time [s]

(d) R8: Solution cost vs. time

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

3.0

5.0

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

4.0

101

6.0

8.0
6.0

5.0

7.0

500100505 5000100010BIT* batch size:

10−3 10−2 10−1 100 10−2 10−1 100 101

Figure 16. Planner performance versus time of BIT* with various batch sizes on the problem illustrated in Fig. 6a. Each configuration
was run 100 different times in R2 and R8 with run times limited to 1 and 30 seconds, respectively. The percentage of trials solved is
plotted versus run time and presented in (a) and (b). The median path length is plotted versus run time and presented in (c) and (d)
with unsuccessful trials assigned infinite cost. The error bars denote a nonparametric 99% confidence interval on the median. It
appears that decreasing the batch size decreases the median solution time towards a problem-specific threshold. The median
initial solution time was the same in R2 for batch sizes of 5 and 10 samples but progressively higher for larger batches, (a). It was
equivalent for batches of 5, 10, 50, and 100 samples in R4 (not shown) and for all tested batch sizes other than 5000 in R8, (b).
Decreasing the batch size also appears to decrease the rate of convergence towards the optimum, with the effect becoming more
pronounced in higher state dimensions, (d). It is not clear how universal these relationships are between obstacle configurations.

A brief set of extensions to BIT* are presented (Section 5).
These include prioritizing an initial solution, avoiding the
need to define a priori search limits in unbounded problems,
and avoiding unreachable areas of the problem domain.
These ideas also motivate the development of SORRT* as
an extension of batch-ordered search to the algorithmic
simplicity of RRT* (Alg. 6). A version of SORRT* is
publicly available in OMPL.

The benefits of BIT* are demonstrated experimentally on
abstract planning problems and simulated experiments for
HERB (Section 6). The results highlight the advantages and
disadvantages of both using an ordered search and consid-
ering multiple connections per sample. As state dimension
increases, BIT* becomes more likely to have found a
solution and generally finds better solutions faster than the
other almost-surely asymptotically optimal planners.

The experiments also highlight the relative sensitivity
of anytime planners to their tuning parameters. The
performance of RRT-style planners depends heavily on the

maximum edge length, η, and achieving the best perfor-
mance requires tuning it for the problem size, dimension,
and even obstacle characteristics. Alternatively, the same
batch size was used for BIT* on all the tested problems
even though further tuning on specific problems could
provide better performance (Fig. 16). This result should
motivate future research on more advanced sample addition
procedures, including variable and adaptive batch sizes.

Using heuristics to avoid unnecessary edge evaluations
allows BIT* to spend more computational effort on the
edges that are evaluated. Xie et al. (2015) show that a
two-point BVP solver can be used to calculate edges for
BIT* for problems with differential constraints. They find
that doing so is competitive to state-of-the-art optimal
sampling-based techniques that are explicitly designed to
avoid solving two-point BVPs. Choudhury et al. (2016)
show that a path optimizer (i.e., CHOMP; Zucker et al.
2013) can be used on potential edges in BIT*. This provides
a method to exploit local problem information (i.e., cost

Prepared using sagej.cls

Gammell et al. 29

gradients) to propose higher-quality edges and improve
performance.

BIT* is described as using a LPA* ordering to efficiently
search an incrementally built (i.e., changing) RGG embed-
ded in a continuous planning problem. While the search
order is the same, it is important to note a key difference
in how these two algorithms reuse information. When LPA*
updates the cost-to-come of a vertex it reconsiders the
cost-to-come of all possibly descendent vertices. This can
be prohibitively expensive in large graphs and the results of
RRT* demonstrate that this propagation is unnecessary for
a planner to almost-surely converge asymptotically to the
optimum. By not propagating these changes, BIT* performs
a truncated rewiring similar to TLPA*.

This paper demonstrates the benefits of unifying informed
graph-based search and sampling-based planning. Using
incremental search techniques to efficiently search an
increasingly dense RGG allows BIT* to outperform existing
anytime almost-surely asymptotically optimal planners.
These results will hopefully motivate further research into
combining graph-based search and sampling-based planning.
Of particular interest would be probabilistic statements about
search efficiency analogous to the formal statements for A*.

There is also a clear opportunity to consider different
anytime approximations, such as deterministic sampling
(Janson et al. 2018) or adaptive meshes (Yershov and
Frazzoli 2016), and more advanced graph-based-search tech-
niques, such as Anytime Repairing A* (ARA*; Likhachev
et al. 2008) and Multi-Heuristic A* (MHA*; Aine et al.
2015), to further accelerate the search performance of BIT*.

Acknowledgements

We would like to thank the editorial board for considering this

manuscript and the reviewers for their detailed comments and

dedicated efforts to improve it. We would also like to thank

Christopher Dellin, Michael Koval, and Jennifer King for help

running the HERB experiments.

Funding

This research was supported by contributions from the Natural

Sciences and Engineering Research Council of Canada (NSERC)

through the NSERC Canadian Field Robotics Network (NCFRN),

the Ontario Ministry of Research and Innovation’s Early Researcher

Award Program, and the Office of Naval Research (ONR) Young

Investigator Program.

References

Aine S and Likhachev M (2016) Truncated incremental search.

Artificial Intelligence 234: 49–77. DOI:10.1016/J.ARTINT.

2016.01.009.

Aine S, Swaminathan S, Narayanan V, Hwang V and Likhachev

M (2015) Multi-heuristic A*. The International Journal of

Robotics Research (IJRR) 35(1–3): 224–243. DOI:10.1177/

0278364915594029. URL http://ijr.sagepub.com/

content/35/1-3/224.abstract.

Akgun B and Stilman M (2011) Sampling heuristics for optimal

motion planning in high dimensions. In: Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). pp. 2640–2645. DOI:10.1109/IROS.2011.

6095077.

Arslan O and Tsiotras P (2013) Use of relaxation methods in

sampling-based algorithms for optimal motion planning. In:

Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). pp. 2421–2428. DOI:10.1109/ICRA.

2013.6630906.

Arslan O and Tsiotras P (2015) Dynamic programming guided

exploration for sampling-based motion planning algorithms.

In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). pp. 4819–4826. DOI:

10.1109/ICRA.2015.7139869.

Arslan O and Tsiotras P (2016) Incremental sampling-based motion

planners using policy iteration methods. In: Proceedings of

the IEEE Conference on Decision and Control (CDC). pp.

5004–5009. DOI:10.1109/CDC.2016.7799034.

Bellman RE (1954) The theory of dynamic programming. Bulletin

of the American Mathematical Society (AMS) 60(6): 503–516.

DOI:10.1090/S0002-9904-1954-09848-8.

Bellman RE (1957) Dynamic Programming. Princeton University

Press. ISBN 978-0-691-07951-6.

Bertsekas DP (1975) Convergence of discretization procedures

in dynamic programming. IEEE Transactions on Automatic

Control (TAC) 20(3): 415–419. DOI:10.1109/TAC.1975.

1100984.

Bohlin R and Kavraki LE (2000) Path planning using lazy PRM.

In: Proceedings of the IEEE International Conference on

Prepared using sagej.cls

http://ijr.sagepub.com/content/35/1-3/224.abstract
http://ijr.sagepub.com/content/35/1-3/224.abstract

30 Journal Title XX(X)

Robotics and Automation (ICRA), volume 1. pp. 521–528.

DOI:10.1109/ROBOT.2000.844107.

Branicky MS, LaValle SM, Olson K and Yang L (2001) Quasi-

randomized path planning. In: Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA),

volume 2. pp. 1481–1487. DOI:10.1109/ROBOT.2001.

932820.

Choudhury S, Gammell JD, Barfoot TD, Srinivasa SS and

Scherer S (2016) Regionally Accelerated Batch Informed

Trees (RABIT*): A framework to integrate local information

into optimal path planning. In: Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA).

pp. 4207–4214. DOI:10.1109/ICRA.2016.7487615.

Cohen B, Phillips M and Likhachev M (2014) Planning single-

arm manipulations with n-arm robots. In: Proceedings of

Robotics: Science and Systems (RSS). Berkeley, USA. DOI:

10.15607/RSS.2014.X.033.

Diankov R and Kuffner Jr JJ (2007) Randomized statistical path

planning. In: Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). DOI:

10.1109/IROS.2007.4399557.

Dijkstra EW (1959) A note on two problems in connexion with

graphs. Numerische Mathematik 1(1): 269–271. DOI:

10.1007/BF01386390.

Eppstein D, Paterson MS and Yao FF (1997) On nearest-neighbor

graphs. Discrete & Computational Geometry 17(3): 263–282.

DOI:10.1007/PL00009293.

Euler L (1738) De progressionibus transcendentibus seu quarum

termini generales algebraice dari nequeunt. Commentarii

academiae scientiarum Petropolitanae 5: 36–57.

Ferguson D and Stentz A (2006) Anytime RRTs. In: Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). pp. 5369–5375. DOI:10.1109/IROS.2006.

282100.

Gammell JD (2017) Informed Anytime Search for Continuous

Planning Problems. PhD Thesis, University of Toronto. DOI:

1807/78630.

Gammell JD, Barfoot TD and Srinivasa SS (2018) Informed

sampling for asymptotically optimal path planning. IEEE

Transactions on Robotics (T-RO) 34(4): 966–984. DOI:

10.1109/TRO.2018.2830331.

Gammell JD, Srinivasa SS and Barfoot TD (2014a) BIT*: Batch

informed trees for optimal sampling-based planning via

dynamic programming on implicit random geometric graphs.

Technical Report TR-2014-JDG006, Autonomous Space

Robotics Lab, University of Toronto. arXiv:1405.5848v1

[cs.RO].

Gammell JD, Srinivasa SS and Barfoot TD (2014b) BIT*:

Sampling-based optimal planning via batch informed trees.

In: The Information-based Grasp and Manipulation Planning

Workshop, Robotics: Science and Systems (RSS). Berkeley, CA,

USA.

Gammell JD, Srinivasa SS and Barfoot TD (2014c) Informed

RRT*: Optimal sampling-based path planning focused via

direct sampling of an admissible ellipsoidal heuristic. In:

Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). pp. 2997–3004. DOI:

10.1109/IROS.2014.6942976.

Gammell JD, Srinivasa SS and Barfoot TD (2015) Batch Informed

Trees (BIT*): Sampling-based optimal planning via the

heuristically guided search of implicit random geometric

graphs. In: Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). pp. 3067–3074. DOI:

10.1109/ICRA.2015.7139620.

Gilbert EN (1961) Random plane networks. Journal of the Society

for Industrial and Applied Mathematics (JSIAM) 9(4): 533–

543. DOI:10.1137/0109045.

Hart PE, Nilsson NJ and Raphael B (1968) A formal basis for

the heuristic determination of minimum cost paths. IEEE

Transactions on Systems Science and Cybernetics 4(2): 100–

107. DOI:10.1109/TSSC.1968.300136.

Hauser K (2015) Lazy collision checking in asymptotically-optimal

motion planning. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). pp. 2951–

2957. DOI:10.1109/ICRA.2015.7139603.

Helmert M (2006) The fast downward planning system. Journal

of Artificial Intelligence Research (JAIR) 26: 191–246. DOI:

10.1613/JAIR.1705.

Hsu D, Latombe JC and Motwani R (1999) Path planning in

expansive configuration spaces. International Journal of

Computational Geometry & Applications (IJCGA) 9(4–5): 495–

512. DOI:10.1142/S0218195999000285.

Prepared using sagej.cls

https://arxiv.org/abs/1405.5848v1
https://arxiv.org/abs/1405.5848v1

Gammell et al. 31

Janson L, Ichter B and Pavone M (2018) Deterministic

sampling-based motion planning: Optimality, complexity, and

performance. The International Journal of Robotics Research

(IJRR) 37(1): 46–61. DOI:10.1177/0278364917714338.

Janson L and Pavone M (2013) Fast marching trees: a fast

marching sampling-based method for optimal motion planning

in many dimensions. In: Proceedings of the International

Symposium on Robotics Research (ISRR). DOI:10.1007/

978-3-319-28872-7 38.

Janson L, Schmerling E, Clark A and Pavone M (2015) Fast

marching tree: A fast marching sampling-based method

for optimal motion planning in many dimensions. The

International Journal of Robotics Research (IJRR) 34(7): 883–

921. DOI:10.1177/0278364915577958.

Karaman S and Frazzoli E (2011) Sampling-based algorithms

for optimal motion planning. The International Journal

of Robotics Research 30(7): 846–894. DOI:10.1177/

0278364911406761.

Karaman S, Walter MR, Perez A, Frazzoli E and Teller S (2011)

Anytime motion planning using the RRT*. In: Proceedings

of the IEEE International Conference on Robotics and

Automation (ICRA). pp. 1478–1483. DOI:10.1109/ICRA.2011.

5980479.

Kavraki LE, Kolountzakis MN and Latombe JC (1998) Analysis of

probabilistic roadmaps for path planning. IEEE Transactions

on Robotics and Automation 14(1): 166–171. DOI:10.1109/

70.660866.

Kavraki LE, Švestka P, Latombe JC and Overmars MH (1996)

Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Transactions on Robotics and

Automation 12(4): 566–580. DOI:10.1109/70.508439.

Kiesel S, Burns E and Ruml W (2012) Abstraction-guided sampling

for motion planning. In: Proceedings of the Fifth Annual

Symposium on Combinatorial Search (SoCS). ISBN 978-1-

577-35584-7.

Kleinbort M, Salzman O and Halperin D (2015) Efficient high-

quality motion planning by fast all-pairs r-nearest-neighbors.

In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). pp. 2985–2990. DOI:

10.1109/ICRA.2015.7139608.

Kleinbort M, Salzman O and Halperin D (2016) Collision detection

or nearest-neighbor search? On the computational bottleneck

in sampling-based motion planning. In: Proceedings of the

International Workshop on the Algorithmic Foundations of

Robotics (WAFR).

Koenig S, Likhachev M and Furcy D (2004) Lifelong planning

A*. Artificial Intelligence (AI) 155(1–2): 93–146. DOI:

10.1016/J.ARTINT.2003.12.001.

Kuffner Jr JJ and LaValle SM (2000) RRT-Connect: An efficient

approach to single-query path planning. In: Proceedings of the

IEEE International Conference on Robotics and Automation

(ICRA), volume 2. pp. 995–1001. DOI:10.1109/ROBOT.2000.

844730.

Kunz T, Thomaz A and Christensen H (2016) Hierarchical

rejection sampling for informed kinodynamic planning in high-

dimensional spaces. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). pp. 89–96.

DOI:10.1109/ICRA.2016.7487120.

LaValle SM and Kuffner Jr JJ (2001) Randomized kinodynamic

planning. The International Journal of Robotics Research

20(5): 378–400. DOI:10.1177/02783640122067453.

Likhachev M, Ferguson D, Gordon G, Stentz A and Thrun S (2008)

Anytime search in dynamic graphs. Artificial Intelligence (AI)

172(14): 1613–1643. DOI:http://dx.doi.org/10.1016/j.artint.

2007.11.009.

Lozano-Pérez T (1983) Spatial planning: A configuration space

approach. IEEE Transactions on Computers C-32(2): 108–120.

DOI:10.1109/TC.1983.1676196.

Muthukrishnan S and Pandurangan G (2005) The bin-covering

technique for thresholding random geometric graph properties.

In: Proceedings of the Sixteenth Annual ACM-SIAM

Symposium on Discrete Algorithms. ISBN 978-0-898-71585-9,

pp. 989–998.

Otte M and Frazzoli E (2014) RRTX: Real-time motion

planning/replanning for environments with unpredictable

obstacles. In: International Workshop on the Algorithmic

Foundations of Robotics (WAFR). Istanbul, Turkey.

Otte M and Frazzoli E (2016) RRTX: Asymptotically optimal

single-query sampling-based motion planning with quick

replanning. The International Journal of Robotics Research

(IJRR) 35(7): 797–822. DOI:10.1177/0278364915594679.

Penrose M (2003) Random Geometric Graphs, Oxford Studies

in Probability, volume 5. Oxford University Press. ISBN

978-0-198-50626-3.

Prepared using sagej.cls

32 Journal Title XX(X)

Perez A, Karaman S, Shkolnik A, Frazzoli E, Teller S and

Walter MR (2011) Asymptotically-optimal path planning for

manipulation using incremental sampling-based algorithms.

In: Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). pp. 4307–4313. DOI:

10.1109/IROS.2011.6094994.

Persson SM and Sharf I (2014) Sampling-based A* algorithm

for robot path-planning. The International Journal of

Robotics Research (IJRR) 33(13): 1683–1708. DOI:10.1177/

0278364914547786.

Sallaberger CS and D’Eleuterio GM (1995) Optimal robotic path

planning using dynamic programming and randomization.

Acta Astronautica 35(2–3): 143–156. DOI:10.1016/

0094-5765(94)00158-I.

Salzman O and Halperin D (2015) Asymptotically-optimal motion

planning using lower bounds on cost. In: Proceedings of the

IEEE International Conference on Robotics and Automation

(ICRA). pp. 4167–4172. DOI:10.1109/ICRA.2015.7139773.

Salzman O and Halperin D (2016) Asymptotically near-optimal

RRT for fast, high-quality motion planning. IEEE Transactions

on Robotics 32(3): 473–483. DOI:10.1109/TRO.2016.

2539377.

Sánchez G and Latombe JC (2002) On delaying collision checking

in PRM planning: Application to multi-robot coordination.

The International Journal of Robotics Research (IJRR) 21(1):

5–26. DOI:10.1177/027836402320556458.

Srinivasa S, Berenson D, Cakmak M, Collet Romea A, Dogar

M, Dragan A, Knepper RA, Niemueller TD, Strabala K,

Vandeweghe JM and Ziegler J (2012) HERB 2.0: Lessons

learned from developing a mobile manipulator for the home.

Proceedings of the IEEE 100(8): 1–19. DOI:10.1109/JPROC.

2012.2200561.

Şucan IA, Moll M and Kavraki LE (2012) The Open Motion

Planning Library. IEEE Robotics & Automation Magazine

19(4): 72–82. DOI:10.1109/MRA.2012.2205651. Library

available from http://ompl.kavrakilab.org/.

Teniente EH and Andrade-Cetto J (2013) HRA*: Hybrid

randomized path planning for complex 3D environments. In:

Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). pp. 1766–1771. DOI:

10.1109/IROS.2013.6696588.

Urmson C and Simmons R (2003) Approaches for heuristically

biasing RRT growth. In: Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), volume 2. pp. 1178–1183. DOI:10.1109/IROS.2003.

1248805.

Xie C, van den Berg J, Patil S and Abbeel P (2015) Toward

asymptotically optimal motion planning for kinodynamic

systems using a two-point boundary value problem solver.

In: Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). pp. 4187–4194. DOI:

10.1109/ICRA.2015.7139776.

Yershov DS and Frazzoli E (2016) Asymptotically optimal

feedback planning using a numerical Hamilton-Jacobi-

Bellman solver and an adaptive mesh refinement. The

International Journal of Robotics Research (IJRR) 35(5): 565–

584. DOI:10.1177/0278364915602958.

Zucker M, Ratliff N, Dragan AD, Pivtoraiko M, Klingensmith

M, Dellin CM, Bagnell JA and Srinivasa SS (2013) CHOMP:

Covariant Hamiltonian optimization for motion planning. The

International Journal of Robotics Research (IJRR) 32(9–10):

1164–1193. DOI:10.1177/0278364913488805.

Prepared using sagej.cls

http://ompl.kavrakilab.org/

	Introduction
	Relationship to Previous Publications
	Statement of Contributions

	Prior Work Ordering Sampling-based Planners
	The Optimal Path Planning Problem
	A*-based Approaches
	RRT-based Approaches

	Batch Informed Trees (BIT*)
	Notation
	Initialization
	Batch Addition
	Edge Selection
	Edge Processing
	Vertex Expansion
	Graph Pruning
	Practical Considerations

	Analysis
	Modifications and Extensions
	Delayed Rewiring
	Just-in-Time (JIT) Sampling
	Sample Removal
	Sorted RRT* (SORRT*)

	Experiments
	Simulated Planning Problems
	Dual-Enclosure Problems
	Problems with Many Homotopy Classes
	Random Problems

	Path Planning for HERB
	A One-Armed Planning Problem
	A Two-Armed Planning Problem

	Discussion & Conclusion

