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Abstract While assistive robot technology is quickly pro-
gressing, several challenges remain to make this technology
truly usable and useful for humans. One of the aspects that
is particularly important is in defining control protocols that
allow both the human and the robot technology to contribute
to the best of their abilities. In this paper we propose a frame-
work for the collaborative control of a smart wheelchair de-
signed for individuals with mobility impairments. Our ap-
proach is based on a decision-theoretic model of control,
and accepts commands from both the human user and robot
controller. We use a Partially Observable Markov Decision
Process to optimize the collaborative action choice, which
allows the system to take into account uncertainty in the user
intent, in the command and in the environment. The system is
deployed and validated on the SmartWheeler platform, and
experiments with 8 users show the improvement in usability
and navigation efficiency that are achieved with this form of
collaborative control.

Keywords First keyword · Second keyword ·More

1 Introduction

Assistive technologies are essential for the well-being of
many of us. The elderly and disabled communities in partic-
ular stand to benefit from new developments in technology
that can help with activities of daily living, transportation,
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socialization, and management of illness or impairment. Yet
this promise will only be realized if we can develop tech-
nologies that are easy and enjoyable to use.

Fig. 1: The intelligent robot: SmartWheeler

In this line, we have been developing a smart robotic
wheelchair, the SmartWheeler (Figure 1), designed to assist
individuals with mobility disorders with movement through-
out their environment, including home, outdoors, shopping,
etc. The robot is fully equipped with sensors, onboard com-
puting, wifi, and autonomous navigation functionalities. Un-
til now, users could only operate this wheelchair in one of two
control modes: direct teleoperation (human) and full auton-
omy (machine). However, several experiments have shown
that users are not satisfied with either mode of control. For
several users, direct teleoperation can be difficult or impos-
sible due to reduced muscle strength, tremors, perceptual
impairments or cognitive deficits [6, 17]. In contrast, full au-
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tonomy leaves many users feeling a loss of control and in
some case frustration or confusion as to the machine’s in-
tent [11].

Our aim is to enable a middle ground through collabora-
tive control, where the user and autonomy work together to
achieve a goal. We present a decision-theoretic model that in-
corporates two components: Prediction and Assistance. The
Prediction module utilizes both sensor data of the environ-
ment and user inputs to predict the user’s intended goal. The
Assistance module takes in this predicted distribution, and
selects an action to minimize the expected user cost-to-go.
To do so, we utilize a Partially Observable Markov Decision
Process (POMDP) [9], and the model is based on the work of
Javdani et al. [8], which focused on shared autonomy model
for manipulator robots. To handle the particular challenges
of navigation, in particular longer-horizon planning and dy-
namic obstacles, our model is designed to handle multiple
hypotheses about user intent, command given, and environ-
mental events. The proposed collaborative control method
has been deployed onboard a smart wheelchair, and evaluated
in a user study. In particular, we study the impact of the con-
trol model on navigation performance, cognitive workload
and user preferences. Our results show that users had sig-
nificantly less cognitive workload using our method than di-
rect teleoperation, freeing them to focus on other tasks while
safely navigating their environment.

The reminder of this paper is organized as follows: Sec-
tion 2 presents a general description of the SmartWheeler
robot platform and software architecture. Section 3 describes
the proposed collaborative control architecture, including the
Prediction and Assistance modules. Section 4 presents results
of a user study comparing the usability and effectiveness of
the manual, collaborative and autonomous navigation modes.
Section 5 summarizes related work in this area and we finish
with conclusions and ideas for future works.

2 The SmartWheeler robot platform

The SmartWheeler (Figure 1) was designed to provide users
with driving assistance to enhance their mobility and ability
to carry out their activities of daily living. Standard driving
assistance features include driving forward/backward along a
given path, avoiding static and dynamic obstacles, navigating
narrow passageways (doors, corridors), docking near tables.
Until recently, the user was restricted to choosing between
two levels of control: manual mode, in which the user fully
controls the robot without any intervention of the machine,
and autonomous driving mode, where the onboard computer
has full control of the navigation.
The SmartWheeler is built on top of a commercial powered
wheelchair that has been equipped with multimodal com-
munication interfaces including a usb touch-monitor, a mi-
crophone and two joysticks. It has an onboard laptop, wifi

Fig. 2: Rviz Guide User Interface: The user choose a straight
line move

and GPS communication, custom boards (Raspberry Pi, Ar-
duino) and several sensors including: sonars, Hokuyo UHG-
08LX and SICK laser range finders, a 3D camera, a backup
camera, an Inertial Measurement Unit (Gyroscope, Magne-
tometer, Accelerometer), and custom wheel encoders. This
robot is also equipped with high quality customizable seat-
ing and cushion units, to ensure comfortable testing of users
with a variety of health conditions.
The onboard laptop records all sensor and motion data. The
Robot Operating System (ROS) is used to implement and ex-
ecute all navigation functionalities. We also make significant
use of virtual environment simulation of the SmartWheeler
platform with Gazebo. Such simulation work is crucial as a
first step to evaluate the robot in difficult or dangerous sce-
narios without any harm.

A schema of the architecture operating onboard the
SmartWheeler is shown in the Figure 3. As shown, the sys-
tem incorporates data from the sensors into the two main
navigation components. The Simultaneous Localization and
Mapping (SLAM) provides real-time localization and con-
textual information. The Planner autonomously calculates
a path to the goal. The supervisor incorporates messages
from different controllers and sends velocity commands to
the SmartWheeler motors.

To operate the robot in the autonomous driving mode,
we developed a simple user interface through which the user
can choose one of several primitive actions. S/he can select
one action at a time from six choices (left and right in-place
rotation, forward and reverse travel and left and right parallel
parking). When the user selects an action (e.g forward travel)
from the interface, the arrow turns green and a stop option
appears (see Figure 2).

The SmartWheeler navigates autonomously while avoid-
ing obstacles in the environment and stops automatically if
there is no path or when the pilot hits the stop button or
chooses another action. We can also operate the machine
manually without any assistance or autonomy. To do that
the controller applies directly the joystick inputs without any
modification.



A decision-theoretic approach for the collaborative control of a smart wheelchair 3

Laser

Encoders

IMU + GPS

Joystick

Planner

SLAM

Autonomous controller

Collaborative controller

Manual controller

Supervisor Engine

ControllersROS packages
Components

Fig. 3: Global Architecture of the three controllers

3 Modeling the collaborative control

We now outline the theoretical formulation of the semi-
autonomous module’s program. The collaborative control
task is modelled as a Partially Observable Markov Decision
Process (POMDP) with uncertainty over the destination. The
system considers simultaneously the action provided by the
robot, and the input data of the controlling joystick (user
choice), to select an action that minimizes a cost function
incorporating features of both control objectives.
Optimizing the POMDP policy poses some computational
challenges, therefore we opt for an approximation based on
Hindsight Optimization. This is a hybrid approach between
the MDP (Totally Observable Markov Decision Process) and
the POMDP (Partially Observable Markov Decision Pro-
cess) solutions. It generalizes the value function defined over
state in the (MPD) to a value function over beliefs for the
(POMDP). This approach is computationally efficient, with
the same complexity as regular MPD solving. Throughout
our work, we assume that the set of possible goal locations
that the user might want to reach is known. The following Fig-
ure 4 shows the architecture of our collaborative controller.

3.1 Wheelchair Motion Model

The SmartWheeler is a wheeled robot with two
independently-controlled wheels and four casters (front
and rear) for stability. Figure 5 describes the nomenclature
of the kinematics of our model.

The motion model can be described as follows:
ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

We can infer the transition-state of the robot for each couple
of velocity command (v, ω) given by the user. We assume
that this couple is constant due to the short estimation pe-
riod of time. The coordinates in the map frame can be ex-
pressed with the following equations: (x0, y0, θ0) represents

User + SmartWheeler
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POMDP Policy
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POMDP Action

Prediction

Reward Action

Collaboration

Fig. 4: Architecture of the collaborative controller

the present configuration of the machine; (xτ , yτ , θτ ) de-
scribes the transition configuration at time τ in the future. If
the user applies only a translation movement i.e ω = 0,

xτ = x0 + v cos(θ0) τ (1)

yτ = y0 + v sin(θ0) τ (2)

θτ = θ0. (3)

When the robot movement is composed of a translation
and a rotation the transition configuration is computed as
follows:

xτ = x0 +
v

ω
(sin θτ − sin θ0) (4)

yτ = y0 +
v

ω
(cos θ0 − cos θτ ) (5)

θτ = θ0 + ω τ. (6)
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3.2 Goal Prediction

Letx ∈ X be the robot state (position and orientation),a ∈ A
the action (angular and linear velocity), T : X × A → X

the transition function (see 3.1), u ∈ U the user’s data input
via the joystick, and D : U → A the Direct Manual mode
function.
In this model the user optimizes a cost function Cusrg :

X × U → R for each goal g ∈ G. The goal prediction
is defined by the tuple (X,U, T, Cusrg ), which captures our
proposed model of the user choice. We consider a stochastic
policy based on the maximum entropy inverse optimal con-
trol (MaxEnt IOC) [8, 24, 25]. This is slightly different from
the standard Markov Decision Process MDP as we only use
the cost from each input to predict the position of the in-
tended goal and thus do not need to solve the policy decision
completely to get the optimal action from the MDP (see the
architecture in Figure 4). This model summarizes the predic-
tion step of our collaborative control. It is generalizable to
a sequence of states and inputs ξ = {x0, u0, · · · , xT , uT };
for this, we define the cost as the sum of costs over time
Cusrg (ξ) =

∑
t C

usr
g (xt, ut). The rest of the computational

details are provided in a next subsection.
We note that xt+1 ∈ ξ is not necessarily the result of apply-
ing ut to the state xt ∈ ξ. In other words, ξ is not a trajectory,
but rather represents a set of states and inputs over time. In
addition, while the MPD is generally defined with the action
space, in our work, the user’s Direct Manual command di-
rectly links the action space with the user’s inputs space U .
Also, this user policy is used only to predict the intended goal
at each time step.

3.3 POMDP for Collaborative Control

As the system does not know in general which goal the user
wants to reach, the Partially Observable Markov Decision
Process (POMDP) model provides a mechanism to infer a
distribution over possible goals [15, 18]. This offers a gen-
eral framework to make decisions even if the states remains
uncertain and the actions have stochastic effects.

In the prediction phase we compute a probabilistic
distribution over goals, which is then used as an observation
model in the POMDP. Similar decision models were re-
cently used in several assistive algorithms [19, 20, 10, 8, 12].
In our work, we extend the state space X by augmenting
the robot position and orientation with the intended goal g,
s = (x, g) and S = X × G. With this modification, the
transition function is analogous to the previous function but
with a fixed goal T : S×A→ S. The observation model of
the POMDP is defined over the user’s input space U and the
resolution of the prediction policy. We compute π≈t,g(ut|xt)
(user policy) with the user cost function for each goal to get
a stochastic observation.

This model also uses a reward or cost function to evaluate
the action chosen by the robot when the system is in the
s state and the user gives the input u. This is denoted by
Rrobot : S × A × U → R. The fact that this function
depends on the user input can lead to penalization of the
robot final action if it is too different from the Direct Manual
action D(u). This formulation is adapted from [8], which
defines a similar model for the case of a manipulator robot
collaborating with a user. To summarize, our POMDP model
is defined by the full tuple (S,A, T,Rrobot, U,Ω)

3.4 Observation Model of the POMDP

We assume that the human gives commands indicating the
intent to move the robot to a specific goal. As mentioned
above, we can generalize the user policy to a set of inputs
and states ξ. For that, we consider the model of learning a
cost function from demonstration [24], then we finally got the
stochastic expression (8) for a specific goal. Note that the user
policy for a sequence ξ depends only from the user inputs.
Then, with Bayes’s rule we could extract the probability of
a goal given a sequence ξ for a period of time T .

p(ξ|g) ∝ exp(−Cusrg (ξ)) (7)

p(ξ|g) =
∏
t

π≈t,g(ut|xt) (8)

p(g|ξ0→T ) = p(ξ0→T |g)p(g)∑
g′ p(ξ

0→T |g′)p(g′)
(9)

This probability (9) represents then our POMDP observation
model Ω.
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The intelligent system policy, π≈g (x) = p(u|x, g), is
based on the Maximum Entropy Inverse Optimal Control
(MaxEnt IOC) model [8, 24, 25] . In order to determine
the MaxEnt IOC model, we must compute the probability
of the sequence ξ for a known goal. This requires integrat-
ing the exponential expression given in the equation (7) over
all possible trajectories to determine the partition function of
the probabilistic model. Unfortunately, this requires enumer-
ating all the sequence and calculating all the costs for each
step of time, which is computational intractable for all but the
most trivial cases. Instead, we turn to a dynamic programming
solution to determine the Value and Q-value functions. We
adopt the system of Bellman equations described in Ziebart
et al. [25].
Let x

′
be the transition state of the robot after applying a user

command at time t, x
′
= T (x,D(u)). We define the softmin

function as follows :

softmin
u

f(u) = − log

∫
u

exp (−f(x)) dx

These Bellman equations explain how to calculate the value
function V ≈, and Q-value Q≈, dynamically:

Q≈g,t(x, u) = Cusrg (x, u) + V ≈g,t+1(x
′
) (10)

V ≈g,t(x) = softmin
u

Q≈g,t(x, u). (11)

This dynamic programming allows us then to compute the
user policy as follows:

π≈t,g(u|x) = exp(V ≈g,t(x)−Q≈g,t(x, u)). (12)

This equation is in line with Eqns 7 & 8, under the assumption
that the global cost is the sum of all costs over time, where
Eqn 7 specifies that p(ξ|g) =

∏
t exp(−Cusrg (xt, ut), and

from Eqns 10 & 12 we infer Eqn 8.
Many previous works use a similar dynamic programming
approach, with a slight difference in the choice of the opti-
mization function [25]. We opted for a "softer" version of the
MDP in order to get trajectories probabilistically distributed
according to their values, rather than having a single optimal
trajectory for the solution as is the case when using a min or
max function. Let V ≈g,t be expressed as follows:

V ≈g,t(x) = − log

∫
exp

(
−Cusrg (ξt→Tx )

)
,

where the integration is over the full set ξ, starting at time t
from state x.
In the end, we obtain an estimate of the probability defining
the observation model of the POMDP. The resulting proba-
bility is denoted by b and represents the belief function. This
function depends on a single source of uncertainty, namely
the intended destination g, b(g) = p(g|ξ0→T ).

3.5 Decision-Theoretic Model for the Assistance Phase

To get the optimal assistive action for the collaboration,
it is necessary to solve the POMDP. This may be com-
putationally expensive, depending on the complexity of
the policy, especially in continuous spaces. We opt for the
Hindsight Optimization or QMDP which has similar level
of complexity as an MDP solution and has been extensively
used in other robots [8, 23, 18].

Using the observation model defined above, the collabo-
rative action can be computed as follows:

Q(b, a, u) =
∑
g

b(g)Qg(x, a, u) (13)

π(b, u) = argmin
a

Q(b, a, u) (14)

These functions represent the value function Q and the pol-
icy π of the POMDP . When the robot begins to interact
with environment the belief function is updated by solving
the MDP corresponding to the possible robot goals using
dynamic value iteration. The set of possible beliefs are ap-
proximated by stochastic sampling [21, 18].
Next we approximate the value function for a specific goal
Qg(x, a, u) with the POMDP cost function Rrobot(s, a, u),
then running an iteration to compute the POMDP value func-
tion for each goal. This formalism relies on the specification
of the two cost functions. We consider functions based on
angular and linear distances to goal, as described further be-
low.

3.6 Multi-Trajectory Model

In most environments, there may be many safe ways to reach
a specific goal, for example alternative paths, or alternative
ways to get around an obstacle. This choice can introduce
further uncertainty in the collaboration between the human
and the machine. To alleviate this problem, we define inter-
mediate goals, also called targets and denoted by κ, that help
the robot rapidly update and follow the user intention.

Consider the extension of robot and user cost functions,
Cusrκ ,Rrobotκ , for targets, from which we can compute the κ-
value and κ-Qvalue functions for prediction (V ≈κ , Q≈κ ) and
the κ-functions for assistance (cost-to-go Vκ, action-value
Qκ). These last two functions follow the same dynamic pro-
gramming as above but with a hard min function.

Qκ,t(x, a) = Rrobotκ (x, a) + Vκ,t+1(x
′
) (15)

Vκ,t(x) = min
a
Qκ,t(x, a). (16)

We now approximate the action-value function of the
POMDP for each goalQg(x, a, u)using targets. Formally, let
Vκ(x) be the cost-to-go for a specific target. We assume that
the POMDP cost of a state action pair is the cost for the target
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with minimum cost-to-go. We modify the notation of the
robot cost to simplify the equations, so thatRrobot(x, g, a) =
Rrobotg (x, a) The following equations describe the solution
for the assistance step. The details of the demonstration are
given in Appendix A.

Rrobotg (x, a) = Rrobotκ∗ (x, a) , κ∗ = argmin
κ

Vκ(x
′
) (17)

Qg(x, a) = Rrobotκ∗ (x, a) + Vκ∗(x
′
) (18)

Vg(x) = min
κ
Vκ(x) (19)

Regarding the prediction step, it is worth noting that with a
planned trajectory for assisting the user in the avoidance of
dangerous scenarios, we can compute the partial probability
for each target (7) p(ξ|κ) ∝ exp(−Cusrκ (ξ)), then compute
the different value functions by applying a softmin over the
targets of the values distribution.

V ≈g (x) = softmin
κ

V ≈κ (x) (20)

Q≈g (x) = softmin
κ

Q≈κ (x) (21)

This choice is in line with the user policy mentioned before
(see (12)). The proof is based on marginalizing the partial
probability over the user input and over all the targets.

π≈t,g(ut, κ|xt) =
exp(−Cusrκ (xt,ut))

∫
exp(−Cusrκ (ξt+1→T

xt+1
))∑

κ

∫
exp(−Cusrκ (ξt→Txt

))

=
exp(−Cusrκ (xt,ut)) exp(−V ≈κ,t+1(xt+1))∑

κ exp(−V ≈κ,t(xt))

π≈t,g(ut, κ|xt) =
exp(−Q≈κ,t(xt, ut))∑
κ exp(−V ≈κ,t(xt))

Finally we marginalize over the targets κ:

π≈t,g(ut|xt) =
∑
κ exp(−Q≈κ,t(xt, ut))∑
κ exp(−V ≈κ,t(xt))

= exp

(
log

(∑
κ exp(−Q≈κ,t(xt, ut))∑
κ exp(−V ≈κ,t(xt))

))
π≈t,g(ut|xt) = exp

(
softmin

κ
V ≈κ,t(xt)− softmin

κ
Q≈κ,t(xt, ut)

)
.

Throughout our empirical studies, we leverage algo-
rithms for trajectory planning to enable static and dynamic
obstacles avoidance. The trajectory in that case is computed
over the set of targets considered. We primarily used the
1move_base ROS open source package, both for planning
to targets and for autonomous navigation, though other
packages could be substituted.

1 http://wiki.ros.org/move_base

3.7 Cost and Reward Functions

We conclude this section by exploring the choice of cost
function. We primarily consider costs based on linear and
angular distances to targets. As a result, all the value V ≈ and
QvalueQ≈ function are defined for the translation mode and
for the rotation mode. We choose the same model for these
two modes but with different parameters. Also, depending on
how far from the destination point or the final orientation the
robot is, the prediction values vary linearly or quadratically
in relation to the distance.
The user cost function is defined as follows:

Cusrκ (x, u) =

{
c1 if dκ(x, u) > δ ,

c2 + c3 dκ(x, u) if dκ(x, u) 6 δ

where d represents the Euclidean distance between the robot
position (state x) and the goal, or the angular distance be-
tween the orientation of the robot and the desired orientation
of the goal/target depending on the mode. Here c1, c2, c3 and
δ are parameters to specify based on user preferences, needs,
and driving behavior, as well as possibly basedon the robot’s
dynamics.
We further simplified the expression of the prediction func-
tion so it is represented as the integral of the user cost, hence
the definition of both linear and quadratic modes. At each
step, we compute V ≈trans for translation and V ≈rot for the rota-
tion and the global prediction value V ≈ is defined as a linear
combination of these two values.

V ≈ = αV ≈trans + β V ≈rot

For the robot reward we consider the following model:

Rrobotκ (x, u, a) = Cusrκ (x, u) + ‖D(u)− a‖2

So we can penalize the action of the robot if it’s too different
from the Direct Manual command.

3.8 Emergency assistance

Our approach also incorporates velocity assistance when the
robot is near an obstacle. This assistance is triggered when
the virtual footprint of the robot gives a non-zero cost. Using
the transition function, the collaborative controller performs
forward simulation from the robot’s current state in order to
predict what would happen if the given velocity command
was applied for some period of time depending on the actual
velocity (double of the stopping distance) and how the global
cost would change. In those dangerous scenarios, the global
costs increase when the user is approaching an obstacle. We
compute the angular and the linear distance for the collision,
if any, to identify the safest spot where the wheelchair should
stop. Knowing this actual velocity, and the distance needed to
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(a) (b)

Fig. 6: Simulation and visualization on RviZ
These figures show the trajectory that SmartWheeler will follow if the
user gives a constant velocity command. The left figure 6a describes a
potentially dangerous scenario with a composed command. The right
figure 6b describes a circular trajectory without any collision. The
green footprint represents the safest location to stop and the red ones
represent every simulation step.

get the robot stopped, we can determine the new velocity for
the next step and warn the user of an impending danger. To
visualize the simulation of each command, we modeled a 3cm
spaced set of footprints in Ros Visualization (see Figure 6).

4 Experimental Results

We performed several experiments with the real wheelchair
to compare the Collaborative control described above with
a direct Manual (joystick) control mode. The procedure as
outlined below was approved by the Research Ethics Board
at the participating universities.

4.1 The Wheelchair Skills Test

The list of tasks chosen to compare the controllers is extracted
from the WST, version 4.2.1 2, which was developed as part
of the Wheelchair Skills Program (WSP). The effectiveness
of this test procedure to evaluate interface and control for
smart wheelchairs was established in previous work [16]. A
copy of the 10 tasks targeted in the experiments below is
provided in the Appendix B.

4.2 Subjects

We recruited 8 participants (4 male and 4 female) from
the university community. None of them had prior expe-
rience with either the SmartWheeler platform, or with the
Wheelchair Skills Test, to avoid any training bias.

2 http://www.wheelchairskillsprogram.ca/eng/documents/FORM_WST-
P-WCU_4.2.1_approved.pdf

4.3 Experiment Setup

The setup of the experiment is inspired by prior work [3]. It
requires subjects to not only complete the navigation tasks
extracted from the WST, but also to perform some mental
arithmetic. This increases the cognitive load on the subject,
thus giving a richer measure of the efficiency of the collabo-
rative control model.

For each participant, the steps are as follows:

1. The participant begins with answering a two-digit math-
ematical addition quiz for 2 minutes in order to evaluate
individual math proficiency baseline level. The partici-
pant is given 4 possibilities for each equation and 5 sec-
onds to choose an answer. At the end of the quiz, if the
participant has more than 50% of success, s/he continues
the experiment with a two-digits quiz, otherwise the dif-
ficulty level is reduced to a one-digit addition problem
for the rest of the experiment.

2. Training Phase: The participant is asked to guide the robot
around the robotics laboratory (Figure 7) using one of the
two control schemes being tested (Collaborative control
vs Manual Control). Each participant is trained with only
one of the two modes. Randomizing between training
mode allows us to measure the effect of training on the
experimental results.

3. Testing Condition 1: The participant is now asked to do
the WST tasks using the mode that he was trained with,
but this time s/he is also asked to simultaneously answer
the mathematical addition quiz of his/her level (without
chronometer). The participant is instructed to aim to an-
swer as many equations as possible, while ensuring that
the robot does not make contacted with any obstacle.

4. Testing Condition 2: The participant repeats the same
procedure (WST tasks + arithmetic) using the other con-
trol system. If s/he started with the Collaborative mode,
then s/he moves to using the Manual mode, and vice
versa.

Fig. 7: The environment used for the training phase.
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4.4 Data Acquisition and Evaluation Criteria

We consider four main criteria to evaluate the efficiency
of the human-machine interaction: Driving Performance,
Human Performance, Cognitive Workload and Neglect rate.
These criteria and the method of evaluation for each was
inspired by previous work [3, 13, 8].

Driving Task Performance (Tratio) The first criteria mea-
sures the driving performance. It is a time-ratio measure,
calculated as: Tratio =

Toptimal
Tspent

, where the optimal time,
Toptimal is computed assuming the maximum velocity to
travel the full distance for the trajectory of each task.

Secondary Task Performance (Q) The second criteria mea-
sures the numbers of arithmetic questions answered per
minute. This performance term is not used to compare be-
tween two individuals, but rather we compare Q for a given
participate under the two control schemes (manual vs collab-
orative).

Cognitive Workload (H) The task of operating a power
wheelchair (intelligent or not) requires significant concentra-
tion, which can be affected by a disability or by the external
environment, with adverse effect on the driver performance.
The Cognitive Workload criteria characterizes the behavioral
entropy of each participant, as measured by lack of smooth-
ness in the control operation. Following the work of [7], we
use collected data (joystick, sensors, commands) to build a
predictive model of the joystick magnitude and angle at any
given time. Their are several choices for modeling the joy-
stick data; we apply a simple second-order model, whereby
the joystick command at a time t is determined using the
following formula:

Jp,t = Jt−1 + (Jt−1 − Jt−2)

+
1

2
((Jt−1 − Jt−2)− (Jt−2 − Jt−3)) ,

Jp,t =
5

2
Jt−1 − 2Jt−2 +

1

2
Jt−3,

where

J =

[
v

ω

]
.

If the participant gives the same control at times t − 3

through t− 1, the Taylor expansion predicts the same com-
mand at time t.
The error e is then computed as the difference between the
actual command of the joystick J and the prediction one Jp:

et = Jt − Jp,t.

To evaluate the behavior entropy, it is important to deter-
mine a probability mass function to estimate the prediction
error density function p(e). The entropy is defined as follows:

H = −
∑
e∈E

p(e)Log (p(e)) . (22)

We create a normalized histogram from the error values, then
discretize it into 2N +1 unequally spaced bins. For this, we
evaluate the 90 percentile value α of the error distribution
p(−α 6 e 6 α) = 0.9 in order to classify each error into
intervals or bins.

[−∞;−Nα], [−Nα; (−N+1)α], ..., [(N−1)α;Nα], [Nα;∞].

Here α indicates the fundamental steering behavior for
each individual and is used as the reference to measure the
workload when performing different activities at the same
time [13]. Additionally, E = {e−N , e−N+1, ..., eN−1, eN}
represents the prediction error sequence that has been ob-
served. The entropy, Eq.22, is calculated from this distribu-
tion, assuming a log base of 2N + 1.

Neglect Rates (n) This measure captures the percentage of
time that the operator spent doing arithmetic problems. In
order to evaluate the neglect rate, we compute the time spent
solving the addition questions, divided by the total time spent
doing the navigation task:

n =
Tquiz
Tspent

.

Questionnaire In addition to above criteria, we also collected
additional feedback through a short questionnaire. Each par-
ticipant was asked to answer the following questions, for each
method of control, by giving a score from 0 to 5:

1) "I have the total control of the robot"
2) "The robot executed my commands"
3) "I am able to accomplish the WST tasks quickly"
4) "The robot reached the destination goal with precision"
5) "I feel safe while performing tasks"
6) "I prefer this control method"

Finally, participants were given the opportunity to give free-
form comments on the collaborative navigation system, to be
used for further improvement of the system.

4.5 Results

In addition to the measures taken during the user study, the
robot also recorded all sensing and control data throughout
the experiments. We start the analysis of the experiment by
reporting some results based on this data collected through
ROS.
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Table 1: Smoothness of the driving behavior

Collaborative Controller Manual Controller
Participant P1 P2 P1 P2

αlin (m.s−1) 0.1832 0.1480 0.1326 0.1404
αang (rad.s−1) 0.2230 0.1345 0.1494 0.0636

Goal Prediction Accuracy As part of the testing procedure,
we considered four possible navigation goals and asked the
user to guide the robot to one goal at a time. Our collabora-
tive controller tracks the probability of each goal in real-time,
and selects collaborative actions based on available path in-
formation for the inferred goal. Three cases are presented in
the Figure 8. We observe that the system can correctly predict
the goal based on available information. This is meant as a
simple demonstration of the behavior of the system.

Emergency Assistance Next, we look at the behavior of the
emergency assistance module by contrasting the behavior of
two particular participants. Consider the linear commands
given by individuals P1 and P2. We observe (comparing Fig-
ure 9 (a) and (c)) that the first participant seems very confident
when operating with the collision avoidance mode ON: he en-
gages near maximum linear velocity for a significant portion
of time. Both of the participants completed the collaborative
scenario without any collision; P1 experienced a collision
when the collision avoidance module was OFF. This sug-
gests that our module is reliable and helps the user navigate
freely with less effort.

Consider now the overall driving style for P1 and P2
in Table 1. Here α is defined as in Section 4.4 (just below
Equation 22). A lowerα corresponds to smoother control. We
observe that P2 seems to be more efficient and accurate in
his joystick commands. Figure 10 shows the prediction error
histogram for participant P1 used to evaluate the entropy.

User Study All participants successfully completed all the
tasks with the two different control modes. The results for
each participant are presented in Table 2. For most measure-
ments, subjects tended to do better using the collaborative
controller than the manual controller. Behavioral Entropy,
which is correlated with the total input (less command) and
with the neglect rate (more time to do math problem), shows
that all users had better performances in the collaborative
navigation. We did find that the collaborative module re-
sulted in decreasing the global speed in some participants
(lower Tratio), but not all. But the incidence of Collisions
was reduced to zero with collaborative control. The Sec-
ondary Task Performance (number of arithmetic problems
solved) increased for all participants, as did the neglect rate.
Participant G presents a slight exception, with lower Tratio
for the manual mode; this participant slowed down signifi-

cantly after experiencing several collisions at the beginning
of the Manual mode phase of the test.

Figure 11 illustrates the effect of training on the results.
We observe that participants that trained with the Collabo-
rative model require fewer inputs in the experiment with the
Collaborative mode than those who trained with the manual
mode. The number of commands for the Manual mode test-
ing remained similar, regardless of training mode (though
sightly lower for those trained in Manual mode).

Figure 12 presents the results of the questionnaire given
to each participant. We performed a Wilcoxon rank-sum test
on the preference question [8]. The results suggest that the
users perceive the collaborative control module to be safer,
and potentially more precise. As expected, participants felt
they had more control and the robot followed their commands
more under the Manual mode. Participants also noticed the
speed decrease. On average, participants seemed to have a
preference for the Manual mode, primarily on the basis of
the higher speed.

We do observe from the plot on the right side of Figure 12
that those users that had the highest preference for the Col-
laborative control (top right dots) also had larger difference
between their preference for Collaborative vs Manual mode.

Autonomous Navigation with Collaboration Finally, it is
worth pointing out that the Collaborative control module can
work even when the user is not giving any joystick com-
mand which means that in the first mode when the module
does not detect any input of user, no assistance is provided
and the SmartWheeler stops.

To support this new mode, we created a semi-autonomous
controller in which the robot operates primarily in au-
tonomous mode, but the operator can take control at any time
by putting a goal in the map and letting the SmartWheeler
handle the navigation from that point on. For this mode, we
updated some reward values of the module in order to in-
crease the correction of the speed when the user is stopping.

This configuration was evaluated by some of the partici-
pants in a narrow corridor. We asked three subjects to navigate
manually around our laboratory (Figure 7) for 50 meters, put
a goal inside the workshop and then let the robot navigate
by itself to the goal. They could give some commands if the
wheelchair got stuck due to the emergency assistance.
All subjects were able to navigate autonomously in the hall-
way with other people wandering around, no collision was
detected even when the wheelchair passed through the nar-
row door into the laboratory. The mean number of inputs
per minute was 19.97 commands per minute for the three
subjects, which is much lower than the results in Figure 11.
These exploratory results suggest that the collaborative ar-
chitecture described in this paper can serve for a wide range
of different levels of navigation autonomy.



10 Mahmoud Ghorbel et al.

(a) (b) (c)

Fig. 8: Estimation of the observation for the POMDP
The estimated probability of each state goal object (orange cube), during collaborative control. (a) All the goal are accessible from the initial
position (pointing to the spot on the top right), the user is giving a rotation command to the right (clockwise), the value function is changing for all
the goals. The collaborative module is assisting the operator to reach the goal on the top left. (b) We change two of the goals (those on the left) to
new locations with no accessible path, at which point their value functions become indefinite and the robot now assists the user to reach the
nearest goal (at bottom left). (c) All the goals are changed to inaccessible locations, the user can guide the robot freely without any assistance,
only the collision avoidance remains on.

Table 2: Evaluation criteria results. Each result represents an average value over the 10 WST tasks with a specific controller.

Participant Mode A B C D E F G H Ave.

Entropy H%
Manual 58.99 52.12 49.56 51.9 48.45 52.03 51.4 55.19 52.46

Collaborative 48.25 46.02 46.86 46.5 47.37 49.22 49.66 52.1 48.25

Driving Task Performance Tratio
Manual 50.83 50.03 41.24 43.15 45.53 46.82 25.16 25.96 41.09

Collaborative 45.1 35.5 38.01 34.42 44.30 36.02 35.18 25.86 36.8

Collision c Manual 0 2 0 4 0 0 7 5 2.25
Collaborative 0 0 0 0 0 0 0 0 0

Secondary Task Performance Q Manual 14.13 13.29 15.16 11.13 13.15 12.71 8.7 13.41 12.71
Collaborative 20.11 13.97 17.67 12.57 13.19 13.24 11.57 16.21 14.82

Neglect Rate n% Manual 97.2 75.42 93.16 76.67 91.88 85.72 88.04 94.66 87.84
Collaborative 99.46 84.5 97.11 86.61 96.72 98.74 94.44 99.52 94.64

5 Related works

Several other works have investigated the problem of navi-
gation for smart wheelchairs. A few examples are: LURCH,
Sharioto, NavChair and SHARE-it (see [2, 1, 22, 4, 14]).
Most of the algorithms proposed for these systems deal with
very specific navigation scenarios, such as avoiding an obsta-
cle, docking near a table, following a wall, driving through
a door, etc. In many cases, the wheelchair can be controlled
in only one of two modes: direct teleoperation, where the
burden of control is entirely on the user, or full autonomy,
where the robot takes on all required work but the user does
not get to affect how the task is accomplished. Furthermore,
many of the platforms require the user to explicitly select the
control mode using a variety of interfaces (joystick, screen,
buttons) [1]. This can be difficult for some users, due to their
limited mobility and control abilities.

Two main categories of shared control have been ex-
plored. In the first case, the wheelchair chooses a specific
control mode according to a user command. For example,
if the operator is directing the chair towards at an obstacle,
the collision avoidance module will be automatically acti-
vated without asking the user for permission. This approach

may create confusion in some cases between the user and the
wheelchair that can lead to collisions due to lack of commu-
nication between the two entities. The main disadvantage of
this selection approach is that it does not take into account
of the user’s driving behavior. It supposes that every oper-
ator acts and reacts according to a general pattern which is
not true especially for people with different pathologies. The
SHARE-it project proposes an alternative solution whereby
the robot adapts its autonomous commands to the user’s driv-
ing style [2]. To achieve this, the controller must go through a
learning phase involving different scenarios in order to create
a case-base model, tuned to the user’s preferences.

A second class of approaches uses information about the
environment in order to implicitly change the mode of con-
trol. NavChair for example used sensor data to detect the type
of environment and to select an assistance algorithm. How-
ever, this approach does not incorporate information about
the user velocity commands, which can be problematic in
some scenarios. For example, if we imagine a pedestrian (dy-
namic obstacle) moving toward the wheelchair, there is no
way for the subject to communicate whether s/he wishes the
chair to approach this pedestrian (e.g. to engage in conversa-
tion), or if s/he prefers to avoid the pedestrian by activating
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Fig. 9: Linear velocities
The blue graphs represent the velocity commands given by the user via the joystick and the red ones represent the commands sent to the motors,
after mediation by the collaborative controller. We discretized those graphs into several period of times that include all the steps of every scenario
described above.
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Fig. 10: Prediction linear error histograms of participant P1
for both control schemes. A Gaussian distribution is fitted to
the histogram to find the coefficient α.

an obstacle avoidance module. There are many similar sce-
narios, where a subtle exchange of information between the
robot and human can lead to much more fluid navigation
behaviors.

The method we present generalizes the work of Javdani
et al. [8], who present a shared autonomy framework for
robotic manipulators. We adapt their framework based on the
challenges of navigation, including handling longer-horizon
planning and dynamic obstacles, and incorporating multi-
trajectory capabilities. We also modify the space of states,
actions, transitions and rewards to accommodate the naviga-
tion setting.
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Fig. 11: Average of inputs per minute for all trials
On the left side, the number of input per minute for the subjects
(N = 4) who trained with the Manual control mode. On the right
side, the same measure for the subjects (N = 4) who trained with the
Collaborative mode. Here, lower is assumed to be better (i.e. fewer
input commands needed to achieve the same goal.)

6 Discussion and Future Work

This paper presents an approach for the collaborative control
of smart wheelchairs. It uses a decision-theoretic strategy
based on the Partially Observable Markov Decision Process
to predict the intention of the user and assist in navigation,
even in the presence of multiple goals. We performed an
extensive user study to characterise the performance of our
collaborative control module, compared to standard manual
joystick control. The results show that our collaborative con-
trol gives more freedom to the participate to focus on other
tasks and navigate securely.

Despite positive results for several of our metrics, over-
all the subjects still seem to have a mild preference for
the manual control mode. For example, some users showed
a preference for the manual controller when performing
straight forward tasks because they liked having control of
the wheelchair on a such easy task and reducing the speed
for their safety with the collaborative module was not well
accepted. However, when they were performing a backward
tasks, reducing the velocity of the robot was liked by the
users because it gives them an idea about the distance that
separates them from some obstacles. The mild preference for
manual control may be explained by the lack of practice and
the fact that sometimes the policy makes choices that do not
match perfectly the participant behaviour. But it could also
be explained by the fact that the manual mode was faster; pre-
vious results have shown that user preference is correlated to
the timing results [5].

During free-form comments, some participants indicated
that we should give more explanation of how the collabora-
tive module works and provide a method for the robot to ex-

plicitly communicate its policy to the user, especially when
choosing goals or directions that are different from the user’s
command. This finding will lead to interesting new directions
for the further development of the SmartWheeler platform.

The collaborative control strategy presented here for
smart wheelchairs could be adapted to other robot platforms.
However there are several considerations that may arise when
transferring to other robots. First, we assume throughout that
the user commands are provided via a joystick. Second, the
user providing the manual commands has a first-person per-
spective on the environment, which will often not be the case
for other robot platforms. In that case, it will be necessary
to incorporate the difference in information available to each
the robot and human operator. Finally, the type of environ-
ment challenges may be different in other domains. Handling
different environments may require revisiting the definition
of the cost and reward functions used in the collaborative
controller.
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Appendix A: Theorem demonstration

We detail in this paragraph the mathematical proof (by re-
verse induction) of the equation (15, 16):

Proof At the final time T ,

QTg (x, a) = Rrobotg (x, a)

= Rrobotκ∗ (x, a)X

VTg (x) = min
a
QTg (x, a) (dynamic programming)

= min
a
Rrobotg (x, a) (no transition state at T )

= min
a
Rrobotκ∗ (x, a)

> min
κ

min
a
Rrobotκ (x, a)

> min
κ

min
a
QTκ (x, a) (no transition state at T )

VTg (x) > min
κ
VTκ (x) (dynamic programming)

We seek to minimize our cost for the final destination at all
time, so ∀t ∀κVtg(x) 6 Vtκ(x), then Vtg(x) 6 min

κ
Vtκ(x)

Finally

VTg (x) = min
κ
VTκ (x)X

We assume that our equations are true for t,

Qt−1g (x, a) = Rrobotg (x, a) + Vtg(x′) (dynamic programming)

= Rrobotκ∗ (x, a) +min
κ
Vtκ(x′) (Supposition t)

Qt−1g (x, a) = Rrobotκ∗ (x, a) + Vtκ∗(x′) (definition of κ∗)X

Vt−1g (x) = min
a
Qt−1g (x, a) (dynamic programming)

= min
a

(
Rrobotκ∗ (x, a) + Vtκ∗(x′)

)
> min

κ
min
a

(
Rrobotκ (x, a) + Vtκ(x′)

)
> min

κ
min
a
Qt−1κ (x, a) (dynamic programming)

> min
κ
Vt−1κ (x, a) (dynamic programming)

Vt−1g (x) = min
κ
Vt−1κ (x, a) (previous reason)X

Our proof is complete. ut
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Appendix B: Wheelchaire Skills Test

Wheelchair Skills Test (WST) 4.2.1
Power Wheelchair-Wheelchair User
Participant Number :_________________
Tester : _________________
Date : __________
Time start : ______ Time finish : ______

# Individual Skills

S
co

re
(0

-2
)

Comments

1 The user is placed in a huge space, then
he moves in straight line for 10 meters and
avoids pedestrians

2 Move backward for 3 meters with avoiding
pedestrians

3 Go straight then turn 90̊ (Left or right)
4 Turn 90̊ when moving backward
5 Turn 180̊

6 Go through a narrow hallway (1.8 meter
wide)

7 Reach a destination point placed behind a
ramp

8 Reach a destination point placed behind a
big obstacle

9 Park next to a table or a wall (20 cm)
10 Pass through a 1m width door

Additional comments : ___________________________________________
________________________________________________________
________________________________________________________
________________________________________________________
________________________________________________________
________________________________________________________

Scoring options for individual skills

Score What this means
Pass 2 Task independently and safely accomplished without any dif-

ficulty.
Pass with difficulty 1 The evaluation criteria are met, but the subject experienced

some difficulty worthy of note.
Fail 0 Task incomplete or unsafe.
Not possible NP The wheelchair does not have the parts to allow this skill.
Testing error TE Testing of the skill was not sufficiently well observed to pro-

vide a score.
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