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Abstract— A successful robot-assisted feeding system requires
bite acquisition of a wide variety of food items. It must adapt
to changing user food preferences under uncertain visual and
physical environments. Different food items in different environ-
mental conditions require different manipulation strategies for
successful bite acquisition. Therefore, a key challenge is how to
handle previously unseen food items with very different success
rate distributions over strategy. Combining low-level controllers
and planners into discrete action trajectories, we show that the
problem can be represented using a linear contextual bandit
setting. We construct a simulated environment using a doubly
robust loss estimate from previously seen food items, which we
use to tune the parameters of off-the-shelf contextual bandit
algorithms. Finally, we demonstrate empirically on a robot-
assisted feeding system that, even starting with a model trained
on thousands of skewering attempts on dissimilar previously
seen food items, ǫ-greedy and LinUCB algorithms can quickly
converge to the most successful manipulation strategy.

I. INTRODUCTION

Eating is an activity of daily living that many of us take

for granted. However, according to a U.S. study in 2010, ap-

proximately 1.0 million people need assistance to eat [1]. The

ability to self feed would not only save time for caregivers,

but it would also increase a person’s sense of self worth [2,3].

Available commercial feeding systems [4,5] have minimal

autonomy and require preprogrammed movements, making

it difficult for them to adapt to environmental changes. In

general, a robust feeding system must be able to acquire a

bite of food in an uncertain environment (“bite acquisition”)

and transfer it safely to a potentially unpredictable user (“bite

transfer”). Both are difficult and important problems, but this

work focuses only on bite acquisition, and specifically the

acquisition of food items that the robot may not have seen

or manipulated before.

Different food items require different manipulation strate-

gies for bite acquisition [6]. While recent work has achieved

some successes in developing strategies that can acquire a

variety of food items [7,8], it is unclear which strategy works

best for previously unseen food. Even food items that look

similar, such as ripe and un-ripe banana slices, can have very

different consistencies, leading to different bite acquisition

strategies. Our key insight is that we can leverage high-level

successful bite acquisition strategies derived from human

user studies [6] and an existing model batch-trained on a
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Fig. 1. When faced with new foods, a robot-assisted feeding system
must decide between a variety of bite acquisition strategies. In our system,
each strategy is parameterized by a fork pitch (left: tilted-angle “TA”,
vertical “VS”, or tilted-vertical “TV”) and fork roll angle (right: parallel or
perpendicular). Our contextual bandit online learning framework learns from
limited feedback (success or failure) after attempting each bite acquisition
strategy, which itself depends on perception, planning, and low-level control.

set of food items to suggest strategy success probabilities

[7] to perform online learning.

We believe that exploring online learning bite acquisition

can lead to manipulation strategies that better generalize to

previously unseen food items. This is due to (a) the covariate

shift from the training data set, (b) the diversity of food

categories, and (c) the expensive process of collecting data

on a physical robot. Factors that may contribute to covariate

shift include changing lighting conditions, backgrounds, and

not knowing the distribution of food items a priori. An online

learning scheme lets the system leverage data collected in

real-world conditions and adapt to each user’s specific palate.

Importantly, each individual strategy returns only partial

(or bandit) feedback. In other words, when our system takes

an action to acquire a food item, it can see only whether it

has failed or succeeded with that action. It is not privy to

the counterfactual loss of other actions. Additionally, visual

features provide context for each food item. Therefore, the

problem naturally fits into the well-studied contextual bandit

setting.

In this work, we propose a contextual bandit framework

for this problem setting. We present multiple algorithms

based on the contextual bandit literature that could pro-

vide potential solutions. Our major contributions are (1) a

framework, including a featurizer, simulated hyper-parameter

tuner, and integrated off-the-shelf ǫ-greedy [9] and LinUCB

[10] algorithms, and (2) empirical evidence of the frame-

work’s efficacy in real robot bite acquisition experiments.

Our initial action space of 3 fork roll angles (tilted-angled
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Fig. 2. Generalization results for SPANet on select food items using
data from [7] and the unbiased estimator described in Section IV-A. When
excluded from the training set, each item performs worse, with banana in
particular performing significantly worse even than random (p < 0.05).

(TA), vertical (VS), and tilted-vertical (TV), as shown in

Figure 1) × 2 fork pitch angles currently limit us to discrete,

solid food items, but future work can examine a richer action

space to tackle bite acquisition on even more varied food

items and realistic plates.

II. RELATED WORK

A. Robot-Assisted Feeding: Food Manipulation

Food manipulation has been studied in various environ-

ments, such as the packaging industry [11–16], with focus

on the design of application-specific grippers for robust

sorting and pick-and-place, as well as showing the need

for visual sensing for quality control [17–19] and haptic

sensing for grasping deformable food items without dam-

aging them [11–16]. Research labs have also explored meal

preparation [20,21] as an exemplar multi-step manipulation

problem, baking cookies [22], making pancakes [23], sep-

arating Oreos [24], and preparing meals [25] with robots.

Most of these studies either interacted with a specific food

item with a fixed manipulation strategy [22,23] or used a set

of food items for meal preparation that required a different

set of manipulation strategies [25].

Existing autonomous robot-assisted feeding

systems [7,8,26,27] can acquire a fixed set of food

items and feed people, but it is not clear whether these

systems can adapt to very different food items that require

completely different strategies. Feng et al. [7] developed

the Skewering Position Action Network (SPANet) and show

generalization to previously unseen food items, but only for

those with similar bite acquisition strategies. The universe

of food items is massive; thus, it is almost impossible to

train these systems on every kind of food items available.

Even if we could, a static model is still vulnerable to the

covariate shift (see Section I). Our paper addresses this gap

in the food manipulation literature by developing methods

that can generalize to previously unseen food items with

very different action distributions. We propose to use an

online learning framework in a contextual bandit setting for

food manipulation.
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Fig. 3. SPANet out-of-class success rate using data from [7], given different
amounts of data and food classes included in the training data set. Each
black line represents a single food item excluded from the training set.
The red line represents the performance averaged across all food items.
The amount of out-of-class training data has already reached the point of
diminishing returns at best. For very different food items (like banana), extra
data actually reduces performance, likely due to over-fitting on the fixed set
of food classes.

B. Online Learning

Bandit algorithms have seen widespread success in online

advertising [28,29], health interventions [30,31], clinical

trials [32], adaptive routing [33], education [34], music

recommendations [35], financial portfolio design [36], and

any application requiring a more optimized version of A/B

testing. Adoption in robotics has been more limited, e.g., to

selecting trajectories for object rearrangement planning [37],

kicking strategies in robotic soccer [38], and, perhaps most

closely related, selecting among deformable object models

for acquisition tasks [39]. Unlike previous work, we argue

that it is untenable to construct deformable object models

for every food item, as conventional grocery stores typically

stock in excess of 40,000 products [40]. Instead, we take

a model-free approach that operates directly on the image

context space.

No-regret algorithms for solving bandit problems include

UCB [41] and EXP3 [42] for stochastic and adversarial

reward distributions, respectively. They were also extended

to the bandits-with-expert-advice setting (a generalization

of the contextual bandit problem for small policy classes)

with EXP4 [42]. Baseline methods for the contextual bandit

problem include epoch-greedy [43] and greedy [44], both of

which are simple to implement and perform well in practice,

although they do not achieve optimal regret guarantees. More

recent advances include LinUCB [45], RegCB [46] and

Online Cover [47], a computationally efficient approximation

to an algorithm that achieves optimal regret. For a recent and



Fig. 4. Online learning framework. SPANet is trained on previously seen food items, and then all but the last layer is frozen as a featurizer. The final
linear layer becomes the “linear map” that we update after each subsequent attempt. The result is the estimated success rate of each action on the given
food item, which we use to select a single action to attempt before updating the linear map.

thorough overview, we refer the interested reader to [9,48].

C. Insights from Previous Work

As noted previously, even when we control for covariate

shift in a laboratory setting and switch to an unbiased success

rate estimate (see Figure 2), SPANet is unable to generalize

to some previously unseen food categories (specifically, kiwi

and banana). We hypothesize that this lack of generalizability

is due partly to the high diversity of actions for these food

categories. For example, the most successful fork pitch for

kiwi and banana was TA, which differs significantly from the

successful actions for the rest of the food item data set. To

determine whether collecting additional training data would

solve this problem, we controlled for both the number of pre-

viously seen food classes and the total number of previously

seen training examples. The results, shown in Figure 3, do

not noticeably improve out-of-class performance. An online

learning approach lets training continue indefinitely, bringing

out-of-class food items into the effective training set. It

also amortizes the potentially time-consuming process of

data collection (SPANet’s data set, for example, required

approximately 81 hours of supervision) over the useful life

of the system.

III. ONLINE LEARNING WITH CONTEXTUAL

BANDITS

A. Formulation

A general contextual bandit algorithm consists of two

parts: (1) an exploration strategy determines which action to

take at each time step given the context and some policy, and

(2) a learner incorporates the bandit feedback received each

time step into the policy. Algorithm 1 presents this structure

as it applies in the environment with SPANet features.

At each round t = 1, . . . , T , the interaction protocol

consists of

1) Context observation. The user selects a food item to

acquire (in this work, we use RetinaNet [49] to detect

objects). We observe an RGBD image containing the

single food item. We pass this through SPANet (Sec-

tion II-A) and use the penultimate layer as the context

features xt ∈ R
d. The RGBD image is also used to

localize the object for execution of the action.

2) Action selection. The algorithm selects one manipula-

tion strategy at ∈ A = {1, 2, . . . ,K}. In our initial

implementation, K = 6, with 3 pitch angles (VS, TV,

TA) and 2 roll angles (parallel and perpendicular to the

food), as shown in Figure 1. The robot always skewers

the center of the food item.

3) Partial loss observation. The environment provides

a binary loss ct(at, xt) ∈ {0, 1}, where ct = 0
corresponds to the robot successfully acquiring the

single desired food item.

Figure 4 presents a flow diagram of this protocol and its

components.

The algorithm itself consists of a stochastic policy π(xt) =
P(at = a|xt), and the goal is to minimize the cumulative

regret of this policy. In other words, we wish to minimize

RT , which is the difference in performance between our

policy π and the best possible policy π∗ ∈ Π for the lifetime

of our program T . With ct ∈ C, xt ∈ X , at ∈ A at time t,

we have

RT :=

T∑

t=1

ct(π(φ(xt)))−

T∑

t=1

ct(π
∗(φ(xt))). (1)

In cases where we compare algorithms with different sets

Π, such as when tuning on dimension d as a hyper-parameter,

we instead try to minimize cumulative loss, the first term of

RT .

B. Learning: Importance-Weighted Linear Regression

The learning portion of a contextual bandit algorithm

operates by first using past observations to estimate the cost

of all actions for a given context. This reduces the problem

to off-policy supervised learning. Since the contextual bandit

literature tends to focus on exploration strategy, the sub-

algorithm that performs the underlying full-feedback classifi-

cation or regression is referred to as an oracle. All algorithms

we define here use an importance-weighted linear regression

oracle.

For our feature extractor, we use the activation of the

penultimate layer in SPANet and fine tune the final layer in



Algorithm 1: General Contextual Bandit with

SPANet Features

Input: Trained SPANet φ, Environment E

Initialize Context x ∈ X ∼ E

for t = 1, . . . , T do
Find features φ(x)
pt ← explore(φ(x))
Select action at ∼ pt
Receive ct ∼ E|at
learn(φ(x), at, ct, pt)
if ct = 0 then

Re-sample context x ∼ E

end

end

Algorithm 2: Importance-Weighted Regression Ora-

cle

Input: Regularization parameter λ, d (features)

Initialize π0: ∀a ∈ A: Aa ← λId×d; ba ← 0
Function learn(π, φ(x), at, ct, pt(at)):

(A, b)← π

Aat
← Aat

+ 1

pt

φφT

bat
← bat

+ ct
pt

φ

θ̂at
← A

−1

at
bat

π′ ← (θ̂,A, b)
return

an online fashion. Thus, justified by the success of SPANet,

we assume a linear map from the R
d features to the expected

cost of each action: E[ct|at, xt] = θTat
φ(xt). In this case, the

regression oracle computes a weighted least-squares estimate

θ̂ :=

T∑

t=0

1

pt(at)

(
θTat

φ(xt)− ct(at)
)2

. (2)

Similarly to inverse propensity-scoring [47], the weight

pt(at)
−1 ensures that this returns an unbiased estimate of

the underlying true weights θ∗. An implementation of this

oracle is shown in Algorithm 2. The policy associated with

a given weight estimate θ̂ is the greedy policy: πθ(x) =
argmina θ

T
a φ(x).

C. Exploration Strategy: ǫ-greedy

One of the simplest approaches to exploration is the ǫ-

greedy algorithm, shown in Algorithm 3. This algorithm opts

for the optimal action based on previous observations with

probability (1 − ǫ) and explores all actions uniformly with

probability ǫ. We consider both purely greedy (ǫ = 0) and

exploratory (ǫ > 0) variants.

With arbitrary contexts, the ǫ-greedy algorithm (with op-

timized ǫ) has a cumulative regret bound RT ∼ O(T 2/3),
though it can perform well empirically [9]. Repeated contexts

on failure also enables a better regret bound since taking

multiple actions can provide effectively better-than-bandit

feedback for a given context.

Algorithm 3: ǫ-greedy

Input: Exploration parameter ǫ ∈ [0, 1)
Function explore(φ(x)):

pt(a)←
ǫ
K + (1− ǫ)1{πt(φ(x))}

return

Algorithm 4: LinUCB

Input: Width parameter α

Function explore(φ(x)):

for a ∈ A do

ucba ← θTa φ(x) + α

√
φ(x)TA−1

a φ(x) [10]

end

return

D. Exploration Strategy: LinUCB

The other algorithm we use is Linear Upper Confidence

bound (LinUCB), presented in Algorithm 4. We justify the

use of LinUCB [50] due to the linear form of the ultimate

SPANet layer (as justified in Section III-B). Unlike ǫ-greedy,

the regret bound for LinUCB holds even if an adversary

were choosing the worst-case contexts to show. Therefore,

LinUCB can in theory be robust against covariate shift,

allowing it to potentially be very competitive in this setting.

At each time step, we choose the action that maximizes

the reward UCB (or, equivalently, loss LCB). This implicitly

encourages exploration. In a choice between two actions with

similar expected costs, the algorithm opts for the one with

higher variance. With arbitrary contexts, LinUCB has a cu-

mulative regret bound RT ∼ O(T 1/2), an improvement over

ǫ-greedy in the worst case. Like ǫ-greedy, seeing repeated

contexts on failure may improve this bound.

IV. EXPERIMENTS

A. Tuning in Simulation

In addition to the normal hyper-parameters associated

with linear regression (dimension d and L2 regularization

parameter λ), each algorithm has its own exploration hyper-

parameter. We tune these by constructing a simulated training

environment using the data from [7]. Specifically, we exclude

from SPANet three food items with very different success

rate distributions over strategies. Banana slices are very

sensitive to fork pitch, with TA performing the best by a

wide margin because it prevents the slice from slipping off

the fork. Grapes are, in general, very difficult to pick up, with

the best strategy still dependent on biases in perception and

planning. Apple slices are, in general, very easy to acquire,

with some sensitivity to fork roll angle due to their length.

Based on [7], VS, perpendicular roll angle, is likely the best

strategy by a slight margin.

Since this data, by necessity, was collected with bandit

feedback, the original work imputed the full loss vector of

each context by averaging the success rate of a given action

across all food items of the same type. While simple, this
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Fig. 6. Results of Experiment 1 (Left) using the Autonomous Dexterous Arm (ADA) (Right). SPANet was trained on 12 food types – excluding apples,

bananas, and grapes – 3 types of food with significantly different success rate distributions over strategy. Initialized to θ0 = ~0, the robot cycled 20 times
through all 3 food types. For each algorithm, the vertical line represents the point after which 100% of the strategies selected were among the best strategies
for the food item observed. Greedy is competitive since no pre-training weighs it down (as in Experiment 2), and ǫ-greedy can still choose a poor strategy
after convergence. Regardless, all algorithms converge within ∼ 10 failures per food item.

can introduce a herding bias into the simulation relative to

the real world. We eliminate bias in our data set using a

doubly robust [51] estimator

l̂DR(xi, a) = l̂a + (li − l̂a)
1(ai = a)

p(ai|xi)
, (3)

where l̂a is the imputed value from herding, p(ai|xi) is the

probability that we took action ai during data collection

( 1
6

in our case since data was collected uniformly across

all actions), and li is the actual binary loss associated with

that sample (only available for ai). This estimator eliminates

bias (i.e., E[l̂DR] = l) from our imputed values at the cost

of added variance. For each set of hyper-parameters, π∗ is

determined by performing full-feedback least-squares linear

regression on all previously unseen food items to estimate

θ∗.

First, we tuned the linear regression parameters d and λ.

Using the original SPANet feature space of R2048, we found

that we needed significant regularization (large λ) to see any

results on our limited data set. However, while reducing our

feature-space dimension d could in theory improve our regret

bounds (e.g., LinUCB’s RT ∼ O(d)), it empirically reduced

our best possible (π∗) performance. This exposed us to a two-

dimensional trade-off of bias vs. variance and performance

vs. data efficiency. For d, the hit to π∗ outweighs any

improvements in regret. For λ, while 100 and 1000 produced

similar π∗ performance (as shown in Figure 5a), λ = 100
performed better on greedy cumulative loss.

Figure 5b,c show the results of tuning the exploration

parameters ǫ and α. Note that a greater loss is expected

since the doubly robust losses have a higher variance than

reality. Stochastic ǫ-greedy showed a clear local minimum at

ǫ = 0.1. Meanwhile, LinUCB demonstrated more consistent

competitive performance across multiple orders of magnitude

for α. We selected α = 0.01, which reached a slight

minimum loss, for the real robot experiments.

B. Real Robot Experiments

a) System description.: Our setup, the Autonomous

Dexterous Arm (ADA) (Figure 6, left), consists of a 6 DoF

JACO robotic arm [52]. The arm has 2 fingers that grab an

instrumented fork (forque) using a custom-built, 3D-printed

fork holder. The system uses visual and haptic modalities to

perform the feeding task. For haptic input, we instrumented

the forque with a 6-axis ATI Nano25 Force-Torque sensor

[53]. We use haptic sensing to control the end effector forces

during skewering. Specifically, force thresholds are used as

hard-coded transition cues between motion primitives. For

visual input, we mounted a custom built wireless perception

unit on the robot’s wrist; the unit includes the Intel RealSense

D415 RGBD camera and the NVidia Jetson Nano for wire-

less transmission. Food is placed on a plate mounted on an

anti-slip mat commonly found in assisted living facilities.

b) General procedure.: For each attempt, we place a

single food item in the center of the plate. ADA positions

itself vertically above the plate and performs object detection

and featurization using a checkpoint of SPANet that was

trained with some food items excluded. Importantly, the

identity of the food items, while used for object detection,

was never made available to the contextual bandit algorithm.

After performing the requested action, the binary loss is

recorded manually, and the learning algorithm is updated. To
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mimic a realistic feeding setting, we removed and replaced

the food item only after a successful acquisition.

We define a bite acquisition attempt as a success (ct = 0)
if the target food item, either the whole piece or a cut portion,

remains on the fork for 5 seconds after removal from the

plate. If the target food item is skewered with at least 2 out

of 4 tines but the fork fails to pick it up or the food falls off

soon after lift-off, the attempt is deemed a failure (ct = 1).
If less than 2 out of 4 tines touch a food item due to system-

level errors (e.g., perception or planning), we discard the

attempt completely.

c) Experiment 1.: This experiment tests whether the

features generated by SPANet trained without previously

unseen food items are rich enough for the contextual bandit

algorithm to find the best strategy for multiple food items.

We cycle through 3 food items (apple, banana, then grape)

20 times, leading to 60 total attempts. We choose these items

for the same reason as the simulation: they are representative

of the majority of our food data set.

d) Experiment 2.: This experiment tests whether the

contextual bandit algorithms can adapt to new food items

when given a θ that has already been trained on many

previously seen dissimilar food items from the doubly robust

simulated environment. Unlike Experiment 1, we test on only

one food item at a time, so the set of dissimilar food items is

of a non-negligible size. For banana slices, θ was trained on

all ∼ 8000 attempts on all 15 non-banana food items because

it is the only food item sensitive to fork pitch, where TA is

the best strategy. For carrots, which are very sensitive to

fork roll (i.e., VS and TV, perpendicular roll angle, are the

likely best strategies by a wide margin), θ was trained on

∼ 3000 attempts, which excluded other food items sensitive

to fork roll, such as apples, bell peppers, and celery. For

each food item, we conducted 20 attempts, followed by 5

attempts with a previously seen food item (grape and banana,

respectively), followed by another 5 attempts of the test food

item, to ensure that π did not forget previously seen food

items after adapting to a new one.

V. RESULTS

Figure 6 (right) summarizes the results of Experiment 1.

All algorithms suffered a cumulative loss between 10 and

15. The key takeaway is that all algorithms converged to the

best strategy set within ∼ 10 failures per new food item,

after which the best strategy (or a strategy within the best

set of strategies) was chosen 100% of the time for each food

item. The only subsequent errors were due to uncertainties in

perception and planning. Interestingly, greedy had the highest

performance using this metric, though, unlike Experiment 2,

it was not weighed down by pretraining in θ, and greedy

is often empirically competitive in contextual bandit settings

[9]. These results suggest that the SPANet features are indeed

rich enough for contextual bandit algorithms to learn the

best strategy for multiple representative food items simulta-

neously.



Figure 7 summarizes the results of Experiment 2. LinUCB

exhibited superior cumulative loss performance for both food

items, and greedy exhibited particularly poor performance.

ǫ-greedy produced higher-variance results, spanning from the

best performance of greedy to the worst performance of

LinUCB. The inverse of Experiment 1, this is probably due

to the weight of the pretrained θ forcing greedy to try pre-

viously good strategies before exploring new ones. LinUCB

could capitalize on the uncertainty introduced by seeing a

significantly different context. Figure 8 shows how LinUCB’s

upper confidence bound estimates changed over time as it

adapted to bananas. Regardless, its consistent performance

on the previously seen food item did demonstrate that the

contextual bandit algorithm could adapt to new information

without forgetting the best strategies for previously seen food

items.

In general, it is difficult to map an online learning metric

like regret to a static metric like acquisition success rate. That

said, as regret approaches 0, we expect that our framework

will approach the success rate of the fully trained SPANet,

cited in [7] as approximately 75%. Both experiments suggest

that this convergence could happen within 10 attempts, even

if the previously unseen food requires a completely new

acquisition strategy.

VI. DISCUSSION

One key takeaway from these results is that LinUCB is

empirically robust across a range of hyper-parameters and

initial conditions. A fluke early failure will not sink a high-

expectation action since the increasing variance dampens

the decreasing expectation. Robustness is vital for a robotic

feeding system: users, especially those with some mobility,

may not tolerate too many errors in an autonomous system

they use daily [54]. While the number of failures seen here

may not be acceptable for a single meal, both experiments

suggest that this is a 1-time cost that can be amortized over

the life of the feeding system.

In future work, we intend to broaden our scope to multiple

food items by considering the entire plate of food items

as a single compound state, or just switching food items

if the expected success rate of all actions falls below some

threshold.

Beyond using RGBD context features, our robot has

access to other modalities, including haptic feedback. Non-

destructive probing can provide us a richer context, especially

if we need to differentiate between similar-looking food

items with different material properties (say, because one

is cooked or ripe). Other groups have found success using a

vibration-detecting audio modality [55] as well.

Finally, we investigated only discrete, solid food items.

To generalize to a realistic average plate with continuous

and mixed foods, we will need to expand to a richer action

space. Since adding more action parameters (e.g. yaw, where

on the food item to skewer, skewering force) will increase

the size of the action space at a combinatorial rate, we could

leverage similarities between actions by modeling each one

as a coupled slate of actions [56].

Overall, these results suggest that a contextual bandit

approach with discrete, dissimilar actions offers a promising

route to data-efficient adaptive bite acquisition.
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