
Recurrent Predictive State Policy Networks

Ahmed Hefny * 1 Zita Marinho * 2 3 Wen Sun 2 Siddhartha S. Srinivasa 4 Geoffrey Gordon 1

Abstract

We introduce Recurrent Predictive State Policy
(RPSP) networks, a recurrent architecture that
brings insights from predictive state representa-
tions to reinforcement learning in partially ob-
servable environments. Predictive state policy
networks consist of a recursive filter, which keeps
track of a belief about the state of the environment,
and a reactive policy that directly maps beliefs
to actions. The recursive filter leverages predic-
tive state representations (PSRs) (Rosencrantz &
Gordon, 2004; Sun et al., 2016) by modeling pre-
dictive state — a prediction of the distribution
of future observations conditioned on history and
future actions. This representation gives rise to
a rich class of statistically consistent algorithms
(Hefny et al., 2018) to initialize the recursive fil-
ter. Predictive state serves as an equivalent repre-
sentation of a belief state. Therefore, the policy
component of the RPSP-network can be purely
reactive, simplifying training while still allowing
optimal behaviour. We optimize our policy us-
ing a combination of policy gradient based on
rewards (Williams, 1992) and gradient descent
based on prediction error of the recursive filter.
We show the efficacy of RPSP-networks under
partial observability on a set of robotic control
tasks from OpenAI Gym. We empirically show
that RPSP-networks perform well compared with
memory-preserving networks such as GRUs, as
well as finite memory models, being the overall
best performing method.

*Equal contribution 1Machine Learning Department, Carnegie
Mellon University, Pittsburgh, USA 2Robotics Institute, Carnegie
Mellon University, Pittsburgh, USA 3ISR/IT, Instituto Superior
Técnico, Lisbon, Portugal 4Paul G. Allen School of Computer
Science & Engineering, University of Washington, Seattle, USA.
Correspondence to: Ahmed Hefny <ahefny@cs.cmu.edu>, Zita
Marinho <zmarinho@cmu.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1. Introduction
Recently, there has been significant progress in deep rein-
forcement learning (Bojarski et al., 2016; Schulman et al.,
2015; Mnih et al., 2013; Silver et al., 2016). Deep reinforce-
ment learning combines deep networks as a representation
of the policy with reinforcement learning algorithms and
enables end-to-end training.

While traditional applications of deep learning rely on stan-
dard architectures with sigmoid or ReLU activations, there
is an emerging trend of using composite architectures that
contain parts explicitly resembling other algorithms such
as Kalman filtering (Haarnoja et al., 2016) and value iter-
ation (Tamar et al., 2016). It has been shown that such
architectures can outperform standard neural networks.

In this work, we focus on partially observable environments,
where the agent does not have full access to the state of the
environment, but only to partial observations thereof. The
agent has to maintain instead a distribution over states, i.e.,
a belief state, based on the entire history of observations
and actions. The standard approach to this problem is to
employ recurrent architectures such as Long-Short-Term-
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and
Gated Recurrent Units (GRU) (Cho et al., 2014). Despite
their success (Hausknecht & Stone, 2015), these methods
are difficult to train due to non-convexity, and their hidden
states lack a predefined statistical meaning.

Models based on predictive state representations (Littman
et al., 2001; Singh et al., 2004; Rosencrantz & Gordon, 2004;
Boots et al., 2013) offer an alternative method to construct
a surrogate for belief state in a partially observable envi-
ronment. These models represent state as the expectation
of sufficient statistics of future observations, conditioned
on history and future actions. Predictive state models ad-
mit efficient learning algorithms with theoretical guarantees.
Moreover, the successive application of the predictive state
update procedure (i.e., filtering equations) results in a recur-
sive computation graph that is differentiable with respect to
model parameters. Therefore, we can treat predictive state
models as recurrent networks and apply backpropagation
through time (BPTT) (Hefny et al., 2018; Downey et al.,
2017) to optimize model parameters. We use this insight to
construct a Recurrent Predictive State Policy (RPSP) net-
work, a special recurrent architecture that consists of (1) a

Recurrent Predictive State Policy Networks

predictive state model acting as a recursive filter to keep
track of a predictive state, and (2) a feed-forward neural
network that directly maps predictive states to actions. This
configuration results in a recurrent policy, where the recur-
rent part is implemented by a PSR instead of an LSTM or a
GRU. As predictive states are a sufficient summary of the
history of observations and actions, the reactive policy will
have rich enough information to make its decisions, as if
it had access to a true belief state. There are a number of
motivations for this architecture:

• Using a PSR means we can benefit from methods in
the spectral learning literature to provide an efficient
and statistically consistent initialization of a core com-
ponent of the policy.

• Predictive states have a well defined probabilistic inter-
pretation as conditional distribution of observed quan-
tities. This can be utilized for optimization.

• The recursive filter in RPSP-networks is fully differ-
entiable, meaning that once a good initialization is
obtained from spectral learning methods, we can refine
RPSP-nets using gradient descent.

This network can be trained end-to-end, for example using
policy gradients in a reinforcement learning setting (Sutton
et al., 2001) or supervised learning in an imitation learning
setting (Ross et al., 2011). In this work we focus on the
former. We discuss the predictive state model component
in §3. The control component is presented in §4 and the
learning algorithm is presented in §5. In §6 we describe the
experimental setup and results on control tasks: we evaluate
the performance of reinforcement learning using predic-
tive state policy networks in multiple partially observable
environments with continuous observations and actions.

2. Background and Related Work
Throughout the rest of the paper, we will define vectors
in bold notation v, matrices in capital letters W . We will
use ⊗ to denote vectorized outer product: x ⊗ y is xy>

reshaped into a vector.

We assume an agent is interacting with the environment
in episodes, where each episode consists of T time steps
in each of which the agent takes an action at ∈ A, and
observes an observation ot ∈ O and a reward rt ∈ R. The
agent chooses actions based on a stochastic policy πθ param-
eterized by a parameter vector θ: πθ(at | o1:t−1,a1:t−1) ≡
p(at | o1:t−1,a1:t−1,θ). We would like to improve the
policy rewards by optimizing θ based on the agent’s expe-
rience in order to maximize the expected long term reward
J(πθ) = 1

T

∑T
t=1 E

[
γt−1rt | πθ

]
, where γ ∈ [0, 1] is a

discount factor.

There are two major approaches for model-free reinforce-
ment learning. The first is the value function-based ap-
proach, where we seek to learn a function (e.g., a deep net-
work (Mnih et al., 2013)) to evaluate the value of each action
at each state (a.k.a. Q-value) under the optimal policy (Sut-
ton & Barto, 1998). Given the Q function the agent can act
greedily based on estimated values. The second approach
is direct policy optimization, where we learn a function to
directly predict optimal actions (or optimal action distribu-
tions). This function is optimized to maximize J(θ) using
policy gradient methods (Schulman et al., 2015; Duan et al.,
2016) or derivative-free methods (Szita & Lrincz, 2006).
We focus on the direct policy optimization approach as it is
more robust to noisy continuous environments and modeling
uncertainty (Sutton et al., 2001; Wierstra et al., 2010).

Our aim is to provide a new class of policy functions that
combines recurrent reinforcement learning with recent ad-
vances in modeling partially observable environments using
predictive state representations (PSRs). There have been
previous attempts to combine predictive state models with
policy learning. Boots et al. (2011) proposed a method for
planning in partially observable environments. The method
first learns a PSR from a set of trajectories collected using an
explorative blind policy. The predictive states estimated by
the PSR are then considered as states in a fully observable
Markov Decision Process. A value function is learned on
these states using least squares temporal difference (Boots &
Gordon, 2010) or point-based value iteration (PBVI) (Boots
et al., 2011). The main disadvantage of these approaches
is that it assumes a one-time initialization of the PSR and
does not propose a mechanism to update the model based
on subsequent experience.

Hamilton et al. (2014) proposed an iterative method to si-
multaneously learn a PSR and use the predictive states to
fit a Q-function. Azizzadenesheli et al. (2016) proposed a
tensor decomposition method to estimate the parameters
of a discrete partially observable Markov decision process
(POMDP). One common limitation in the aforementioned
methods is that they are restricted to discrete actions (some
even assume discrete observations). Also, it has been shown
that PSRs can benefit greatly from local optimization after
a moment-based initialization (Downey et al., 2017; Hefny
et al., 2018).

Venkatraman et al. (2017) proposed predictive state de-
coders, where an LSTM or a GRU network is trained on
a mixed objective function in order to obtain high cumula-
tive rewards while accurately predicting future observations.
While it has shown improvement over using standard train-
ing objective functions, it does not solve the initialization
issue of the recurrent network.

Our proposed RPSP networks alleviate the limitations of
previous approaches: It supports continuous observations

Recurrent Predictive State Policy Networks

and actions, it uses a recurrent state tracker with consistent
initialization, and it supports end-to-end training after the
initialization.

3. Predictive State Representations of
Controlled Models

In this section, we give a brief introduction to predictive
state representations, which constitute the state tracking
(filtering) component of our model.1 We provide more
technical details in the appendix.

Given a history of observations and actions
a1,o1,a2,o2, . . . ,at−1,ot−1, a recursive filter com-
putes a belief state qt using a recursive update equation
qt+1 = f(qt,at,ot). Given the state qt, one can predict
observations through a function g(qt,at) ≡ E[ot | qt,at].
In a recurrent neural network (Figure 1 (a,b)), q is latent
and the function g that connects states to the output is
unknown and has to be learned. In this case, the output
could be predicted from observations, when the RNN is
used for prediction, see Figure 1 (a,b).

Predictive state models use a predictive representation of
the state. That means the qt is explicitly defined as the
conditional distribution of future observations ot:t+k−1 con-
ditioned on future actions at:t+k−1.2 (e.g., in the discrete
case, qt could be a vectorized conditional probability table).

Predictive states are thus defined entirely in terms of ob-
servable features with no latent variables involved. That
means the mapping between the predictive state qt and the
prediction of ot given at can be fully known or simple to
learn consistently (Hefny et al., 2015b; Sun et al., 2016).
This is in contrast to RNNs, where this mapping is unknown
and requires non-convex optimization to be learned.

Similar to an RNN, a PSR employs a recursive state update
that consists of the following two steps:3

• State extension: A linear map Wext is applied to qt
to obtain an extended state pt. This state defines a
conditional distribution over an extended window of
k + 1 observations and actions. Wext is a parameter to
be learned.

pt = Wextqt (1)
1 We follow the predictive state controlled model formulation

in Hefny et al. (2018). Alternative methods such as predictive state
inference machines (Sun et al., 2016) could be contemplated.

2 We condition on “intervention by actions” rather than “ob-
serving actions”. That means qt is independent of the policy that
determines the actions. See (Pearl, 2009).

The length-k depends on the observability of the system. A sys-
tem is k-observable if maintaining the predictive state is equivalent
to maintaining the distribution of the system’s latent state.

3See the appendix Section 9 for more details.

• Conditioning: Given at and ot, and a known condi-
tioning function fcond:

qt+1 = fcond(pt,at,ot). (2)

Figure 1 (c, d) depicts the PSR state update. The condi-
tioning function fcond depends on the representation of qt
and pt. For example, in a discrete system, qt and pt could
represent conditional probability tables and fcond amounts
to applying Bayes rule. In continuous systems we can use
Hilbert space embedding of distributions (Boots et al., 2013),
where fcond uses kernel Bayes rule (Fukumizu et al., 2013).

In this work, we use the RFFPSR model proposed in (Hefny
et al., 2018). Observation and action features are based on
random Fourier features (RFFs) of RBF kernel (Rahimi &
Recht, 2008) projected into a lower dimensional subspace
using randomized PCA (Halko et al., 2011). We use φ to
denote this feature function. Conditioning function fcond
is kernel Bayes rule, and observation function g is a linear
function of state E[ot | qt,at] = Wpred(qt ⊗ φ(at)). See
Section 9.1 in the appendix for more details.

3.1. Learning predictive states representations

Learning PSRs is carried out in two steps: an initialization
procedure using method of moments and a local optimiza-
tion procedure using gradient descent.

Initialization: The initialization procedure exploits the
fact that qt and pt are represented in terms of observ-
able quantities: since Wext is linear and using (1), then
E[pt | ht] = WextE[qt | ht]. Here ht ≡ h(a1:t−1,o1:t−1)
denotes a set of features extracted from previous observa-
tions and actions (typically from a fixed length window
ending at t− 1). Because qt and pt are not hidden states,
estimating these expectations on both sides can be done
by solving a supervised regression subproblem. Given the
predictions from this regression, solving for Wext then be-
comes another linear regression problem. We follow this
two-stage regression proposed by Hefny et al. (2018).4

Once Wext is computed, we can perform filtering to obtain
the predictive states qt. We then use the estimated states to
learn the mapping to predicted observations Wpred, which
results in another regression subproblem, see Section 9.2 in
the appendix for more details.

In RFFPSR, we use linear regression for all subproblems
(which is a reasonable choice with kernel-based features).
This ensures that the two-stage regression procedure is free
of local optima.

Local Optimization: Although PSR initialization proce-
dure is consistent, it is based on method of moments and
hence is not necessarily statistically efficient. Therefore it

4 We use the joint stage-1 regression variant for initialization.

Recurrent Predictive State Policy Networks

𝑞- 𝑞-)$𝑓

𝑜B- 	

𝑔

𝑜- , 𝑎-

𝑜-

𝑞-

𝑎-

𝑓;<=>𝑊/0-

𝑝- 𝑞-)$

𝑜-

𝑞-

𝑎-

𝑊I=

𝑊J 𝑞-)$+ 𝜎

𝑎-

𝑎)

𝑏)

𝑐)

𝐨𝟏 𝐨𝟐 𝐨$ … 𝐨𝒕'𝟏 𝒐𝒕 𝒐𝒕)𝟏 … 𝒐𝒕)𝒌'𝟏 𝒐𝒕)𝒌
𝐚𝟏 𝐚𝟐 𝐚$ … 𝐚𝒕'𝟏 𝐚𝒕 𝐚𝒕)𝟏 … 𝐚𝒕)𝒌'𝟏 𝐚𝒕)𝒌

history
ℎ-

future

Extension
𝐖/0-

𝐪- ≡ 𝑃(𝐨-:-)6'$ ∣ 𝐚-:-)6'$)

𝐨𝟏 𝐨𝟐 𝐨$ … 𝐨𝒕'𝟏 𝒐𝒕 𝒐𝒕)𝟏 … 𝒐𝒕)𝒌'𝟏 𝒐𝒕)𝒌
𝐚𝟏 𝐚𝟐 𝐚$ … 𝐚𝒕'𝟏 𝐚𝒕 𝐚𝒕)𝟏 … 𝐚𝒕)𝒌'𝟏 𝐚𝒕)𝒌

extended future

𝐩- ≡ 𝑃(𝐨-:-)6 ∣ 𝐚-:-)6)

Conditioning
𝑓;<=>

𝐨𝟏 𝐨𝟐 𝐨$ … 𝐨𝒕'𝟏 𝒐𝒕 𝒐𝒕)𝟏 … 𝒐𝒕)𝒌'𝟏 𝒐𝒕)𝒌
𝐚𝟏 𝐚𝟐 𝐚$ … 𝐚𝒕'𝟏 𝐚𝒕 𝐚𝒕)𝟏 … 𝐚𝒕)𝒌'𝟏 𝐚𝒕)𝒌

shifted future
𝐪-)$ ≡ 𝑃(𝐨-)$:-)6 ∣ 𝐚-)$:-)6)

𝑑)

Figure 1: Left: a) Computational graph of RNN and PSR and b) the details of the state update function f for both a simple
RNN and c) a PSR. Compared to RNN, the observation function g is easier to learn in a PSR (see §3.1). Right: Illustration
of the PSR extension and conditioning steps.

can benefit from local optimization. Downey et al. (2017)
and Hefny et al. (2018) note that a PSR defines a recursive
computation graph similar to that of an RNN where we have

qt+1 = fcond(Wext(qt),at,ot))

E[ot | qt,at] = Wpred(qt ⊗ φ(at)), (3)

With a differentiable fcond, the PSR can be trained using
backpropagation through time to minimize prediction error.

In a nutshell, a PSR effectively constitutes a special type of a
recurrent network where the state representation and update
are chosen in a way that permits a consistent initialization,
which is then followed by conventional backpropagation.

4. Recurrent Predictive State Policy (RPSP)
Networks

We now introduce our proposed class of policies, Recurrent
Predictive State Policies (RPSPs). We describe its compo-
nents and in §5 we describe the learning algorithm .

RPSPs consist of two fundamental components: a state
tracking component, which models the state of the system,
and is able to predict future observations; and a reactive
policy component, that maps states to actions, shown in
Figure 2. The state tracking component is based on the PSR
formulation described in §3. The reactive policy is a stochas-

𝑎,

𝑞, 𝑊./, 𝑝, 𝑞,(6𝑓>?@A

𝑊OP.A

𝜑

𝜇,

sample

𝑜D,

𝑜,

𝜃TU

𝜃VWX

Σ

Figure 2: RPSP network: The predictive state is updated
by a linear extension Wext followed by a non-linear condi-
tioning fcond. A linear predictor Wpred is used to predict
observations, which is used to regularize training loss (see
§5). A feed-forward reactive policy maps the predictive
states qt to a distribution over actions.

tic non-linear policy πre(at | qt) ≡ p(at | qt;θre) which
maps a predictive state to a distribution over actions and is

Recurrent Predictive State Policy Networks

Algorithm 1 Recurrent Predictive State Policy network Op-
timization (RPSPO)
1: Input: Learning rate η.
2: Sample initial trajectories: {(oit, ait)t}Mi=1 from πexp.
3: Initialize PSR:

θ0
PSR = {q0,Wext,Wpred} via 2-stage regression in §3.

4: Initialize reactive policy θ0
re randomly.

5: for n = 1 . . . Nmax iterations do
6: for i = 1, . . . ,M batch of M trajectories from πn−1: do
7: Reset episode: ai0.
8: for t = 0 . . . T roll-in in each trajectory: do
9: Get observation oit and reward rit.

10: Filter qi
t+1 = ft(q

i
t,a

i
t,o

i
t) in (Eq. 3).

11: Execute ai
t+1 ∼ πn−1

re (qi
t+1).

12: end for
13: end for
14: Update θ using D = {{oi

t,a
i
t, r

i
t,q

i
t}Tt=1}Mi=1:

θn ← UPDATE(θn−1,D, η), as in §5.
15: end for
16: Output: Return θ = (θPSR,θre).

parametrized by θre. Similar to Schulman et al. (2015) we
assume a Gaussian distribution N (µt,Σ), where

µ = ϕ(qt;θµ); Σ = diag(exp(r))2 (4)

for a non-linear map ϕ parametrized by θµ (e.g. a feedfor-
ward network) , and a learnable vector r. An RPSP is thus
a stochastic recurrent policy with the recurrent part corre-
sponding to a PSR. The parameters θ consist of two parts:
the PSR parameters θPSR = {q0,Wext,Wpred} and the
reactive policy parameters θre = {θµ, r}. In the following
section, we describe how these parameters are learned.

5. Learning RPSPs
As detailed in Algorithm 1, learning an RPSP is performed
in two phases.5 In the first phase, we execute an explo-
ration policy to collect a dataset that is used to initialize
the PSR as described in §3.1. It is worth noting that this
initialization procedure depends on observations rather than
rewards. This can be particularly useful in environments
where informative reward signals are infrequent.

In the second phase, starting from the initial PSR and a ran-
dom reactive policy, we iteratively collect trajectories using
the current policy and use them to update the parameters of
both the reactive policy θre = {θµ, r} and the predictive
model θPSR = {q0,Wext,Wpred}, as depicted in Algo-
rithm 1. Let p(τ | θ) be the distribution over trajectories
induced by the policy πθ . By updating parameters, we seek
to minimize the objective function in (5).

L(θ) = α1`1(θ) + α2`2(θ) (5)

= −α1J(πθ) + α2

T∑
t=0

Ep(τ |θ)
[
‖Wpred(qt ⊗ at)− ot‖2

]
,

5https://github.com/ahefnycmu/rpsp

which combines negative expected returns with PSR pre-
diction error.6 Optimizing the PSR parameters to maintain
low prediction error can be thought of as a regularization
scheme. The hyper-parameters α1, α2 ∈ R determine the
importance of the expected return and prediction error re-
spectively. They are discussed in more detail in §5.3.

Noting that RPSP is a special type of a recurrent network pol-
icy, it is possible to adapt policy gradient methods (Williams,
1992) to the joint loss in (5). In the following subsections,
we propose different update variants.

5.1. Joint Variance Reduced Policy Gradient (VRPG)

In this variant, we use REINFORCE method (Williams,
1992) to obtain a stochastic gradient of J(π) from a batch
of M trajectories.

Let R(τ) =
∑T
t=1 γ

t−1rt be the cumulative discounted
reward for trajectory τ given a discount factor γ ∈ [0, 1].
REINFORCE uses the likelihood ratio trick ∇θp(τ |θ) =
p(τ |θ)∇θ log p(τ |θ) to compute∇θJ(π) as

∇θJ(π) = Eτ∼p(τ |θ)[R(τ)

T∑
t=1

∇θ log πθ(at|qt)],

In practice, we use a variance reducing variant of policy
gradient (Greensmith et al., 2001) given by

∇θJ(π) = Eτ∼p(τ |θ)
T∑
t=0

[∇θ log πθ(at|qt)(Rt(τ)− bt)],

(6)

where we replace the cumulative trajectory reward R(τ) by
a reward-to-go function Rt(τ) =

∑T
j=t γ

j−trj computing
the cumulative reward starting from t. To further reduce vari-
ance we use a baseline bt ≡ Eθ[Rt(τ) | a1:t−1,o1:t] which
estimates the expected reward-to-go conditioned on the cur-
rent policy. In our implementation, we assume bt = w>b qt
for a parameter vector wb that is estimated using linear
regression. Given a batch of M trajectories, a stochastic
gradient of J(π) can be obtained by replacing the expecta-
tion in (6) with the empirical expectation over trajectories in
the batch. A stochastic gradient of the prediction error can
be obtained using backpropagation through time. With an
estimate of both gradients, we can compute (5) and update
the parameters trough gradient descent. For more details,
see Algorithm 2 in the appendix.

6We minimize 1-step prediction error, as opposed to general
k-future prediction error recommended by (Hefny et al., 2018), to
avoid biased estimates induced by non causal statistical correla-
tions (observations correlated with future actions) when perform-
ing on-policy updates when a non-blind policy is in use.

Recurrent Predictive State Policy Networks

5.2. Alternating Optimization

In this section, we describe a method that utilizes
the recently proposed Trust Region Policy Optimization
(TRPO (Schulman et al., 2015)), an alternative to the vanilla
policy gradient methods that has shown superior perfor-
mance in practice.It uses a natural gradient update and en-
forces a constraint that encourages small changes in the pol-
icy in each TRPO step. This constraint results in smoother
changes of policy parameters.

Each TRPO update is an approximate solution to the follow-
ing constrained optimization problem in (7).

θn+1 = arg min
θ

Eτ∼p(τ |πn)

T∑
t=0

[
πθ(at|qt)
πn(at|qt)

(Rt(τ)− bt)
]

s.t. Eτ∼p(τ |πn)

T∑
t=0

[DKL (πn(.|qt) | πθ(.|qt))] ≤ ε, (7)

where πn is the policy induced by θn, and Rt and bt are
the reward-to-go and baseline functions defined in §5.1.

While it is possible to extend TRPO to the joint loss in
(5), we observed that TRPO tends to be computationally
intensive with recurrent architectures. Instead, we resort to
the following alternating optimization:7 In each iteration,
we use TRPO to update the reactive policy parameters θre,
which involve only a feedforward network. Then, we use a
gradient step on (5), as described in §5.1, to update the PSR
parameters θPSR, see Algorithm 3 in the appendix.

5.3. Variance Normalization

It is difficult to make sense of the values of α1, α2, specially
if the gradient magnitudes of their respective losses are not
comparable. For this reason, we propose a more principled
approach for finding the relative weights. We use α1 = α̃1

and α2 = a2α̃2, where a2 is a user-given value, and α̃1 and
α̃2 are dynamically adjusted to maintain the property that
the gradient of each loss weighted by α̃ has unit (uncentered)
variance, in (8). In doing so, we maintain the variance of
the gradient of each loss through exponential averaging and
use it to adjust the weights.

v
(n)
i = (1− β)v

(n−1)
i + β

∑
θj∈θ

‖∇(n)
θj
`i‖2 (8)

α̃
(n)
i =

∑
θj∈θ

v
(n)
i,j

−1/2 ,
6. Experiments
We evaluate the RPSP-network’s performance on a collec-
tion of reinforcement learning tasks using OpenAI Gym

7 We emphasize that both VRPG and alternating optimization
models optimize the joint RL/prediction loss. They differ only on
how to update the reactive policy parameters (which are indepen-
dent of prediction error).

Mujoco environments. 8 We consider partially observable
environments: only the angles of the joints of the agent are
visible to the network, without velocities.

Proposed Models: We consider an RPSP with a predictive
component based on RFFPSR, as described in §3 and §4.
For the RFFPSR, we use 1000 random Fourier features
on observation and action sequences followed by a PCA
dimensionality reduction step to d dimensions. We report
the results for the best choice of d ∈ {10, 20, 30}.
We initialize the RPSP with two stage regression on a batch
of Mi initial trajectories (100 for Hopper, Walker and Cart-
Pole, and 50 for Swimmer) (equivalent to 10 extra iterations,
or 5 for Swimmer). We then experiment with both joint
VRPG optimization (RPSP-VRPG) described in §5.1 and
alternating optimization (RPSP-Alt) in §5.2. For RPSP-
VRPG, we use the gradient normalization described in §5.3.

Additionally, we consider an extended variation (+obs) that
concatenates the predictive state with a window w of pre-
vious observations as an extended form of predictive state
q̃t = [qt,ot−w:t]. If PSR learning succeeded perfectly, this
extra information would be unnecessary; however we ob-
serve in practice that including observations help the model
learn faster and more stably. Later in the results section we
report the RPSP variant that performs best. We provide a
detailed comparison of all models in the appendix.

Competing Models: We compare our models to a finite
memory model (FM) and gated recurrent units (GRU). The
finite memory models are analogous to RPSP, but replace the
predictive state with a window of past observations. We tried
three variants, FM1, FM2 and FM5, with window size of 1,
2 and 5 respectively (FM1 ignores that the environment is
partially observable). We compare to GRUs with 16, 32, 64
and 128-dimensional hidden states. We optimize network
parameters using the RLLab9 implementation of TRPO with
two different learning rates (η = 10−2, 10−3).

In each model, we use a linear baseline for variance re-
duction where the state of the model (i.e. past observation
window for FM, latent state for GRU and predictive state
for RPSP) is used as the predictor variable.

Evaluation Setup: We run each algorithm for a number
of iterations based on the environment (see Figure 3). Af-
ter each iteration, we compute the average return Riter =
1
M

∑M
m=1

∑Tm

j=1 r
j
m on a batch of M trajectories, where

Tm is the length of the mth trajectory. We repeat this pro-
cess using 10 different random seeds and report the average
and standard deviation of Riter for each iteration.

For each environment, we set the number of samples in the
batch to 10000 and the maximum length of each episode to

8 https://gym.openai.com/envs#mujoco
9https://github.com/openai/rllab

https://gym.openai.com/envs#mujoco
https://github.com/openai/rllab

Recurrent Predictive State Policy Networks

(a) (b) (c)

(d) (e) (f)

models Swimmer Hopper Walker2d Cart-Pole
FM 41.6±3.5 242.0±5.1 285.1±25.0 12.7±0.6
GRU 22.0±2.0 235.2±9.8 204.5±16.3 27.95±2.3
RPSP-Alt 34.9±1.1 307.4±5.1 345.8±12.6 22.9±1.0
RPSP-VRPG 44.9±2.8 305.0±10.9 287.8±21.1 23.8±2.3
reactive PSR 44.9±2.4 165.4±14.0 184.9±35.8 4.9±1.0
reg GRU 28.9±1.7 260.6.4±3.6 327.7±12.8 22.9±0.3

(g) (h)

Figure 3: Empirical average return over 10 epochs (bars indicate standard error). (a-d): Finite memory model w = 2 (FM),
GRUs, best performing RPSP with joint optimization (RPSP-VRPG) and best performing RPSP with alternate optimization
(RPSP-Alt) on four environments. (e): RPSP variations: fixed PSR parameters (fix PSR), without prediction regularization
(reactive PSR), random initialization (random PSR). (f-g): Comparison with GRU + prediction regularization (reg GRU).
RPSP graphs are shifted to the right to reflect initialization trajectories. (h): Cumulative rewards (area under curve).

200, 500, 1000, 1000 for Cart-Pole, Swimmer, Hopper and
Walker2d respectively.10

For RPSP, we found that a step size of 10−2 performs well
for both VRPG and alternating optimization in all environ-
ments. The reactive policy contains one hidden layer of 16
nodes with ReLU activation. For all models, we report the
results for the choice of hyper-parameters that resulted in

10For example, for a 1000 length environment we use a batch of
10 trajectories resulting in 10000 samples in the batch.

the highest mean cumulative reward (area under curve).

7. Results and Discussion
Performance over iterations: Figure 3 shows the empir-
ical average return vs. the amount of interaction with the
environment (experience), measured in time steps. We ob-
serve that RPSP networks (especially RPSP-Alt) perform
well in every environment, competing with or outperform-
ing the top model in terms of the learning speed and the

Recurrent Predictive State Policy Networks

Figure 4: Empirical average return over 10 trials with a batch of M = 10 trajectories of T = 1000 time steps for Hopper.
(Left to right) Robustness to observation Gaussian noise σ = {0.1, 0.2, 0.3}, best RPSP with alternate loss (Alt) and Finite
Memory model (FM2).

final reward, with the exception of Cart-Pole where the gap
to GRU is larger. We report the cumulative reward for all
environments in Table 3(h). For all except Cart-Pole, come
variant of RPSP is the best performing model. For Swimmer
our best performing model is only statistically better than
FM model (t-test, p < 0.01), while for Hopper our best
RPSP model performs statistically better than FM and GRU
models (t-test, p < 0.01) and for Walker2d RPSP outper-
forms only GRU baselines (t-test, p < 0.01). For Cart-Pole
the top RPSP model performs better than the FM model
(t-test, p < 0.01) and it is not statistically significantly
different than the GRU model. We also note that RPSP-
Alt provides similar performance to the joint optimization
(RPSP-VRPG), but converges faster.

Effect of proposed contributions: Our RPSP model is
based on a number of components: (1) State tracking using
PSR (2) Consistent initialization using two-stage regression
(3) End-to-end training of state tracker and policy (4) Using
observation prediction loss to regularize training.

We conducted a set of experiments to verify the benefit
of each component.11 In the first experiment, we test three
variants of RPSP: one where the PSR is randomly initialized
(random PSR), another one where the PSR is fixed at the
initial value and only the reactive policy is further updated
(fix PSR), and a third one where we train the RPSP network
with initialization and without prediction loss regularization
(i.e. we set α2 in (5)) to 0 (reactive PSR). Figure 3(e)
demonstrates that these variants are inferior to our model,
showing the importance of two-stage initialization, end-to-
end training and observation prediction loss respectively.

In the second experiment, we replace the PSR with a GRU
that is initialized using BPTT applied on exploration data.
This is analogous to the predictive state decoders proposed
in (Venkatraman et al., 2017), where observation prediction

11 Due to space limitation, we report results on Hopper environ-
ment. We report results for other environments in the appendix.

loss is included when optimizing a GRU policy network
(reg GRU).12 Figure 3(f-g) shows that a GRU model is
inferior to a PSR model, where the initialization procedure
is consistent and does not suffer from local optima.

Effect of observation noise: We also investigated the effect
of observation noise on the RPSP model and the competi-
tive FM baseline by applying Gaussian noise of increasing
variance to observations. Figure 4 shows that while FM was
very competitive with RPSP in the noiseless case, RPSP has
a clear advantage over FM in the case of mild noise. The
performance gap vanishes under excessive noise.

8. Conclusion
We propose RPSP-networks, combining ideas from predic-
tive state representations and recurrent networks for rein-
forcement learning. We use PSR learning algorithms to
provide a statistically consistent initialization of the state
tracking component, and propose gradient-based methods
to maximize expected return while reducing prediction error.
We compare RPSP against different baselines and empiri-
cally show the efficacy of the proposed approach in terms
of speed of convergence and overall expected return.

One direction to investigate is how to develop an online,
consistent and statistically efficient method to update the
RFFPSR as a predictor in continuous environments. There
has been a body of work for online learning of predictive
state representations (Venkatraman et al., 2016; Boots &
Gordon, 2011; Azizzadenesheli et al., 2016; Hamilton et al.,
2014). To our knowledge, none of them is able to deal with
continuous actions and make use of local optimization. We
are also interested in applying off-policy methods and more
elaborate exploration strategies.

12 We report results for partially observable setting which is
different from RL experiments in (Venkatraman et al., 2017).

Recurrent Predictive State Policy Networks

References
Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. Re-

inforcement learning of pomdp’s using spectral methods.
CoRR, abs/1602.07764, 2016. URL http://arxiv.
org/abs/1602.07764.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., Zhang, X., Zhao, J., and Zieba, K. End to
end learning for self-driving cars. CoRR, abs/1604.07316,
2016.

Boots, B. and Gordon, G. An online spectral learning algo-
rithm for partially observable nonlinear dynamical sys-
tems. In Proceedings of the 25th National Conference on
Artificial Intelligence (AAAI), 2011.

Boots, B. and Gordon, G. J. Predictive state temporal dif-
ference learning. In Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neu-
ral Information Processing Systems 2010., pp. 271–279,
2010.

Boots, B., Siddiqi, S., and Gordon, G. Closing the learning
planning loop with predictive state representations. In I.
J. Robotic Research, volume 30, pp. 954–956, 2011.

Boots, B., Gretton, A., and Gordon, G. J. Hilbert Space
Embeddings of Predictive State Representations. In Proc.
29th Intl. Conf. on Uncertainty in Artificial Intelligence
(UAI), 2013.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. In Empirical Methods in
Natural Language Processing, EMNLP, pp. 1724–1734,
2014.

Downey, C., Hefny, A., Boots, B., Gordon, G. J., and Li,
B. Predictive state recurrent neural networks. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 30, pp. 6055–
6066. Curran Associates, Inc., 2017.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In Proceedings of the 33rd In-
ternational Conference on International Conference on
Machine Learning - Volume 48, ICML’16, pp. 1329–1338,
2016.

Fukumizu, K., Song, L., and Gretton, A. Kernel bayes’ rule:
Bayesian inference with positive definite kernels. Journal
of Machine Learning Research, 14(1):3753–3783, 2013.

Greensmith, E., Bartlett, P. L., and Baxter, J. Variance reduc-
tion techniques for gradient estimates in reinforcement
learning. In Proceedings of the 14th International Confer-
ence on Neural Information Processing Systems: Natural
and Synthetic, NIPS’01, pp. 1507–1514, Cambridge, MA,
USA, 2001. MIT Press.

Haarnoja, T., Ajay, A., Levine, S., and Abbeel, P. Backprop
kf: Learning discriminative deterministic state estimators.
In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 29, pp. 4376–4384. Curran Asso-
ciates, Inc., 2016.

Halko, N., Martinsson, P. G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM
Rev., 2011.

Hamilton, W., Fard, M. M., and Pineau, J. Efficient learning
and planning with compressed predictive states. J. Mach.
Learn. Res., 15(1):3395–3439, January 2014.

Hausknecht, M. J. and Stone, P. Deep recurrent q-learning
for partially observable mdps. CoRR, abs/1507.06527,
2015.

Hefny, A., Downey, C., and Gordon, G. J. Supervised
learning for dynamical system learning. In NIPS. 2015a.

Hefny, A., Downey, C., and Gordon, G. J. Supervised
learning for dynamical system learning. In Cortes, C.,
Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, pp. 1963–1971. 2015b.

Hefny, A., Downey, C., and Gordon, G. J. An efficient,
expressive and local minima-free method for learning
controlled dynamical systems. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, Louisiana, USA, February 2-7, 2018, 2018.
URL https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/17089.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput., 9(8):1735–1780, 1997.

Littman, M. L., Sutton, R. S., and Singh, S. Predictive repre-
sentations of state. In In Advances In Neural Information
Processing Systems 14, pp. 1555–1561. MIT Press, 2001.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
Playing atari with deep reinforcement learning, 2013.
URL http://arxiv.org/abs/1312.5602. cite
arxiv:1312.5602Comment: NIPS Deep Learning Work-
shop 2013.

http://arxiv.org/abs/1602.07764
http://arxiv.org/abs/1602.07764
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17089
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17089
http://arxiv.org/abs/1312.5602

Recurrent Predictive State Policy Networks

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, New York, NY, USA, 2nd edi-
tion, 2009. ISBN 052189560X, 9780521895606.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In NIPS. 2008.

Rosencrantz, M. and Gordon, G. Learning low dimensional
predictive representations. In ICML, pp. 695–702, 2004.

Ross, S., Gordon, G. J., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
pp. 627–635, 2011.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Blei, D. and Bach,
F. (eds.), Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML-15), pp. 1889–1897.
JMLR Workshop and Conference Proceedings, 2015.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, January
2016.

Singh, S., James, M. R., and Rudary, M. R. Predictive state
representations: A new theory for modeling dynamical
systems. In UAI, 2004.

Sun, W., Venkatraman, A., Boots, B., and Bagnell, J. A.
Learning to filter with predictive state inference machines.
In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, pp. 1197–1205, 2016.

Sutton, R., Mcallester, D., Singh, S., and Mansour, Y. Policy
gradient methods for reinforcement learning with func-
tion approximation. In Advances in Neural Information
Processing Systems 12 (Proceedings of the 1999 confer-
ence), pp. 1057–1063. MIT Press, 2001.

Sutton, R. S. and Barto, A. G. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition,
1998.

Szita, I. and Lrincz, A. Learning tetris using the noisy cross-
entropy method. Neural Computation, 18(12):2936–2941,
Dec 2006.

Tamar, A., Levine, S., Abbeel, P., and andonline Gar-
rett Thomas, Y. W. Value iteration networks. In Advances

in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pp. 2146–
2154, 2016.

Venkatraman, A., Sun, W., Hebert, M., Bagnell, J. A., and
Boots, B. Online instrumental variable regression with
applications to online linear system identification. In
AAAI, 2016.

Venkatraman, A., Rhinehart, N., Sun, W., Pinto, L., Boots,
B., Kitani, K., and Bagnell., J. A. Predictive state de-
coders: Encoding the future into recurrent networks. In
Proceedings of Advances in Neural Information Process-
ing Systems (NIPS), 2017.

Wierstra, D., Förster, A., Peters, J., and Schmidhuber, J.
Recurrent policy gradients. Logic Journal of the IGPL,
18(5):620–634, October 2010.

Williams, R. J. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. In
Machine Learning, pp. 229–256, 1992.

Recurrent Predictive State Policy Networks

Appendix

9. Predictive state representations and two
stage regression

In this section we give more details on the filter compo-
nent (RFFPSR) of the RPSP network. We explain the
state update equation and the two-stage initialization al-
gorithm. We encourage the reader to refer to (Hefny et al.,
2018) for more details, derivations and theoretical anal-
ysis. Let a1:t−1 = a1, . . . ,at−1 ∈ At−1 be the set of
actions performed by an agent, followed by observations
o1:t−1 = o1, . . . ,ot−1 ∈ Ot−1 received by the environ-
ment up to time t. Together they compose the entire history
up to time t h∞t ≡ {a1:t−1,o1:t−1}. We define future
observations at time t as the sequence of consecutive k
observations ot:t+k−1 ∈ Ok and extended future observa-
tions as the sequence of consecutive k + 1 observations
ot:t+k ∈ Ok+1. Same definitions apply for actions.

We now define feature mappings shown in Figure 1, for
immediate and future actions and observations:

– φo(ot) : O 7→ RO of immediate observations,

– φa(at) : A 7→ RA of immediate actions,

– ψo(ot:t+k−1) : Ok 7→ RFO

of future observations,

– ψa(at:t+k−1) : Ak 7→ RFA

of future actions

– ξo(ot:t+k) ≡ (ψot+1 ⊗ φot ,φot ⊗ φot) : Ok+1 7→
RFO×O × RO×O of extended observations,

– ξa(at:t+k) ≡ ψat+1 ⊗ φat : Ak+1 7→ RFA×A of ex-
tended actions.

, where φot is a shorthand for φo(ot).

These feature maps basically compute Random Fourier fea-
tures (Rahimi & Recht, 2008) projected on a lower dimen-
sional space using PCA. For faster computation of the pro-
jection we use randomized PCA (Halko et al., 2011).

Given these feature functions we define the predictive
state qt to be a linear map from future action fea-
tures ψt to expected future observation features E[ψot |
o1:t−1,do(a1:t+k−1)], where do(a1:t+k−1) means inter-
vening by actions a1:t+k−1 instead of observing actions
a1:t+k−1 (Pearl, 2009) (in the discrete case, think of a con-
ditional probability table whose values are determined by
observations and actions up to time t − 1). Such a linear
map is be represented by a matrix, which can be vectorized
and projected using PCA.

We define the extended state pt = (pξt ,p
o
t) as a tuple con-

sisting of two similar linear maps:

pξt ≡ ξat → E[ψot ⊗ φot | o1:t−1,do(a1:t+k)]

pot ≡ ξot → E[φot ⊗ φot | o1:t−1,do(a1:t)]

The key property in the extended state pt is that, given ot
and at, we can compute qt+1 using kernel Bayes rule (Fuku-
mizu et al., 2013) as we will demonstrate.

We assume there is a linear transformation Wext ≡
(W ξ

ext,W
o
ext) such that

pt = Wextqt.

With this model formulation, it remains to show how to
perform the state update and how to learn the parameter
Wext.

9.1. State update in RFFPSR

• Given a state qt we compute the extended state pt and
undo the PCA projection.

• Given the action at and pot we can compute

Ct ≡ E[φot ⊗ φot | o1:t−1,do(a1:t)]

• We can think of the map pξt as a 4-mode tensors with
modes corresponding toψot+1, φot , ψat+1, and φat . Ker-
nel Bayes rule tells us that, by multiplying (Ct+λI)−1

along the φot mode we get a tensor for the map

ψat+1,φ
a
t ,φ

o
t → E[ψat+1 | o1:t,do(a1:t+k)]

Given at and ot we compute the corresponding features
and plug them in the previous map (by multiplying with
the appropriate modes) to give the matrix for the map

ψat+1 → E[ψat+1 | o1:t,do(a1:t+k)],

which after vectorizing and projection is qt+1.

9.2. Learning RFFPSR Parameters

If we have access to examples of qt and pt, we can learn
Wext using linear regression. However, obtaining these
examples is as hard as learning the RFFPSR. Two-stage
regression (Hefny et al., 2015a; 2018) is based on the obser-
vation that we can replace qt and pt with their expectations
given history features

q̄t ≡ E[qt | ht]
p̄t ≡ E[pt | ht]

, where ht ≡ h(a1:t−1,o1:t−1) denotes a set of features
extracted from previous observations and actions (typically
from a fixed length window ending at t− 1). Computing q̄t
and p̄t is referred to as stage 1 (S1) regression. We use the
joint S1 regression method described in (Hefny et al., 2018).
We collect training data of tuples (ht,ψ

o
t ,ψ

a
t). We train a

Recurrent Predictive State Policy Networks

Algorithm 2 UPDATE (VRPG)

1: Input: θn−1, trajectories D={τ i}Mi=1, and learning rate η.
2: Estimate a linear baseline bt = w>b qt, from the expected

reward-to-go function for the batch D:

wb = argmin
w

∥∥∥∥ 1
TM

M∑
i=1

Ti∑
t=1

Rt(τ
i
t)−w>qt

∥∥∥∥2.

3: Compute the VRPG loss gradient w.r.t. θ, in (6):

∇θ`1 = 1
M

M∑
i=1

Ti∑
t=0

∇θ log πθ(a
i
t|qi

t)(Rt(τ
i)− bt).

4: Compute the prediction loss gradient:

∇θ`2 = 1
M

M∑
i=1

Ti∑
t=1

∇θ

∥∥Wpred(q
i
t ⊗ ai

t)− oi
t

∥∥2.

5: Normalize gradients∇θ`j = NORMALIZE(θ, `j), in (8).
6: Compute joint loss gradient as in (5):

∇θL = α1∇θ`1 + α2∇θ`2.
7: Update policy parameters: θn = ADAM(θn−1,∇θL, η)
8: Output: Return θn = (θn

PSR,θ
n
re, η).

kernel regression model (ridge regression on RFF features)
to compute At ≡ E[ψot ⊗ ψat | ht] and another model to
compute Bt ≡ E[ψat ⊗ψat | ht]. Then, for each time step
we can compute

q̄t = At(Bt + λI)−1

and then we can project these values using PCA. Computa-
tion of p̄t can be done in a similar fashion.

Then, we can learn Wext through linear regression, which
is referred to as stage 2 (S2) regression. Having learned the
RFFPSR we can estimate the state qt and set up a regression
problem ot ≈Wpred(qt ⊗ φat) to learn prediction weights
Wpred.

10. RPSP-network optimization algorithms
For clarity we provide the pseudo-code for the joint and
alternating update steps defined in the UPDATE step in
Algorithm 1, in section §5. We show the joint VRPG up-
date step in Algorithm 2, and the alternating (Alternating
Optimization) update in Algorithm 3.

11. Comparison to RNNs with LSTMs/GRUs
RPSP-networks and RNNs both define recursive models that
are able to retain information about previously observed in-
puts. BPTT for learning predictive states in PSRs bears
many similarities with BPTT for training hidden states in
LSTMs or GRUs. In both cases the state is updated via a
series of alternate linear and non-linear transformations. For
predictive states the linear transformation pt = Wext qt
represents the system prediction: from expectations over
futures qt to expectations over extended features pt. The
non-linear transformation, in place of the usual activation
functions (tanh, ReLU), is replaced by fcond that conditions
on the current action and observation to update the expec-
tation of the future statistics qt+1 in (2). It is worth noting

Algorithm 3 UPDATE (Alternating Optimization)

1: Input: θn−1, trajectories D = {τ i}Mi=1.
2: Estimate a linear baseline bt = w>b qt, from the expected

reward-to-go function for the batch D:

wb = argmin
w

∥∥∥∥ 1
TM

M∑
i=1

Ti∑
t=1

Rt(τ
i
t)−w>qt

∥∥∥∥2.

3: Update θPSR using the joint VRPG loss gradient in (5):
θn
PSR ← UPDATE VRPG(θn−1,D).

4: Compute descent direction for TRPO update of θre:
v = H−1g, where

H = ∇2
θre

M∑
i=1

DKL

(
πθn−1(ai

t|qi
t) | πθ(a

i
t|qi

t)
)
,

g = ∇θre

1

M

M∑
i=1

Ti∑
t=1

πθ(a
i
t|qi

t)

πθn−1(ai
t|qi

t)
(Rt(τ

i)− bt).

5: Determine a step size η through a line search on v to maximize
the objective in (7) while maintaining the constraint.

6: θn
PSR ← θn−1

PSR + ηv
7: Output: Return θn = (θn

PSR,θ
n
re).

that these transformations represent non-linear state updates,
as in RNNs, but where the form of the update is defined by
the choice of representation of the state. For Hilbert Space
embeddings it corresponds to conditioning using Kernel
Bayes Rule. An additional source of linearity is the repre-
sentation itself. When we consider linear transformations
Wpred and Wext we refer to transformations between kernel
representations, between Hilbert Space Embeddings.

PSRs also define computation graphs, where the parame-
ters are optimized by leveraging the states of the system.
Predictive states can leverage history like LSTMs/GRUs,
PSRs also have memory, since they learn to track in the
Reproducing Kernel Hilbert Space (RKHS) space of dis-
tributions of future observations based on past histories.
PSRs provide the additional benefit of being well-defined
as conditional distributions of observed features and could
be trained based on that definition. For this reason, RPSPs
have a statistically driven form of initialization, that can be
obtained using a moment matching technique, with good
theoretical guarantees (Hefny et al., 2018).

12. Additional Experiments
In this section, we investigate the effect of using differ-
ent variants of RPSP networks, we test against a random
initialization of the predictive layer, and provide further
experimental evidence for baselines.

RPSP optimizers: Next, we compare several RPSP vari-
ants for all environments. We test the two RPSP variants,
joint and alternate loss with predictive states and with aug-
mented predictive states (+obs). The first variant is the
standard “vanilla” RPSP, while the second variant is an
RPSP with augmented state representation where we con-
catenate the previous window of observations to the pre-
dictive state (+obs). We provide a complete comparison

Recurrent Predictive State Policy Networks

of RPSP models using augmented states with observations
for all environments in Figure 9. We compare with both
joint optimization (VRPG+obs) and an alternating approach
(Alt+obs). Extended predictive states with a window of
observations (w = 2) provide better results in particular for
joint optimization. This extension might mitigate prediction
errors, improving information carried over by the filtering
states.

Finite Memory models: Next, we present all finite memory
models used as baselines in §6. Figure 7 shows finite mem-
ory models with three different window sizes w = 1, 2, 5
for all environments. We report in the main comparison
the best of each environment (FM2 for Walker, Swimmer,
Cart-Pole, and FM1 for Hopper).

GRU baselines: In this section we report results obtained
for RNN with GRUs using the best learning rate η = 0.01.
Figure 8 shows the results using different number of hidden
units d = 16, 32, 64, 128 for all the environments.

Figure 5: Predictive filter regularization effect for Walker2d,
CartPole and Swimmer environments. RPSP with predic-
tive regularization (RPSP:blue), RPSP with fixed PSR filter
parameters (fix PSR:red), RPSP without predictive regular-
ization loss (reactive PSR: grey).

Recurrent Predictive State Policy Networks

Figure 6: GRU vs. RPSP filter comparison for other Walker
and CartPole environments. GRU filter without regulariza-
tion loss (GRU:red), GRU filter with regularized predictive
loss (reg GRU: yellow), RPSP (RPSP:blue)

Recurrent Predictive State Policy Networks

Figure 7: Empirical expected return using finite memory
models of w = 1 (black), w = 2 (light green), w = 5
(brown) window sizes. (top-down) Walker, Hopper, Cart-
Pole, and Swimmer.

Figure 8: Empirical expected return using RNN with GRUs
d = 16 (green), d = 32 (blue), d = 64 (red) and d = 128
(yellow) hidden units. (top-down) Walker, Hopper, Cart-
Pole, and Swimmer.

Recurrent Predictive State Policy Networks

Figure 9: Reward over iterations for RPSP variants over a
batch of M = 10 trajectories and 10 trials.

